U. Amato, A. Antoniadis, D. Feiss, and I. , Dimension reduction in functional regression with applications, Computational Statistics & Data Analysis, vol.50, issue.9, pp.2422-2446, 2006.
DOI : 10.1016/j.csda.2004.12.007

URL : https://hal.archives-ouvertes.fr/hal-00103266

A. Antoniadis, G. Grégoire, and I. W. Mckeague, Bayesian estimation in single-index models, Statistica Sinica, vol.14, pp.1147-1164, 2004.

Y. Aragon and J. Saracco, Sliced Inverse Regression: An appraisal of small sample alternatives to slicing, Computational Statistics, vol.12, pp.109-130, 1997.

C. Bernard-michel, M. Fauvel, L. Gardes, and S. Girard, Retrieval of Mars surface physical properties from OMEGA hyperspectral images using regularized sliced inverse regression, Journal of Geophysical Research, vol.20, issue.2, p.6005, 2009.
DOI : 10.1029/2008JE003171

URL : https://hal.archives-ouvertes.fr/inria-00276116

C. Bernard-michel, L. Gardes, and S. Girard, A Note on Sliced Inverse Regression with Regularizations, Biometrics, vol.21, issue.3, pp.982-986, 2008.
DOI : 10.1111/j.1541-0420.2008.01080.x

URL : https://hal.archives-ouvertes.fr/inria-00180496

F. Chiaromonte and J. Martinelli, Dimension reduction strategies for analyzing global gene expression data with a response, Mathematical Biosciences, vol.176, issue.1, pp.123-144, 2002.
DOI : 10.1016/S0025-5564(01)00106-7

R. D. Cook and S. Weisberg, Discussion of " Sliced Inverse Regression for dimension reduction, Journal of the American Statistical Association, vol.86, pp.328-332, 1991.

R. D. Cook, Regression graphics. Ideas for studying regressions through graphics, Wiley Series in Probability and Statistics, 1998.

R. D. Cook, Testing predictor contributions in sufficient dimension reduction. The Annals of Statistics, pp.1062-1092, 2004.

R. D. Cook, Fisher Lecture: Dimension Reduction in Regression, Statistical Science, vol.22, issue.1, pp.1-26, 2007.
DOI : 10.1214/088342306000000682

R. D. Cook and L. Ni, Sufficient Dimension Reduction via Inverse Regression, Journal of the American Statistical Association, vol.100, issue.470, pp.410-428, 2005.
DOI : 10.1198/016214504000001501

N. Cristianini and J. Shawe-taylor, An introduction to support vector machines and other kernel-based learning methods, 2000.
DOI : 10.1017/CBO9780511801389

S. Douté, B. Schmitt, Y. Langevin, J. Bibring, F. Altieri et al., South Pole of Mars: Nature and composition of the icy terrains from Mars Express OMEGA observations, Planetary and Space Science, vol.55, issue.1-2, pp.113-133, 2007.
DOI : 10.1016/j.pss.2006.05.035

N. R. Draper and R. Smith, Applied regression analysis, 1998.
DOI : 10.1002/9781118625590

L. Ferré, Determining the dimension in Sliced Inverse Regression and related methods, Journal of the American Statistical Association, vol.93, pp.132-140, 1998.

L. Ferré and A. F. Yao, Smoothed functional inverse regression, Statistica Sinica, vol.15, pp.665-683, 2005.

J. H. Friedman, Regularized Discriminant Analysis, Journal of the American Statistical Association, vol.33, issue.405, pp.165-175, 1989.
DOI : 10.1080/01621459.1989.10478752

A. Gannoun, S. Girard, C. Guinot, and J. Saracco, Sliced inverse regression in reference curves estimation, Computational Statistics & Data Analysis, vol.46, issue.1, pp.103-122, 2004.
DOI : 10.1016/S0167-9473(03)00141-5

URL : https://hal.archives-ouvertes.fr/hal-00724646

A. Gannoun and J. Saracco, An asymptotic theory for SIR ? method, Statistica Sinica, vol.13, pp.297-310, 2003.

R. Heiberger, Generation of random orthogonal matrices, Journal of the Royal Statistical Society, Series C, vol.27, pp.199-206, 1978.

