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A formalization of diagrammati proofs inabstrat rewritingJulien NarbouxSeptember 12, 2006AbstratDiagrams are ommonly used in the rewriting ommunity. In thispaper, we present a formalization of this kind of diagrams. We give aformal de�nition of the diagrams whih are used to state properties. Wepropose inferene rules to formalize some diagrammati proofs suh as theproof of the Newman's lemma. We show that the system proposed is bothorret and omplete for a lass of formulas alled "oherent logi".
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1 IntrodutionSome diagrams an be seen as a high level desription of a proof, in the sensethat they onvine the reader that some fat is true. This kind of diagramsappears in di�erent domains of mathematis and omputer siene, suh aseulidean geometry, number theory, real analysis, set theory, ategory theory,rewriting. . .In [Jam01℄, Jamnik uses diagrams as a hint for an automated theorem proverin the �eld of number theory. In [BPB91℄, Dave Barker-Plummer and SidneyC. Bailin use also diagrams as a hint for an automated theorem prover in the�eld of abstrat rewriting. In this paper, we want to give to the lass of dia-grams whih are in used the abstrat rewriting ommunity the status of a proofobjet as we plan to use them as input language for the Coq proof assistant[Coq04, HKPM04℄. This approah requires that we give a formal de�nition ofthe diagrams, its semanti and of the orretness of a proof diagram. Work hasbeen done in this diretion for some lasses of diagrams: Miller has proposeda formal system for some diagrammati proofs in eulidean geometry [Mil01℄and Winterstein has given another system for diagrammati proofs in the �eldof real analysis [Win04℄. We fous on abstrat rewriting beause diagrams areommonly used in papers and books about this subjet, for example in [BN98℄diagrams appear throughout the book and are even given a preise meaning1.In this paper we will give a presentation of abstrat rewriting similar to [BN98℄exept that our intent is not to onsider diagrams as illustrations for proofs butas a proof objets in themselves.First, we reall the de�nition of an abstrat term rewriting system and givea formal de�nition of a rewriting diagram. Seond, we de�ne some propertiesdiagrammatially and present a formal proof system using a simple proof asan example. Then, we introdue diagrammati inferene rules to formalizeproofs by indution as well as well-founded indution and thereby we provethe Newman's lemma [New42℄. Finally, we put forward the implemention of theinferene rules within the Coq proof assistant.

1Note fully formal though, beause sometimes variables are impliitly universally quanti�edand sometimes they are not. 3



2 Diagrammati representation in abstrat rewrit-ingIn this setion, we reall the de�nitions of an abstrat term rewriting systemand we propose a de�nition for the diagrams whih are urrent in the literature.An abstrat redution system is a pair (A,→) where the redution → is abinary relation on the set A, i.e. →⊆ A×A.Our aim in this paper is to formalize the kind of diagrams whih are om-monly used in the rewriting ommunity. We do not try to invent a new kind ofdiagrams as in [BvOK98℄, our goal is to de�ne a diagrammati language whihwill be used later as an input language for the Coq proof assistant.The fat that (x, y) ∈→ will be depited by an arrow in in�x position:
x −→ y.Informally, we use the usual onvention aording to whih solid arrows standfor the hypotheses and dashed arrows stand for the onlusion. Verties whihare onneted only to dashed arrows are supposed to be existentially quanti�edby default. Verties whih are onneted to at least one solid arrow are alwaysquanti�ed universally.Let's have a look at a �rst example before giving a formal de�nition. Awell-known property of an abstrat rewriting relation is the diamond propertywhih is often used and is usually represented in the rewriting ommunity bythe following diagram :

x
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��?
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y
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>

>
> z

���
�
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�

tThe meaning of this diagram is the following :
∀xyz, x −→ y ∧ x −→ z ⇒ ∃t, y −→ t ∧ z −→ tNow as our goal is to treat diagrams as �rst lass itizens, i.e. not as no-tations for some mathematial objets but as mathematial objets. To reahthis goal, we need a formal de�nition of a diagram and its semanti.We begin with the de�nition of a multi-graph sine it is used in the de�nitionof a diagram.
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De�nition 1 (direted multi-graph). A direted multi-graph is a 4-uple (V, A, s, d)where
• V is the set of verties.
• A is the set of arrows.
• s : A→ V is a funtion from arrows to verties (the soure of the arrow)
• d : A → V is a funtion from arrows to verties (the destination of thearrow)Note that an arrow an have the same soure and destination.De�nition 2 (Diagram). A rewriting diagram D is a �nite direted multi-graph whose arrows are labeled by a relation and a status (either onlusion orhypothesis) and verties are labeled by a name and a status (either universal,existential or free) verifying the following onditions :
• If a vertex is in ontat with at least one hypothesis arrow then its statusis not existential.
• There is at least one onlusion arrow.
• There is no vertex of degree zero.Formally, it is a 10-uple (ΣV , ΣA, V, A, s, d, lA, lV , sA, sV ) where :
• ΣV is the set of verties symbols
• ΣA is the set of relation symbols
• V is the set of verties
• A is the set of arrows
• s : A→ V is the soure funtion
• d : A→ V is the destination funtion
• lA : A→ ΣA is a funtion from the set of arrows to the relation symbols
• lV : V → ΣV is an injetive funtion from the set of verties to the vertiessymbols
• sA : A→ {H, C} is a funtion from the set of arrows to the arrows status
• sV : V → {∀, ∃,F} is a funtion from the set of verties to the vertiesstatusverifying that :
• ∀v ∈ V, (∃a ∈ A, (s(a) = v ∨ d(a) = v) ∧ sA(a) = H)⇒ sV (v) 6= ∃

• ∃a ∈ A, sA(a) = C

• ∀v ∈ V, ∃a ∈ A, s(a) = v ∨ d(a) = v5



2.0.1 First notations (N1):When arrows are labeled by the same relation, the label of this relation isomitted.Arrows whih are marked as onlusion will be represented by a dashed arrow,and hypotheses by a solid arrow.The universal verties are labeled using the symbol ∀.The existential verties are labeled using the symbol ∃.The free verties are underlined.Using these notations the diamond property is represented this way :
x∀

}}||
||

||
||

!!B
BB

BB
BB

B

y∀

  B
B

B
B

z∀

~~|
|

|
|

t∃We say that a term x
R
−→ y is represented by an arrow if the diagram on-tains an arrow labeled by R suh that s(f) = x and d(f) = y.Now, we need to give a formal semanti to ours diagrams. Note that thisde�nition is not neessary for the onstrution of a formal system to build proofsin abstrat term rewriting. Indeed, we ould onsider that the semanti ofdiagrams is impliitly de�ned by the inferene rules. We give here the semantinot only to larify the presentation but also beause it is neessary to state theorretness and ompleteness theorems with regard to the sequent alulus (seesetion 4).De�nition 3 (semanti).The semanti of an arrow x

