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Abstract— Building occupancy grids (OGs) in order to model
the surrounding environment of a vehicle implies to fusion occu-
pancy information provided by the different embedded sensors in
the same grid. The principal difficulty comes from the fact that
each can have a different resolution, but also that the resolution
of some sensors varies with the location in the field of view. In
this article we present a new efficient approach to this issuebased
upon a graphical processor unit (GPU). In that perspective,we
explain why the problem of switching coordinate systems is an
instance of the texture mapping problem in computer graphics.
We also present an exact algorithm in order to evaluate the
accuracy of such a device, which is not precisely known due to
the several approximations made by the hardware. To validate
our method, the results with GPU are also compared to results
obtained through the exact approach and the GPU precision
is shown to be good enough for robotic applications. Therefore
we describe a whole and general calculus architecture to build
occupancy grids for any kind of range-finder with a graphical
processor unit (GPU). And we present computational time results
that can allow to compute occupancy grids for 50 sensors at frame
rate even for a very fine grid.

I. I NTRODUCTION

At the end of the 1980s, Elfes and Moravec introduced
a new framework to multi-sensor fusion called occupancy
grids (OGs). An OG is a stochastic tessellated representation
of spatial information that maintains probabilistic estimates
of the occupancy state of each cell in a lattice [1]. In
this framework, each cell is considered separately for each
sensor measurement, and the only difference between cells
is the position in the grid. For most common robotic tasks,
the simplicity of the grid-based representation is essential,
allowing robust scan matching [2], accurate localization
and mapping [3], efficient path planning algorithms [4] and
occlusion handling for multiple target-tracking algorithms [5].
The main advantage of this approach is the ability to integrate
several sensors in the same framework, taking the inherent
uncertainty of each sensor reading into account, contrary
to the Geometric Paradigm[1], a method that categorizes
the world features into a set of geometric primitives. The
major drawback of the geometric approach is the number
of different data structures for each geometric primitive
that the mapping system must handle: segments, polygons,
ellipses, etc. Taking into account the uncertainty of the sensor
measurements for each sequence of different primitives is
very complex, whereas the cell-based framework is generic
and therefore can fit every kind of shape and be used to

interpret any kind and any number of sensors. Moreover, OGs
allow easily the combination of redundant sensors that limits
the effects of sensor breakdown and enlarges the robot field
of view.

For sensor data integration OGs require a sensor model
which is the description of the probabilistic relation thatlinks
a sensor measurement to a cell state, occupied (occ) or empty
(emp). The objective of OG is to build a unique occupancy
map of the surroundings of an intelligent vehicle (the V-grid),
equipped with several sensors. It is assumed that all sensor
information used can be summarized in terms of occupancy.
As explained in section II, it requires to get a likelihood
for each state of each cell of the V-grid per sensor1 which
is called thesensor model. But each sensor have its own
coordinate system for recording measurements, that is with
a particular topology: Cartesian, polar, spherical, etc, and a
particular position and orientation in the V-grid. For example,
every telemetric sensor that uses the time-of-flight of a wave,
like laser range-finders, records detection events in a polar
coordinate system due to the intrinsic polar geometry of wave
propagation. Thus building a unique Cartesian occupancy grid
involves to change from the sensor map (the Z-grid) to a local
Cartesian map (the LC-grid) and/then to transform the LC-
grid into the V-grid with the good orientation and at good
position. In the following paper, a general statement of the
problem is presented with exact and approximate approaches
that solve this problem. In particular we obtain maps without
holes, compared to the strong Moiré effect in maps obtained
with the state-of-the-art line drawing method for laser range-
finders [3] (Fig. 1(a)). However, the OG mapping process has
obviously a computational cost that increases with the number
of sensors and the number of cells. But one of the major
advantages of the OG framework is that all fusion equations
are totally independent for each cell of the grid, which makes it
possible to improve computing by allowing parallel algorithms
such as those that are required for GPU programming. Thus
in this paper we present two contributions:

• a general and exact algorithm for the switching of discrete
coordinate systems, which we derived for the laser-
range finder case and used as a criterion to evaluate the
performances of other methods in terms of correctness,

1It is only necessary for the sensors that view the cell.