T. Hsing and R. J. Carroll, An asymptotic theory for Sliced Inverse Regression . The Annals of Statistics, pp.1040-1061, 1992.

K. C. Li, Sliced Inverse Regression for Dimension Reduction, Journal of the American Statistical Association, vol.13, issue.414, pp.316-327, 1991.
DOI : 10.1214/aos/1176345514

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

L. Li and H. Li, Dimension reduction methods for microarrays with application to censored survival data, Bioinformatics, vol.20, issue.18, pp.3406-3412, 2004.
DOI : 10.1093/bioinformatics/bth415

L. Li and X. Yin, Sliced Inverse Regression with Regularizations, Biometrics, vol.67, issue.1, pp.124-131, 2008.
DOI : 10.1111/j.1541-0420.2007.00836.x

J. Saracco, An asymptotic theory for sliced inverse regression, Communications in Statistics - Theory and Methods, vol.5, issue.9, pp.2141-2171, 1997.
DOI : 10.1214/aos/1176345514

J. Saracco, Asymptotics for pooled marginal slicing estimator based on <mml:math altimg="si1.gif" overflow="scroll" xmlns:xocs="http://www.elsevier.com/xml/xocs/dtd" xmlns:xs="http://www.w3.org/2001/XMLSchema" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://www.elsevier.com/xml/ja/dtd" xmlns:ja="http://www.elsevier.com/xml/ja/dtd" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:tb="http://www.elsevier.com/xml/common/table/dtd" xmlns:sb="http://www.elsevier.com/xml/common/struct-bib/dtd" xmlns:ce="http://www.elsevier.com/xml/common/dtd" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:cals="http://www.elsevier.com/xml/common/cals/dtd"><mml:msub><mml:mrow><mml:mi>SIR</mml:mi></mml:mrow><mml:mrow><mml:mi>??</mml:mi></mml:mrow></mml:msub></mml:math> approach, Journal of Multivariate Analysis, vol.96, issue.1, pp.117-135, 2005.
DOI : 10.1016/j.jmva.2004.10.003

F. Schmidt, S. Douté, and B. Schmitt, Wavanglet: An efficient supervised classifier for hyperspectral images. Geoscience and Remote Sensing, IEEE Transactions, vol.45, issue.5, pp.1374-1385, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00325458

J. R. Schott, Determining the Dimensionality in Sliced Inverse Regression, Journal of the American Statistical Association, vol.16, issue.425, pp.141-148, 1994.
DOI : 10.1214/aos/1176345514

L. Scrucca, Regularized Sliced Inverse Regression with Applications in Classification, Data Analysis, Classification and the Forward Search, pp.59-66, 2006.
DOI : 10.1007/3-540-35978-8_7

L. Scrucca, Class prediction and gene selection for DNA microarrays using regularized sliced inverse regression, Computational Statistics & Data Analysis, vol.52, issue.1, pp.438-451, 2007.
DOI : 10.1016/j.csda.2007.02.005

C. R. Vogel, Computational methods for inverse problems, Society for Industrial and Applied Mathematics, 2002.
DOI : 10.1137/1.9780898717570

W. Zhong, P. Zeng, P. Ma, J. S. Liu, and Y. Zhu, RSIR: regularized sliced inverse regression for motif discovery, Bioinformatics, vol.21, issue.22, pp.4169-4175, 2005.
DOI : 10.1093/bioinformatics/bti680

L. X. Zhu and K. W. Ng, Asymptotics of Sliced Inverse Regression, Statistica Sinica, vol.5, pp.727-736, 1995.