R
−→ y is R(x, y).Let −→e be the set of labels of existential verties and −→u the set of labels of uni-versal verties.Let C be the onjuntion of the terms represented by a onlusion arrow.Let H be the onjuntion of the terms represented by an hypothesis arrow or

true if the onjuntion is empty.By de�nition the semanti of the diagram D noted JDK is:
JDK := ∀u, H ⇒ ∃e, CNotie that in virtue of the �rst ondition in the de�nition of a diagram, theonjuntion C is not empty and in virtue of the seond ondition, H does notontain an ourrene of a variable whih is in eNote also that we do not de�ne the order of the variables in e and u and theorder of the terms in C and H . This does not introdue fundamental ambiguitiesas the formulas obtained by permutation are equivalent.6



It is lear from the de�nition of the semanti that not all �rst-order formulasan be represented by a diagram. We an desribe only formulas of the form
∀u

∧

i Hi ⇒ ∃e
∧

i Ci where the terms in Hi and Ci are prediates of arity two.Remark 1. If a diagram ontains several onnex omponents, its semanti isequivalent to the onjuntion of the semantis of the di�erent omponents.Proof: By injetivity of the funtion lV .2.0.2 Seond notations (N2):As our goal is to give a de�nition of diagrams as lose as possible to the ommon usage in the ommunity, we introdue two other notations:1. In the representation of a diagram if we omit the status of a vertex, it hasthe following impliit status :If the vertex is in ontat with only onlusion arrows its status is exis-tential, otherwise its status is universal.Now, we have the usual notation for the diamond property :
x

����
��

��
�

��?
??

??
??

?

y

��>
>

>
> z
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�
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�

t2. In the representation of a diagram, if we draw only solid arrows and weomit the status of the verties, this is a notation to represent the samediagram onsisting of only dashed arrows and free verties.Example : x −→ y is a notation for x //___ yNote that this notation is not ambiguous as every diagram has a least oneonlusion arrow.Note also that if we swapped the role of the dashed and solid arrowsin the de�nition of the semanti of a diagram we would not need thisnotation rule. We keep this de�nition to follow the ommon usage in theommunity.Before going further, here are some small examples of diagrams and theirsemanti:
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Formula Diagram
x −→ x x

yy
g

�
W noted alsoa x

yy

∀x, x −→ x x∀

ww

g

�
W

∃x, x −→ x x
yy

g

�
W

∃xy, x −→ y x //___ y

∀x∃y, x −→ y x∀ //___ y

∀xy, x −→ y x∀ //___ y∀
x −→ y x //___ y noted also x // yain the absene of other arrows in the diagram2.1 Extension to disjuntions.Usually, in the literature about rewriting, disjuntions are not represented bydiagrams. But, in order to de�ne the transitive losure of a relation, we need tode�ne diagrams representing disjuntions. Indeed we want to express the fatthat2 :

∀xy, x
+
−→ y ⇒ (x −→ y ∨ ∃y′, x −→ y′ +

−→ y)De�nition 4 (disjuntive diagram). A disjuntive diagram is a �nite set ofdiagrams (in the sens of the de�nition 2) whose sub-diagrams restrained to solidarrows and universal verties are idential.Notation: We separate the sub-diagrams of the disjuntion through the useof a vertial bar |.The semanti is as follows:De�nition 5 (disjuntive diagrams' semanti).Let D = {D1 . . . Dn} be a disjuntive diagram. As the diagrams Di share thesame solid arrows, we know that they have a semanti of the form:
∀−→u , H ⇒ ∃−→ei , CiThe semanti of D is by de�nition:

JDK := ∀−→u , H ⇒
∨

i∈1...n

∃−→ei , CiFor example, here are the diagrams whih express the two possible ases ofonstrution of the redutions +
−→ and ∗

−→:
x

+ //
>>I

_ u
y x

+ //

��>
>

>
>

y

y′

+

@@�
�

�
�2See setion 2.4 for the de�nition of the relations +

−→ and ∗

−→.8



∀xy, x
+
−→ y ⇒ (x −→ y ∨ ∃y′, x −→ y′ +

−→ y)

x
∗ //
=

>>I
_ u

y x
∗ //

��>
>

>
>

y

y′

∗

@@�
�

�
�

∀xy, x
∗
−→ y ⇒ (x

=
−→ y ∨ ∃y′, x −→ y′ ∗

−→ y)2.2 Language of the represented formulasAfter the extension to disjuntive diagrams, the formulas whih an be repre-sented by a diagram are those of the form:
∀u

∧

i

Hi ⇒
∨

i

∃ ei

∧

j

Cijwhere the Hi and Cij
are prediates of arity two.These formulas form a sub-language of the oherent logi of Mar Bezemand Thierry Coquand. For more information about this logi see [BC05, BC04℄.Now, we will all D this lass of formulas.2.3 About the negationThe lass D of formulas that we have de�ned does not ontain negations. Thisis a limitation as we an not de�ne for example the notion of normal form. Butthis property is important beause the diagrams whih we use onsist in therepresentation of general fat by an example. It is di�ult to denote diagram-matially, by an example, the fat that something does not hold. We have thesame problem in geometry, impossible �gures are hard to denote graphially.In some domains, negations an be represented diagrammatially. For ex-ample, the fat that an element is not in a set an be represented through theuse of an Euler diagram. But, in this ontext, negations do not have the samemeaning as before sine impliitly the logi is lassial: if x is not in A then itis in its omplementary ¬A.2.4 De�nitions and ommon propertiesWe give now some de�nitions using the diagrams we have de�ned. These de�-nitions will be used in the main example of the next setion.We assoiate four relations to a given one:

• the re�exive losure ( =?
−→),

• the transitive losure ( +
−→),

• the re�exive and transitive losure ( ∗
−→),

• the symmetri losure (↔p). 9



The �rst three de�nitions are the lassial ones. For the de�nition of thesymmetri losure we do not use the usual symbol (↔). Indeed, this symbolhas the property it denotes: it is symmetri ! This is one of the reasons whythis representation is really diagrammati. We will see that in diagrammatiproofs, the symmetrial notation hide a reasoning step. We will explain how todeal with this kind of impliit reasoning steps in setion 6.2.De�nition 6 (symmetri losure). The symmetri losure of a relation is de-�ned by the two following diagrams:
x //

  u
_ I

=>>I
_ u

y__
u_

I

?�� I_
u

x �//
>>I

_ u
yoo x �// y__

u_
I
ooDe�nition 7 (re�exive losure). The re�exive losure of a relation is de�nedby the three following diagrams:

x //
=?