(a) (b)

Fig. 1. (a) 2D OG obtained by drawing lines with 1D occupancy mapping (for a SICK laser-range finder). The consequences area Moiré effect (artificial
discontinuities between rays far from origin). (b) 2D OG obtained from the exact algorithm. All the OGs are 60m× 30m with a cell side of 5cm,i.e. 720000
cells.

precision and computing advantages.
• a very efficient GPU implementation of multi-sensor

fusion for occupancy grids including the switch of co-
ordinate systems validated by the results of the previous
method.

In the conclusions of the first study we demonstrate the
equivalence between the occupancy grid sensor fusion and the
texture mapping problem in computer graphics [6]. And in
the second contribution, we use the parallel texture mapping
capabilities of GPU, to obtain a fast procedure of fusion and
coordinate system switch. Thus, the experiments show that
GPU allows to produce occupancy grid fusion for 50 sensors
simultaneously at sensor measurement rate.

The paper is organized as follows: we present first math-
ematical equations of sensor fusion and the 1D equations of
telemetric sensor model we use. Then we focus on the switch
of coordinate systems from polar to Cartesian because for
most telemetric sensors the intrinsic geometry is polar. Then
we explain how to simplify the above switch of coordinate
systems to improve the computational time with parallelism,
taking into account precision and/or safety. Finally in thelast
sections we present our GPU-based implementation and the
results of fusion obtained for 4 sick laser range-finders with
centimetric precision.

II. SENSORFUSION IN OCCUPANCY GRIDS

A. Bayesian sensor fusion.

The general problem of sensor fusion for OG is presented
here first for a grid cell and several sensors.

a) Probabilistic variable definitions:

•
−→
Z = (Z1, . . . , Zs) a vector ofs random variables2, one
variable for each sensor. We consider that each sensori
can return measurements from a setZi.

• Ox,y ∈ O ≡ {occ, emp}. Ox,y is the state of the bin
(x, y), where(x, y) ∈ Z

2.
Z

2 is the set of indexes of all the cells in the monitored
area.

2For a certain variableV we will note in capital case the variable, in
normal casev one of its realization, and we will notep(v) for P ([V = v])
the probability of a realization of the variable.

b) Joint probabilistic distribution: the lattice of cells is
a type of Markov field and many assumptions can be made
about the dependencies between cells and especially adjacent
cells in the lattice [7]. In this article sensor models are used
for independent cells i.e. without any dependencies, which
is a strong hypothesis but very efficient in practice since all
calculus could be made for each cell separately. It leads to the
following expression of a joint distribution for each cell.

P (Ox,y,
−→
Z ) = P (Ox,y)

s
∏

i=1

P (Zi|Ox,y) (1)

Given a vector of sensor measurements−→z = (z1, . . . , zs)
we apply the Bayes rule to derive the probability for cell(x, y)
to be occupied:

p(ox,y|−→z ) =

p(ox,y)
∏s

i=1 p(zi|ox,y)

p(occ)
∏s

i=1 p(zi|occ) + p(emp)
∏s

i=1 p(zi|emp)
(2)

For each sensori, the two conditional distributions
P (Zi|occ) and P (Zi|emp) must be specified. This is called
the sensor modeldefinition.

B. General form of telemetric sensor model

For the 1D-case, the sensor models, used here (eq. (7),(8)),
are based upon the Elfes and Moravec Bayesian telemetric
sensor models [1]. Now, is presented our own demonstration of
the results of [1], which add a complete formalism to express
the dependency of the sensor model on the initial occupancy
of the grid cells. This initial hypothesis is called theprior.

The whole presentation is based upon the assumption that
the telemetric sensor is of a time-of-flight type. This is an
active kind of sensor which basically emits a signal with a
fixed velocityv at timet0, then receives the echo of this signal
at time t1, and then computes the distance of the obstacles
from the source with:d = t1−t0

v
. We callΩ the source location

of the emitted signal.
First, we consider an ideal case: when there are several
obstacles in the visibility area, only the first one (in terms
of time of flight) is detected.



1) Probabilistic variable definitions:Only one sensor is
considered.

• Z ∈ {“no impact”}⋃Z. Z belongs to the set of all
possible values for the sensor with the additional value:
“no impact” which means that the entire scanned region
is free.