>>I
_ u

y x∀ =?gg

W
�

g
x

=? //
>>I

_ u
y x

=? //
=

>>I
_ u

yDe�nition 8 (transitive losure). The transitive losure of a relation is de�ned3by the three following diagrams:
x //

+ >>I
_ u

y x //
+

88O
T _ j o

y
+ // z

x
+ //

>>I
_ u

y x
+ //

��>
>

>
>

y

y′

+

@@�
�

�
�De�nition 9 (transitive and re�exive losure). The transitive and re�exivelosure of a relation is de�ned by the three following diagrams:

x∀ ∗gg

W
�

g
x //

∗
88O

T _ j o
y ∗ // z

x
∗ //
=

>>I
_ u

y x
∗ //

��>
>

>
>

y

y′

∗

@@�
�

�
�De�nition 10 (Voabulary).We say that x an be redued if :

x //___ yWe say that y is the diret suessor of x if :
x //___ y noted also x // yWe say that y is a suessor of x if :
x

+ //___ y noted also x
+ // y3As the transitive and re�exive-transitive losure are not �rst-order de�nable, this de�nitionis not omplete. It will be omplete after the de�nition of the indution priniple in setion 5.10



We say that x and y are joignable if :
x

∗

��>
>

>
>

y

∗

���
�

�
�

zDe�nition 11 (Con�uene properties).
x

����
��
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∗
����

��
��

�

��?
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?

∗
��?

??
??

??
?

y

∗

��>
>

>
>

��>
>

>
> z

∗

���
�

�
�

���
�

�
�

tCon�uene
x

����
��

��
�

����
��

��
�

��?
??

??
??

?

∗
��?

??
??

??
?

y

∗

��>
>

>
>

��>
>

>
> z

∗

���
�

�
�

���
�

�
�

tSemi-on�uene
x

����
��

��
�

����
��

��
�

��?
??

??
??

?

��?
??

??
??

?

y

∗

��>
>

>
>

��>
>

>
> z

∗

���
�

�
�

���
�

�
�

tLoal-on�uene
x

����
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��
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����
��
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��?
??
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??

?

��?
??

??
??

?

y

=?

��>
>

>
>

��>
>

>
> z

∗

���
�

�
�

���
�

�
�

tStrong-on�uene
x

∗ //

∗

��>
>

>
>

yoo

∗

���
�

�
�

tChurh-Rosser
x

����
��

��
�

����
��

��
�

��?
??
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??

?

��?
??
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??

?

y

��>
>

>
>

��>
>

>
> z

���
�

�
�

���
�

�
�

tDiamond propertyDe�nition 12 (Transitivity).A relation −→ is transitive if the following diagram holds:
x // 88O

T _ j o
y // zDe�nition 13 (Re�exivity).A relation −→ is re�exive if the following diagram holds:
x
yyDe�nition 14 (Composition).The omposition of two relations a

−→ and b
−→ is de�ned by the following dia-grams:

x
a.b //

a

��?
?

?
? z

y

b

??�
�

�
�

x
a //

a.b
88O

T _ j o
y b // z

3 Diagrammati proofsIn the previous setions we have formalized the diagrammati notation whihis ommonly used in the rewriting ommunity to de�ne formulas involving re-lations. But these diagrams are also used to represent proofs. Before giving aformal de�nition, we will study one simple proof expressed by the mean of aninformal diagram. 11



Example. If a
−→ and b

−→ are two relations whih are transitive and
b.a
−→⊆

a.b
−→ then a.b

−→ is transitive.
x

a //
a

88O
T _ j o

y a // z ∧ x
b //

b
88O

T _ j o
y b // z ∧ x

a.b >>I
_ u

b.a // y

⇓

x
a.b //

a.b
88O

T _ j o
y a.b // z

12



Classi proof Diagrammati proofLet x, y and z be suh that x
a.b
−→ yand y

a.b
−→ z.We need to show that x

a.b
−→ z. x

a.b // y a.b // zBy the de�nition of a.b
−→ there exists

u and v suh that x
a
−→ u

b
−→ y and

y
a
−→ v

b
−→ z. u

b

��?
??

??
??

v

b

��?
??

??
??

?

x
a.b //

a

??��������
y a.b //

a

??�������
zBy the de�nition of b.a

−→, we have
u

b.a
−→ v. u

b

��?
??

??
??

b.a // v
b

��?
??

??
??

?

x
a.b //

a

??��������
y a.b //

a

??�������
zAs a.b

−→⊆
b.a
−→, we have u

a.b
−→ v. u

b

��?
??

??
??

b.a //

a.b

&&
v

b

��?
??

??
??

?

x
a.b //

a

??��������
y a.b //

a

??�������
zBy the de�nition of a.b

−→, there exists
t suh that u

a
−→ t and t

b
−→ v. t

b

��?
??

??
??

?

u

a

??��������

b

��?
??

??
??

b.a //

a.b

&&
v

b

��?
??

??
??

?

x
a.b //

a

??��������
y a.b //

a

??�������
zAs a

−→ and b
−→ are transitive weknow that x
a
−→ t and t

b
−→ z. t

b

��?
??

??
??

?

b

��

u

a

??��������

b

��?
??

??
??

b.a //

a.b

&&
v

b

��?
??

??
??

?

x

a

22

a.b //

a

??��������
y a.b //

a

??�������
zWe an onlude that :

x
a.b
−→ z

t
b

��?
??

??
??

?

b

��

u

a

??��������

b

��?
??

??
??

b.a //

a.b

&&
v

b

��?
??

??
??

?

x

a.b

77

a

22

a.b //

a

??��������
y a.b //

a

??�������
zThe diagram whih is depited on the right provides a lear representation ofthe proof. Note that it is neessary to give an �animation� of the way the diagramhas been built, a proof onsist in showing that a diagram an be onstrutedusing some preise rules. The diagram represents what we know during theproof.Our intent in this paper is to formalize this kind of diagrammati proofs.We will de�ne a few rules to allow us to have a small formal system to makeproofs using the diagrams. Our aim here is to de�ne the inferene rules whih13



depit preisely the same reasoning step as those we perform while buildingthe diagram. This is why the rules we de�ne are not atomi from the logialpoint of view. Indeed, eah of theses rules ould be deomposed in �smaller�logial rules. We hoose to de�ne a formal system using the forward reasoningstyle, this means that the theorems will be proved step by step starting fromthe hypotheses.The reasoning is formalized as usual. We assume that we have a set ofhypotheses and a goal. The hypotheses and the goal are diagrams. Moreoverwe distinguish one hypothesis from the other ones, this hypothesis will be alledfatual, the other will be alled universal. The fatual hypothesis representswhat we know during the proof, and the universal hypotheses are the tools toprove the theorem.De�nition 15 (fatual hypothesis). We all fatual hypothesis, a diagramwhih ontains only free verties and onlusion arrows.Remark 2. Note that thanks to the notations we have de�ned, the fatualdiagrams an be represented with only solid arrows.De�nition 16 (universal hypothesis). We all universal hypothesis, a diagramwhih is not fatual.This means that we have pseudo-sequents of the following form:
U1, U2, . . . Un, F ⊢ Dwhere U1, . . . Un are universal diagrams and F is a fatual diagram.To desribe the rules of inferene, we need �rst to de�ne some transformationoperations on diagrams.De�nition 17 (inversion). Let D be a diagram, the inversion of D is by def-inition D where eah hypothesis arrow has been transformed into a onlusionarrow.Formally, if D = (ΣV , ΣA, V, A, f, lA, lV , sA, sV ) then

I(D) = (ΣV , ΣA, V, A, f, lA, lV , s′A, sV )where s′(a) =

{

C if sA(a) = H,
sA(a) otherwiseDe�nition 18 (union). We de�ne the union of two fatual diagrams.We say that D is the union of the fatual diagrams D1 and D2, noted D1 ∪D2,i� the graph of D is the union of the graphs of D1 and D2 and all the vertiesare free and all the arrows are onlusion.De�nition 19 (sub-diagram).We say that a diagram

D1 = (ΣV1
, ΣA1

, V1, A1, s1, d1, lA1
, lV1

, sA1
, sV1

)is a sub-diagram of
D2 = (ΣV2

, ΣA2
, V2, A2, s2, d2, lA2

, lV2
, sA2

, sV2
)noted D1 ⊆ D2 i� : 14



• V1 ⊆ V2

• A1 ⊆ A2

• the funtions s1, d1, lA1
, lV1

, sA1
, sV1

and s2, d2, lA2
, lV2

, sA2
, sV2

oinide (wherethey are both de�ned).Notations : We all DH (resp. DC) the sub-diagram of D whih ontainsonly hypothesis arrows (resp. onlusion).3.1 Inferene rulesOur system onsist in six inferene rules:intros introdues hypotheses in the ontext,apply uses the information ontained in a universal diagram to enrih the fa-tual diagram,onlusion is an axiom rule, it allows to onlude a proof when the fatualdiagram ontains enough information,substitute and reflexivity are used for the equality,ut allows to reuse previously proved lemmas.Note that we hoose to de�ne equality as a primitive notion. We ould havede�ned equality using diagrams. But this approah would have produed biggerproofs. We want to simplify the diagrams when two verties are equal.3.1.1 introsThe �rst rule is the intros rule, it was omitted in the informal example wehave given.Let f be the set of labels of the free verties in H1, . . . , Hn, G.Let Ghyp = σ(I(GH)) and Gconcl = σ(GC), where σ is a substitution of a subsetof the universal verties of G into free verties labeled by fresh variables.
H1, . . . , Hn, Ghyp ⊢ Gconclintros

H1, . . . , Hn ⊢ GNote that using the seond notation (N2), this means that graphially Ghypis represented by the sub-diagram of G restrained to solid arrows.Example.
x

a.b // y a.b // z ⊢ x
a.b // zintros

⊢ x
a.b //

a.b
88O

T _ j o
y a.b // z

15



3.1.2 applyThe seond rule is the apply rule. This is the rule whih is used at eah step ofthe �rst example. It onsists in applying a universal diagramD to a sub-diagramof the fatual diagram F . If D is a disjuntive diagram this rule introdues aase distintion.Let D be a universal diagram in the set of hypothesis and σ substitutionwhih replaes universal verties in suh a way that the hypotheses of D is asub-diagram of the fatual diagram. For eah diagram Dj in the disjuntion,the apply rule demands to prove the goal with a fatual diagram enrihed bythe onlusion Di, existential verties are instantiated by fresh variables.Formally:
D1, . . . , Dn, F ∪ δ1(F1) ⊢ G . . . D1, . . . , Dn, F ∪ δm(Fm) ⊢ Gapply

D1, . . . , Dn, F ⊢ Gif ∃i, σ, I(σ(Di)H) ⊆ Fand (σ(Di))C = (F1| . . . |Fm)and δ1, . . . , δm assoiate fresh variables to the existential verties of F1, . . . , Fm.Example.
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⊢ u // v3.1.3 substituteIf the fatual diagram ontains a sub-diagram of the form x
=
−→ y the substituterule allows to replae some ourrenes of x by y and/or to merge the verties

x and y in all the diagrams.Example.
a // x ⊢ x99 // zsubstitute

a // x = // y ⊢ x // y // z3.1.4 reflexivityThe re�exivity rule is the following:reflexivity
Γ ⊢ x = x16



3.1.5 onlusionThe onlusion rule is used to �nish the proof. If the goal is a diagram G =
G1| . . . |Gm without any hypothesis arrow nor universal vertex (where m = 1if G is not disjuntive), the onlusion rule proves the theorem if there existsa diagram Gi and a substitution σ of the existential verties of Gi suh that
σ(Gi) is a sub-diagram of the fatual hypothesis F .onlusion if ∃iσ, σ(Gi) ⊆ F

D1, . . . , Dn, F ⊢ G1| . . . |GmExample.onlusion
x //___ y dd

W
�

g
⊢

x

��>
>

>
>

y

���
�

�
�

z

x ee
W

�

g3.1.6 utThe ut rule is the usual ut rule.
D1, . . . , Dn, F ⊢ G D1, . . . , Dn, G, F ⊢ Jut

D1, . . . , Dn, F ⊢ J

17



4 Corretness and ompletenessIn this setion, we show the orretness and ompleteness of the formal systemproposed with regard to a sequent alulus enrihed with equality.4.1 Intuitionist vs lassial logiBefore proving the orretness and ompleteness of the system, we need tohoose a logi. In partiular, we need to hoose between an intuitionist logior lassial logi system. In fat, for the lass of formulas we onsider, intu-itionist and lassial provability oinide. This result has been shown severaltimes [BC04, Neg03℄, we show here that we an use a result proved by GopalanNadathur [Nad00℄ using Kleene permutation lemma [Kle52℄.In this setion, we note ⊢LJ intuitionist provability and ⊢LK lassialprovability4. As these two notions oinide for the lass of formulas we onsider,we will omit to distinguish them in the following setions.Lemma 1 (Kleene). If Γ ⊢LK A, ∆ then it is possible to build proofs of thefollowing sequents:
• if A is of the form P ⇒ Q then Γ, P ⊢LK Q, ∆

• if A is of the form ∀xP then Γ ⊢LK [c/x]P, ∆ with c a fresh variable.Proof: The proof of the lemma an be found in [Kle52℄ or in a more generalform (generalized to dedution modulo) in [Her05℄.Theorem 1 (Nadathur).Let's onsider the following lasses of H and G-formulas, assume that A is anatomi formula.
G ::= ⊤| ⊥ |A|G ∧G|G ∨G|∃xG