• Ox ∈ O ≡ {occ, emp}. ox is the state of the binx
either “occupied” or “empty”, wherex ∈ [[1; N ]]. N is
the number of cells in the 1D visibility area for a single
sensor shot.

• Gx ∈ Gx ≡ {occ, emp}[[1;N ]]\{x}. gx represents a
state of all the cells in the visibility area except the
x one. Gx takes its values in the t-uples of cells
(c1 = o1, . . . , cx−1 = ox−1, cx+1 = ox+1, . . . , cN = oN )
whereci is the celli (fig. 2).

2) Joint distributions: The probabilistic distribution de-
scribing the interaction between sensor values and a cell state
is, following an exact Bayes decomposition:

P (Z, Ox, Gx) = P (Ox)P (Gx|Ox)P (Z|Gx, Ox)

• P (Ox) is the prior: this is the probability that in a cell
lies a surface that is reflective for the telemetric sensor
used. In this case the cell is called occupied. We note
the probability that a cell contains no reflective surface
(empty):u.

• P (Gx|Ox) is the probability that, knowing the state of a
cell, the whole visibility area is in a particular state. Here,
we make a strong assumption: we assume that the state
of the cellx is non informative for the states of the other
cells. So formally:P (Gx|Ox) ≡ P (Gx). However not
any hypothesis about the probability of some particular
state ofGx is made. Then: the sole hypothesis is that
P (Gx) only depends on the number of empty or occupied
cells3.

• P (Z|Ox, Gx) depends of the sensor, but for all(ox, gx) ∈
[[1; N ]]×Gx, the distribution overZ depends only of the
first occupied cell. Then we suppose that knowing the
position of the first occupied cellck in the sensor view
gx, P (Z|ox, gx) behaves as if there were onlyck occupied
in all the area. We call this particular distribution overZ:
the elementary sensor model̊Pk(Z).

To computeP (Z, Ox) we derive, now, equations for the
marginalization over all the possible states ofGx.

3) Inference :To avoid the numerical pitfall of considering
all the possible cell states ofGx, an inference calculus is
done here based upon a marginalization sum. The heart of the
solution to the inference problem is to deal with the visibility
of a bin. Considering a perfect case, the first occupied cell
in the visibility area causes a detection. So knowing that the
cell x is occupied, that cell is the last one which can cause a
detection.
Therefore we give the next definition.

3which is a more general modeling than the uniform choice madein [1].

First occupied cell

X

Fig. 2. In white (resp. black) the empty (resp. occupied) cells. An element
of A5

9
, herek < x.

a) Definition : we defineAk
x as the set of all t-uples of

Gx type where the first occupied cell is thekth. Formally it is a
t-uple such as:(c1, . . . , cx−1, cx+1, . . . , cN ) ∈ {occ, emp}N−1

(Fig. 2) where:

• ci = emp∀i < k
• ck = occ

To derive the equations of the sensor models we use the
following properties:

b) Properties:

1) ∀(i, j), i 6= j, Ai
x

⋂

Aj
x = ∅

2)
S

A
k
x = Gx\{ (cp)p∈[[1;N ]]\{x} | ∀p, cp = emp }

3) if k < x there arek determined cells: thek − 1 first
cells:(c1, . . . , ck−1), which are empty, and thekth: (ck),
which is occupied.
Thenp(Ak

x) = uk−1(1− u).
4) if k > x there arek− 1 determined cells: thek− 2 first

cells: (c1, . . . , cx−1, cx+1, . . . , ck−1) which are empty
and the(k − 1)th.: (ck) which is occupied.
Thenp(Ak

x) = uk−2(1− u).

c) DistributionsP (Z|Ox) : the probability distribution
over Z expresses the following semantic. Knowing that the
cell x is occupied, the sensor measurement can only be due
to the occupancy ofx or of a cell beforex in terms of
visibility (Eq.4). So the probability that the measurement
is 0, comes from the probability that the first cell is
occupied, which is1 − u and produces a measurement in0:
P̊1([Z = 0]), and from the probability that the first cell is
empty (u) and the second one is occupied and produces a
measurement in0: P̊2([Z = 0]) and so on ... Then we split
the marginalization sum into two complementary subsets of
Gx: the set ofAk

x such asx is not the first occupied cell and
its complement (Eq.3). Then it leads to the following formula:

occupied case:

• if Z 6= “no impact” :

p(Z|[Ox = occ])

=
∑

gx∈Gx

p([Gx = gx])p(Z|[Ox = occ], [Gx = gx])

=
x−1
∑

k=1

p(Ak
x)P̊k(Z) + (1−

x−1
∑

k=1

p(Ak
x))P̊x(Z) (3)

=

x−1
∑

k=1

uk−1(1− u)P̊k(Z) + ux−1P̊x(Z) (4)

As mentioned above eq. 4 has two terms: the left term in
the sum that comes from the possibility that a cell before



x is occupied and the right term that comes from the
aggregation of all the remaining probabilities around the
last possible cell that can produce a detection event:x. In
the case of a Diracelementary sensor model, the precision
is perfect and the aggregation is completed atx fig. 7(a).
The “no impact” case ensures that the distribution is
normalized.

• if Z = “no impact”:
p([Z = ”no impact”]|[Ox = occ])
= 1−∑

r 6=”no impact” p([Z = r]|[Ox = occ])

empty case:

•
if Z 6= “no impact” :
we note open= { (cp)p∈[[1;N ]]\{x} | ∀p, cp = emp }

p(Z|[Ox = emp]) (5)

=
∑

gx∈Gx

p([Gx = gx])p(Z|[Ox = emp], [Gx = gx])

=
N

∑

k=1,k 6=x

p(Ak
x)P̊k(Z) + p(open)δZ=”no impact”

=

x−1
∑

k=1

uk−1(1 − u)P̊k(Z)

+
n

∑

k=x+1

uk−2(1− u)P̊x(Z) + un−1δZ=”no impact”(6)

There are three terms in the empty case: before the
impact, after and the term “no impact”. What is very
interesting is that in both occupied and empty model the
term before impact (left term) is exactly the same fig. 7(a)
and fig. 7(b). As above, the “no impact” case ensures that
every case is considered.

• if Z = “no impact”:
p([Z = ”no impact”]|[Ox = emp])
= 1− (

∑

r p([Z = r]|[Ox = emp])) + uN−1δZ=”no impact”

4) Numerical models:
The information to handle to define theelementary sensor
modelare:

• the range of possible values returned by the sensor which
include maximal and minimal sensor field of view but
also granularity of the measures;

• the precision or uncertainty of a sensor measure which
can varies with the obstacle distance for example. When
a range sensor measures the distance to an obstacle over
time, it records different measures due to the sensor own
uncertainty. For an acceptable sensor, all the records are
in the close surroundings of the real obstacle distance.
The probability distribution of those records defines the
elementary sensor model.

The first kind of information is provided in the technical
manuals of sensors whereas the second is often only partially
described, therefore full equations are given here.

a) Dirac model: when the sensor is ideal or has a
standard deviation that is far smaller than the cell size in the
occupancy grid, it is suitable to model̊P (Z) with a Dirac
distribution4 (Fig. 7(a)-7(b)):

P̊k([Z = z]) =

{

1.0 if z = k
0.0 otherwise.

b) Gaussian models:as all telemetric sensors are far
from perfect, the Dirac model is obviously inappropriate
in many cases. At this point the traditional choice [8]–[10]
favors Gaussian distributions, centered onk and with a
variance that increases withk.
It models the failures of the sensor well. However in the
case of a telemetric sensor the possible values for the
measurements are always positive, but Gaussian assign non
zero probabilities to negative values. Worst, close to the
origin i.e. z = 0, this distribution assigns high values to the
negative measurements. Therefore we propose the following
discrete distribution based on the Gaussian5 N (µ, σ):

P̊k([Z = z]) =


































if z ∈ [0; 1] :
∫

]−∞;1]
N (k − 0.5, σ(k − 0.5))(u)du

if z ∈]1; n] :
∫ ⌊z⌋+1

⌊z⌋ N (k − 0.5, σ(k − 0.5))(u)du

if z =”no impact” :
∫

]n;+∞[
N (k − 0.5, σ(k − 0.5))(u)du.

Whereσ(x) is an increasing function ofx. We notice that
the probability of “no impact” is increased by the integral of
the Gaussian over]n; +∞], which means that all the impact
surfaces beyond the sensor field of view are not detected.