H ::= ⊤| ⊥ |A|G⇒ H |H ∧H |H ∨H |∃xH |∀xHIf Γ is a multi-set of H-formulas, and F is a G-formula then
Γ ⊢LK F ⇐⇒ Γ ⊢LJ FProof: See [Nad00℄, Theorem 6.Theorem 2. If D1, . . . , Dn and G are in D then

D1, . . . , Dn ⊢LK G ⇐⇒ D1, . . . , Dn ⊢LJ GProof:The impliation from right to left is always true.We need to show that D1, . . . , Dn ⊢LK G⇒ D1, . . . , Dn ⊢LJ G.Assume that D1, . . . , Dn ⊢LK G.As G ∈ D, G is of the form:
∀u

∧

i

Hi ⇒
∨

i

∃ ei

∧

j

Cij4Note that we adopt a presentation of the type G3, we do not want to deal with thestrutural rules here. 18



where Hi and Cij
are prediates of arity two.Using Kleene lemma applied to ∀ and ⇒, we an build a proof of:

D1, . . . , Dn, [c/u]
∧

i

Hi ⊢LK [c/u]
∨

i

∃ ei

∧

j

Cijwhere c are fresh variables.Using Nadathur's theorem, we have:
D1, . . . , Dn, [c/u]

∧

i

Hi ⊢LJ [c/u]
∨

i

∃ ei

∧

j

CijBy appliation of the rules ∀R and ⇒R, we have D1, . . . , Dn, ⊢LJ G.4.2 The system of refereneWe de�ne here the formal system we use as a referene for the orretness andompleteness proofs. The lass of formulas we onsider, D, does not ontain thenegation, we omit the assoiated rules. Moreover, as our system has built-inequality, we also add equality in the sequent alulus. The system we obtainis shown on table 1. We note ⊢= the provability in this system, ⊢ repre-sents provability in the system with the rules E1, E2, =R. We note ⊢D theprovability in the diagrammati system we have de�ned in setion 3.1.4.3 CorretnessIn this setion we prove the orretness of the system we propose. The or-retness proof is straightforward sine eah of the diagrammati inferene rulesorresponds to a set of inferene rules of the sequent alulus. The only exep-tion is the substitute rule. For this rule we need the following lemma:Lemma 2. The generalized substitution rules:
[s/x]Γ, s = t ⊢ [s/x]∆

GE1
[t/x]Γ, s = t ⊢ [t/x]∆

[t/x]Γ, s = t ⊢ [t/x]∆
GE2

[s/x]Γ, s = t ⊢ [s/x]∆are admissible.Proof: By indution on the struture of the derivation.Theorem 3 (Corretness).If D1, . . . , Dn, F ⊢D G then JD1K, . . . , JDnK, JF K ⊢= G.Proof: By indution on the struture of the proof and by ases on the rulewhih is used:intros by appliation of the rules ∀R, ⇒R, ∧L.apply by appliation of the rules ∀L, ⇒L then ∧R,∧L, and axiom on one side,
∨L, ∃L, ∧L, axiom on the other side.onlusion by appliation of the rules ∨R, ∃R, ∧R, ∧L, axiom.substitute by appliation of the rules GE1 and GE2.reflexivity by appliation of the rule =R.ut Sine the ut rule of the sequent alulus is admissible we an use it here.19



Table 1: Classial sequent alulus without negationaxiom
Γ, A ⊢ ∆, A

Γ ⊢ A, ∆ Γ, B ⊢ ∆
⇒L

Γ, A⇒ B ⊢ ∆

Γ, A ⊢ B, ∆
⇒R

Γ ⊢ A⇒ B, ∆

Γ, A, B ⊢ ∆
∧L

Γ, A ∧B ⊢ ∆

Γ ⊢ ∆, A Γ ⊢ ∆, B
∧R

Γ ⊢ ∆, A ∧B

Γ, A ⊢ ∆ Γ, B ⊢ ∆
∨L

Γ, A ∨B ⊢ ∆

Γ ⊢ A, B, ∆
∨R

Γ ⊢ A ∨B, ∆

Γ, ∀xB, B[x← t] ⊢ ∆
∀L

Γ, ∀xB ⊢ ∆

Γ ⊢ B[x← c], ∆
∀R

Γ ⊢ ∀xB, ∆

Γ, B[x← c] ⊢ ∆
∃L Γ, ∃xB ⊢ ∆

Γ ⊢ ∃xB, B[x← t], ∆
∃R Γ ⊢ ∃xB, ∆

=R
Γ ⊢ s = s, ∆

Γ, s = t ⊢ [s/x]∆
E1

Γ, s = t ⊢ [t/x]∆

Γ, s = t ⊢ [t/x]∆
E2

Γ, s = t ⊢ [s/x]∆in ∃L, c does not appear free in ∃xB, Γ, ∆in ∀R, c does not appear free in ∀xB, Γ, ∆

20



4.4 CompletenessIt is possible to separate the reasoning about equality from the other part ofthe proof. In virtue of this, we an exploit some known results about the rea-soning without equality. For the proof of ompleteness of the reasoning withoutequality, we use a result by Mar Bezem and Thierry Coquand. Although wedevelopped our rules separately and with a di�erent goal in mind5, our inferenerules orresponds preisely to those of the de�nition 6.1 of [BC04℄. Note thatthe sequent alulus that we use, is not de�ned in the same way as in [BC04℄(for instane our ∨ rule is multipliative). As the two systems are equivalent wedo not distinguish between them.4.4.1 System without equalityTheorem 4 (Partial ompleteness).If D1, . . . , Dn, F and G are in D and D1, . . . , Dn, F ⊢ G then there exists somediagrams D′
1,. . . ,D′

n, F ′ and G′ suh that:
JD′

1K = D1,. . . ,JD′
nK = Dn, JF ′K = F and JG′K = G and
D′

1, . . . , D
′
n, F ′ ⊢D G′Proof: As G is in D, G is of the form ∀u, C ⇒ D. By Kleene lemma, wean build a proof of

D1, . . . , Dn, F, [c/u]C ⊢ D.By theorem 6.2 in [BC04℄ with for all X, X ′ is any diagram suh that JX ′K = X,we have
D′

1, . . . , D
′
n, F ′, [c/u]C′ ⊢D D′.(the base ase of de�nition 6.1 of [BC04℄ orresponds to the onlusion ruleand the indutive ase orresponds to the apply rule.)Thanks to the intros rule we an onlude that:

D′
1, . . . , D

′
n, F ′ ⊢D G′4.4.2 Dealing with equalityIn this setion, we show the ompleteness of the system with equality. In orderto use the result about the system without equality we use the fat that thereasoning about equality an be pushed up to the leaves of the derivation tree.In other words, if Γ ⊢= ∆ then Γ ⊢|= ∆, the system ⊢|= is given on table 2.The system ⊢|= orresponds to ⊢= where the equality rules have been deletedand the axiom rule has been replaed by a small formal system about equality.Lemma 3. Γ ⊢= ∆ ⇐⇒ Γ ⊢|= ∆Proof: See [Pfe04℄.Lemma 4. If Γ ⊢|= ∆ then there exists Γ′ a multi-set of formulas whih belongto the oherent logi suh that Γ′, Γ ⊢ ∆ and forall X in Γ′ there exists X ′ suhthat JX ′K = X and ⊢D X ′.5Mar Bezem and Thierry Coquand are interrested in the automation of oherent logi.21



axiom=
Γ, A ⊢Ax=

A
=R

Γ ⊢Ax=
x = x

Γ, s = t ⊢Ax=
[s/x]∆

E1
Γ, s = t ⊢Ax=

[t/x]∆

Γ, s = t ⊢Ax=
[t/x]∆

E2
Γ, s = t ⊢Ax=

[s/x]∆
Γ ⊢Ax=

∆eq-axiom
Γ ⊢|= ∆

Γ ⊢|= A, ∆ Γ, B ⊢|= ∆
⇒L

Γ, A⇒ B ⊢|= ∆

Γ, A ⊢|= B, ∆
⇒R

Γ ⊢|= A⇒ B, ∆

Γ, A, B ⊢|= ∆
∧L

Γ, A ∧B ⊢|= ∆

Γ ⊢|= ∆, A Γ ⊢|= ∆, B
∧R

Γ ⊢|= ∆, A ∧B

Γ, A ⊢|= ∆ Γ, B ⊢|= ∆
∨L

Γ, A ∨B ⊢|= ∆

Γ ⊢|= A, B, ∆
∨R

Γ ⊢|= A ∨B, ∆

Γ, ∀xB, B[x← t] ⊢|= ∆
∀L Γ, ∀xB ⊢|= ∆

Γ ⊢|= B[x← c], ∆
∀R Γ ⊢|= ∀xB, ∆

Γ, B[x← c] ⊢|= ∆
∃L Γ, ∃xB ⊢|= ∆

Γ ⊢|= ∃xB, B[x← t], ∆
∃R Γ ⊢|= ∃xB, ∆in ∃L, c does not appear free in ∃xB, Γ, ∆in ∀R, c does not appear free in ∀xB, Γ, ∆in axiom=, A is an atomTable 2: The system ⊢|= .
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Proof: Let Γi and ∆i be respetively the hypotheses and onlusions of thepremises of the rules eq-axiom.We de�ne Γ′ as the union of the :
Γ′

i ⇒ ∆′
iwhere Γ′

i is the onjuntion of the atoms in Γi and ∆′
i the disjuntion of theformulas in ∆i. Note that as the rule axiom= is restrained to atoms, the ele-ments of ∆i are atoms. The elements of Γ′ belongs to the set of formulas thatan be represented by a diagram.We obtain the result for the rule axiom= thanks to the rules intros, applyand onlusion. For the other rules (E1,E2 and =R) we use substitute andreflexivity.Theorem 5 (Completeness).If D1, . . . , Dn, F ⊢= G then there exists some diagrams D′

1,. . . ,D′
n, F ′ and G′suh that:

JD′
1K = D1,. . . ,JD′

nK = Dn, JF ′K = F and JG′K = G and
D′

1, . . . , D
′
n, F ′ ⊢D G′Proof: Suppose that D1, . . . , Dn, F ⊢= G then by lemma 3 we know that

D1, . . . , Dn, F ⊢|= G.By lemma 4 there exists Γ suh that Γ, D1, . . . , Dn, F ⊢ G and forall X in Γthere exists a diagram X ′ suh that JX ′K = X and ⊢D X ′.From the ompleteness of the system without equality, we an onlude that thereexists Γ′, D′
1, . . . , D′

n and G′ suh that
Γ′, D′

1, . . . , D
′
n, F ′ ⊢D G′as the diagrams in Γ′ an be derived in the empty ontext, using the ut rulewe have

D′
1, . . . , D

′
n, F ′ ⊢D G′
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5 Extension to proof by indutionIn this setion, we extend our system in order to deal with proofs by indution.We formalize proofs by indution on the length of a derivation as well as well-founded indution.5.1 Classial indutionThe priniple of indution over the length of a derivation ∗
−→ is the following:In order to prove ∀xy, P (x, y) with x

∗
−→ y, it is su�ient to show P (x, x) and

P (x, y) knowing that there exists some y′ suh that x −→ y′ ∗
−→ y and P (y′, y)hold. Here is the traditional rule:

∀xy x = y ⇒ P (x, y) ∀xy′y x −→ y′ ∗
−→ y ∧ P (y′, y)⇒ P (x, y)

ind∗
∀xy x

∗
−→ y ⇒ P (x, y)Diagrammatially, we use the following rule:Let G be a diagram with two universal verties x and y suh that x

∗
−→ y.Let G= be the same diagram where �rst the verties x and y have been replaedby free verties labelled by fresh variables and seond the arrow x
∗
−→ y hasbeen replaed by x = y.Let Gind be the diagram G where �rst the vertex labelled by x is labelled by y′and seond y′ and y are free.Let GH , be the fatual diagram x −→ y′ ∗

−→ y.Let G+, be the diagram G where x and y are free.We have:
Γ ⊢ G= Γ, Gind, GH ⊢ G+

ind∗ Γ ⊢ GExample. ∗
−→ is transitive.Proof:

⊢ x
∗ //

∗
88O

T _ j o
y ∗ // zCase 1 :

⊢ x = //
∗

88O
T _ j o

y ∗ // zby the rule intros
x

= // y ∗ // z ⊢ x
∗ // zby the rule substitute

x
∗ // z ⊢ x

∗ // zThe onlusion rule allows to onlude this ase.Case 2 :
x // y′ ∗ // y , y′ ∗ //

∗
88O

T Z _ d j o
y ∗ // z ⊢ x ∗ //

∗
88O

T _ j o
y ∗ // z24



by the rule intros
x

∗

&&// y′ ∗ // y ∗ // z , y′ ∗ //
∗

88O
T Z _ d j o

y ∗ // z ⊢ x
∗ // zby the rule apply

x

∗

&&// y′ ∗ //
∗

88y ∗ // z , y′ ∗ //
∗

88O
T Z _ d j o

y ∗ // z ⊢ x
∗ // zby the rule apply applied to the de�nition of ∗

−→

x

∗

&&//

∗

<<y′ ∗ //
∗

88y ∗ // z , y′ ∗ //
∗

88O
T Z _ d j o

y ∗ // z ⊢ x
∗ // zThe onlusion rule allows to onlude this ase.5.2 Well-founded indutionIn this setion, we add the rule for well founded indution. The indution rulestates that if a relation −→ is terminating then to prove that ∀xP (x) it issu�ient to show that P (x) holds knowing that P (y) holds for all y suh that

x
+
−→ y.Formally:

∀x (∀y x
+
−→ y ⇒ P (y))⇒ P (x)

∀xP (x)
if −→ is terminatingWe an formalize this inferene rule diagrammatially:Let G be a diagram. If G ontains at least one universally quanti�ed vertexand the relation −→ is terminating then, we an use the rule for well-foundedindution. The well-founded indution rule has two arguments: the �rst one isthe terminating relation, the seond one is the universally quanti�ed vertex ofthe goal (let's all it x). The e�et of the indution rule is to add a diagramorresponding to the indution hypothesis Hi in the hypotheses and to hangethe goal into a diagram G′. The indution hypothesis diagram Hi is omposedby G where x has been renamed into a fresh variable y and enrihed with a newarrow: x

+
−→ y.The diagram G′ is G exepted that the status of x is now F .

D1, . . . , Dn, Hi ⊢ G′wf indution
D1, . . . , Dn, F ⊢ GWe extend our language by a new speial hypothesis whih states that arelation is terminating.
25



Example (Newman's lemma).A relation whih is terminating is on�uent if it is loally on�uent.
−→ is terminating ∧

x
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y
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��>
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>
> z

∗

���
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tTraditional proof (Gérard Huet [Hue80℄)We need to show that ∀xyz, x
∗
−→ y ∧ x

∗
−→ z ⇒ ∃t, y

∗
−→ t ∧ z

∗
−→ t.Let's prove the theorem by well-founded indution using the fat that −→ is ter-minating and the prediate P (x) = ∀yz, x

∗
−→ y∧x

∗
−→ z ⇒ ∃t, y

∗
−→ t∧z

∗
−→ t.If x = y the theorem is veri�ed beause x

∗
−→ z and z

∗
−→ z.If x = z the theorem is veri�ed beause x

∗
−→ y and y

∗
−→ y.Otherwise x 6= y and x 6= z then there exists y′ and z′ suh that x −→ y′ ∗

−→ yand x −→ z′
∗
−→ z.By loal on�uene we know that there exists some t suh that y′ ∗

−→ t and
z′

∗
−→ t.By indution hypothesis and the fat that x

+
−→ y′ we know that there existssome u suh that y

∗
−→ u and t

∗
−→ u.By indution hypothesis and the fat that x

+
−→ z′ we know that there existssome v suh that u

∗
−→ v and z

∗
−→ v.As y

∗
−→ u and u

∗
−→ v we an dedue that y

∗
−→ v.Diagrammati proofTo shorten the presentation, we omit the diagrams onerning the de�nitionsof +
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−→.The statement is the following:

−→ is terminating,

x

}}{{
{{

{{
{{

!!B
BB

BB
BB

B

y

∗

  B
B

B
B CL z

∗

~~|
|

|
|

t

⊢

x

∗

��~~
~~

~~
~~ ∗

��@
@@

@@
@@

@

y

∗

��?
?

?
? C z

∗

���
�

�
�

tby indution over −→
26



−→ is terminating, CL,

x

+

��
x′

∗

~~}}
}}

}}
}} ∗

  A
AA

AA
AA

A

y

∗

  B
B

B
B HI z

∗

~~|
|

|
|

t

⊢

x

∗

����
��

��
�� ∗

��?
??

??
??

?

y

∗

��?
?

?
? C z

∗

���
�

�
�

tusing the intros rule:
−→ is terminating, CL, HI, y x

∗oo ∗ // z ⊢ y ∗ //___ t z∗oo_ _ _by ase distintion on x
∗
−→ yCase 1

−→ is terminating, CL, HI, y x
=oo ∗ // z ⊢ y ∗ //___ t z∗oo_ _ _by the substitute rule

−→ is terminating, CL, HI, x
∗ // z ⊢ x ∗ //___ t z∗oo_ _ _by apply using the de�nition of ∗

−→

−→ is terminating, CL, HI, x
∗ // z , z

∗ // z ⊢ x
∗ // z z

∗ooThe onlusion rule allows to onlude this ase.Case 2
−→ is terminating, CL, HI, y y′∗oo xoo // z ⊢ y ∗ //___ t z∗oo_ _ _By ase distintion on x

∗
−→ zCase 2.1 is similar to ase 1Case 2.2For the end of the proof we represent only the fatual hypothesis:

x

����
��

��
�

��?
??

??
??

?

y′

∗
����

��
��

�
z′

∗
��>

>>
>>

>>
>

y z

x

}}||
||

||
||

!!B
BB

BB
BB

B

y′

∗
����

��
��

�

∗

  @
@@

@@
@@

@@
CL z′

∗

~~~~
~~

~~
~~

~

∗
��=

==
==

==
=

y′ t zby loal-on�uene27



x

����
��

��
�

��?
??

??
??

?+

��
y′

∗
����

��
��

�

∗
��>

>>
>>

>>
> z′

∗
����

��
��

��

∗
��>

>>
>>

>>
>

y t z

x

~~}}
}}

}}
}}

��?
??

??
??

?+

��
y′

∗
~~~~

~~
~~

~~

∗
  A

AA
AA

AA
A z′

∗
����

��
��

��

∗
��>

>>
>>

>>
>

y

∗
!!B

BB
BB

BB
B HI t

∗
}}{{

{{
{{

{{
z

uby the de�nition of +
−→ by indution hypothesis

x

����
��

��
�

��?
??

??
??

?+

��

+

��
y′

∗
����

��
��

�

∗
��>

>>
>>

>>
> z′

∗
����

��
��

��

∗
��>

>>
>>

>>
>

∗

ss

y

∗
  @

@@
@@

@@
@ t

∗
~~~~

~~
~~

~~
z

u

x

}}||
||

||
||

!!B
BB

BB
BB

B+

��

+

��
y′

∗
����

��
��

�

∗
  B

BB
BB

BB
B z′

∗
~~||

||
||

||

∗
��>

>>
>>

>>
>

∗

rr

y

∗
��?

??
??

??
? t

∗
}}{{

{{
{{

{{
{

z

∗

~~}}
}}

}}
}}

}}
}}

}}
}}

}}
}

u

∗
!!C

CC
CC

CC
C HI

vby the de�nition of +
−→ and by indution hypothesistransitivity of ∗
−→

x

����
��

��
�

��?
??

??
??

?+

��

+

��
y′

∗
����

��
��

�

∗
��>

>>
>>

>>
> z′

∗
����

��
��

��

∗
��>

>>
>>

>>
>

∗

ss

y

∗
  @

@@
@@

@@
@

∗

,,

t

∗
~~~~