An other Gaussian-based modeling was suggested in [11],
to take into account all short reflections that could drive
the echo to the signal receiver before the sensor has fin-
ished transmitting. These kind of telemetric sensor lis-
ten and emit by the same channel, so the sensor cannot
stand in both states: receiver and emitter, at same time.
P̊k([Z = z]) =


















if z =”no impact” :
∫

]−∞;1]∪]n;+∞[
N (k − 0.5, σ(k − 0.5))(u)du

else:
∫ ⌊z⌋+1

⌊z⌋ N (k − 0.5, σ(k − 0.5))(u)du.

Thus, we notice that the probability of “no impact” is
increased by the integral of the Gaussian over] − ∞, 1]. In
this two modeling, introducing the special case of “no impact”
is necessary to take the missed detections into account.

4Here we suppose thatz is an integer which represents the cell index, which
the sensor measurement corresponds to: ifz is real it is⌊z⌋ + 1.

5Here we assume thatk is the index of the cell which represents all the
points with radial coordinate in]k − 1; k], i.e. we assume a length of1 for
cell, for simplicity.



C. Discussions and model properties

the goal of this section is to underline the link between
the above sensor model (fig. 7) and the well known shape of
OG after a detection event (fig. 3, 4 blue curves) that show
three distinct area of occupancy: empty before the obstacle,
occupied at the obstacle and unknown after the obstacle. In the
precedent section, the sensor model is defined for a certain cell
and for each possible sensor measurements. In opposite, here
are presented the qualitative properties of the sensor model
from different cells point of view but for the same sensor
reading. For that purpose we consider very simple cases. In
the Diracelementary sensor modelscase, the equations for the
cell numberρ are:

p(z|[Oρ = occ]) =







uz−1(1− u) if z < ρ
uρ−1 if z = ρ
0 otherwise.

(7)

p(z|[Oρ = emp]) =







uz−1(1− u) if z < ρ
0 if z = ρ
uz−2(1− u) otherwise.

(8)

when z 6= “no impact” and z ≥ 1 and ρ ≥ 1. Thus
the equations of [1] holds if the uniform prior hypothesis
u = 1 − u = 1/2 is used. It is very interesting to notice,
that in the Dirac case, only three values are used to define the
values of a sensor model all along the sensor field of view.
For the otherelementary sensor modelsproposed, only more
values are needed close to the cell where a detection event
occurs.

WhenP (Ox) is uniform, the inference calculus gives:

p(occ|z) =
p(z|occ)

p(z|occ) + p(z|emp)
.

Thus in the case of all the aboveelementary sensor models,
the following qualitative properties hold:

• if x≪ r and∀k ∈ [[1; x]], P̊k([Z = r]) ≃ 0 which is the
case for Gaussian elementary sensor model, according to
eq. 4, fig. 7(a)p(z|occ) ≃ 0 while according to eq. 6,
fig. 7(b) p(z|emp) > 0.
So p([Z = r]|[Ox = emp]) ≫ p([Z = r]|[Ox = occ])
therefore:

p(occ|r) ≃ 0

It means that, if there is a measurement inr, there is no
occupied cell beforer.

• if x≫ r then, almost only the left term in eq. 4 and eq. 6
are used to calculate the posterior and they are identical.
Thusp(occ|r) ≃ 0.5
That what ensures that after the impact all the cells have
the same probability, which means: no state (occupied or
empty) is preferred. That is the required behavior because
those cells are hidden. The equality holds in the Dirac
case but for otherelementary sensor modelsit depends
on the uncertainty in the location of the cell that produces
the impact. For example, for Gaussianelementary sensor

modelsthe equality numerically holds far enough -4σ(k−
0.5) is enough- behind the impact location.

D. elementary sensor modeluncertainty

1) Problem statement:The aim of this section is to show
how a wrong modeling of theelementary sensor modeldis-
tribution can lead to a wrong OG in the current bayesian
model. In particular, it is possible to simulate sensor readings
according to an uncertainty model and obtain the resulting
OG. It is also equivalent to apply a convolution operation
betweenelementary sensor modelsand the uncertainty model
to obtain the shape of the resulting OG. Therefore, in the first
paragraphs, the use of a model without uncertainty (a Dirac
model) is simulated with a noisy sensor. Then a statistical
analysis of the laser range-finder uncertainty which is usedin
the experiments follows.