~~
~~

~~
z

∗

~~}}
}}

}}
}}

}}
}}

}}
}}

}}

u

∗
  A

AA
AA

AA
A

v

by transitivity of ∗
−→

Note that there is a proof whose �nal diagram is symmetri. But this proof

28



uses the indution hypothesis (noted HI on the diagram) three times.
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6 Implementation using CoqThe formal system that we have presented an be implemented and used toprodue proofs within a proof assistant. We desribe here the implementation wehave realized using the tati language of Coq (Ltac) [Del01, Del00, Coq04℄. Wewill see that the system we propose produes onise proofs re�eting preiselythe diagrammati proofs.6.1 Inferene rulesWe detail here the implementation of the apply rule, the other rules an betranslated diretly using Coq6.To build a tati orresponding to the apply rule, we �rst de�ne a tatiwhih an �nd the onlusion of an hypothesis7:Lta onlusion_aux t :=math t with| ?P1 -> ?P2 => onlusion_aux P2| _ => tend.To implement apply, we �rst prove that the onlusion of the universaldiagram is true using the tatis auto and apply deompose. Then we deom-pose the new hypothesis thanks to the left rules for ∨,∧ and ∃ using the tatideompose.Lta deompose_and_lear id :=progress (deompose [or and ex℄ id);lear id.Lta apply_deompose H :=let t := type of H inlet on := onlusion_aux t inlet id:= fresh in(assert (id:on);[auto|try deompose_and_lear id℄).Lta apply_diagram H :=let id:=fresh in(assert (id:=H);apply_deompose id;lear id);unfold_all.6.1.1 ExampleWe give here the proof of the Newman's lemma using Coq.Theorem newman :loal_onfluene S R -> noetherian S R -> onfluene S R.Proof.intros.6Warning, the tati implemented an prove more goals than the inferene rules we havede�ned. We assume that the tatis are used in the same manner as the inferene rules.7We assume that hypothesis are urry�ed30



(* indution *)assert (ind:=H0 (onfluene_in S R));lear H0.unfold onfluene.apply ind;lear ind.unfold onfluene_in.start.rename y into x.rename y0 into y.(* First degenerated ase *)apply_diagram (Rstar_ases x y).substitute y.apply_diagram (Rstar_ont_eq S R z).onlusion.(* Seond degenerated ase *)apply_diagram (Rstar_ases x z).substitute z.apply_diagram (Rstar_ont_eq S R y).onlusion.(* General ase *)start.apply_diagram (H x x0 x1).apply_diagram (H0 x0);apply_diagram (H4 y x2).apply_diagram (Rstar_transitivity x1 x2 x3).apply_diagram (H0 x1);apply_diagram (H12 x3 z).apply_diagram (Rstar_transitivity y x3 x4).onlusion.Qed.6.2 Impliit rulesAs the reader may have already notied, the diagrammati proofs using ourformal system are very lose to the informal proof but they still ontain somereasoning steps whih do not appear in the informal proof. In the informal proof,some properties are impliit, for example the fat that a relation is ontainedin its transitive losure.Now, we explain how these reasoning steps an be made impliit in the Coqimplementation.The properties that we hoose to keep impliit are the following:
•

∗
−→ is transitive,
•

+
−→ is transitive,
•

∗
−→ is re�exive,
•

∗
−→ ontains −→,
•

+
−→ ontains −→. 31



First we add these properties to a base of �Hints� for Coq. Then we rede�nethe tati we have desribed. These new tatis allows to produe proofs withoutgiving the reasoning steps we have de�ned as impliit.Lta Ronlusion :=eauto with Rules.Lta Rapply_diagram H :=apply_diagram H;[idta|eauto with Rules℄.The use of these tatis allows to automatise three steps in the proof wehave presented above. We obtain the proof orresponding to the usual diagramfor the proof of the Newman's lemma:
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w7 Some diagrammati proofs.In this setion we give some examples of diagrammati proofs of some ommonproperties.7.1 Con�uene propertiesLemma 5. Semi-on�uene implies on�uene.
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By the rule ind∗Case 1:
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by the rule apply
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by the rule apply applied to the transitivity of ∗
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Lemma 6. Strong-on�uene implies semi-on�uene.
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by the rule substitute
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by the rule apply applied to the de�nition of =?
−→Case 2.1 :
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Theorem 6. Strong-on�uene implies on�uene.
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8 Conlusion and future workWe have formalized the diagrams used in the literature about abstrat rewritingsystems. This inludes an extension to deal with disjuntions. We have raisedthe diagrams from the status of a proof illustration or proof hint to that ofa proof objet. We have proposed a formal system whih is both orret andomplete for the formulas of the oherent logi restrained to prediates of aritytwo.The work presented here should be onsidered as the foundations for a futureimplementation. Our aim is to use the formalization presented in this paper toimplement a prototype to build diagrammati proofs about abstrat rewritinginteratively. We have developed a dynami geometry software alled GeoProof.It allows the user to reate omplex geometri onstrutions step by step, usingfree objets and prede�ned atomi onstrutions depending on other objets.The free objets an be dragged using the mouse and the �gure is updated inreal time. It an ommuniate with the Coq proof assistant to state theoremsgraphially in the �eld of eulidean geometry.Our plan is to extend GeoProof from the �eld of eulidean geometry to ab-strat rewriting theory. Indeed, the diagrammati proofs displayed in this paperare very similar to the way a �gure is built in a dynami geometry software.The appliation of a diagram to some hypotheses for instane is very similar tothe exeution of a maro in a dynami geometry environment.We also plan several extensions of the theory. It would be interesting toexplore the representation of the fats whih belong to the geometri theories(suh as projetive geometry) whih an be axiomatized using oherent logi.Our framework ould also be extended to be able to deal with the numerousdiagrammati proofs of ategory theory. These multiple possible extensionssuggest that oherent logi is well adapted to diagrammati reasoning.We think that the two essential omponents of a diagrammati reasoning systemare the following.First, fats should be easily visualizable by a syntax whih mimi the semanti(for instane the notation for the symmetri losure is symmetri).Seond, for the lass of formulas that we manipulate, it must be possible toperform the proofs using this sheme: we start from the hypotheses and ompletethe diagram in order to obtain an instane of the goal.Note that in this sheme, the goal does not hange during the proof and thusit an therefore remain impliit in the graphial representation. We think thatthis sheme of reasoning is well adapted to diagrammati reasoning, and that itwould be interesting to �nd the largest lass of formulas for whih there existsa omplete formal system onforming to this sheme.Availability.The Coq �les orresponding to this paper are available at the following url:http://www.lix.polytehnique.fr/Labo/Julien.Narboux/Rewriting/rewriting.htmlAknowledgements.I am indebted to Hugo Herbelin for his help during the elaboration of this work.38
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