2) Dirac example:suppose that the Diracelementary sen-
sor modelis the choosen model but the sensor uncertainty is
a Gaussian. Despite the fact that the convolution of a Dirac
by a Gaussian is a Gaussian, the convolution of the Dirac
elementary sensor modelby a Gaussian gives an occupancy
function with the first occupied cell6 several cells behind the
obstacle cell (fig. 3).
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Fig. 3. A 1D environement with only one obstacle in cell120, theelementary
sensor modelis a Dirac one (in blue for a precise measurement). In black, the
measurement noise is a Gaussian with a std of 5 cells. In red, the occupancy
function that results of the observation of10000 range measurements with
the noise (normalized).

Such a wrong result is not acceptable as the map is no more
reliable for obstacle avoidance. With anelementary sensor
model uncertainty that matches the own sensor noise, the
obtained map still has its maximum occupancy at the obstacle
location (fig. 4).
It is possible to demonstrate that as long as the standard
deviation of the sensor measurement noise is far smaller than
the grid cell, a Dirac model is suitable for OG building. But
as soon as this hypothesis becomes false the uncertainty of
the sensor measurements must be included in theelementary
sensor model, otherwise it leads to a wrong OG. Therefore for

6In this case a cell is considered as occupied if the probability is greater
than0.5.



an uncertain range-finder such as stereo camera, uncertainty
must be included. But for a precise range-finder such as a laser
range-finder and large enough cells, Dirac model is suitable.
Next section gives the estimated values that characterizesthe
uncertainty of a typical laser range-finder which allows to
define the OG and sensor model parameters.
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Fig. 4. A 1D environement with only one obstacle in cell120, theelementary
sensor modelis a Gaussian one, with a std of cells (in blue for a precise
measurement ). In black, the measurement noise is a Gaussianwith a std of 5
cells. In red, the occupancy function that results of the observation of10000
range measurements with the noise (normalized).
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Fig. 5. Estimation of the standard deviation in meter in ordinate in our data
set plotted against the mean in meter in abscissa.

3) Identification of Gaussian parameters for a SICK
LMS-291 laser range-finder:the LMS-291 in centimetric
mode, gives measures from0 to 8191 centimeters for361
angles from0 to 180 degree, one measure each half degree.
To define an appropriateelementary sensor modelof our
sensor, we acquire more than twenty thousand measurements
of an outdoor static scene for each angle. Then we compute
estimations of the mean, the standard deviation (fig. 5) and
record the probability distribution over the returned measures.
In fig. 5 we can notice that the standard deviation seems to be
independent from the distance thus we compute an estimate of
this value by computing the median of the standard deviation

of our data set (which is more robust to the outliers) and we
obtain a value of0.027m.

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 0.18

 28.55  28.6  28.65  28.7  28.75  28.8  28.85  28.9  28.95  29  29.05

experimental data
gaussian model with std=0.027

Fig. 6. Probability distribution obtain in the experimental data set for a
mean of 28.825 meters and the simulated mean distribution ofthe whole
experimental set with a standard deviation of0.027.

The probability distributions of the measurements show
bellshape distributions and a Gaussian distribution fits well the
experimental distributions (fig. 6). Then a good choice for the
SICK LMS-291 laser range-finder is a Gaussianelementary
sensor modelwith a fixed standard deviation. For a grid
with cells that have a small width (5cm), a simulation shows
that a Diracelementary sensor modelconvoluted with the
SICK LMS-291 sensor uncertainty still lead to a correct OG.
Therefore for our experiments we choose a Diracelementary
sensor model, but we derive in the next sections all the
requested algorithms for any case of sensor uncertainty.

E. Modeling sensor failure

1) Formal error model: For modeling false alarm and
missed detections it is possible to use a confidence model
(or error model) like in [11]. A different confidence model
can be used for each sensor so that it is possible to deal with
the information about the amount of errors produced by each
sensor. The principle is to consider a new variable:

• Di ∈ D ≡ {on, off}. Di is the state of the measurement,
either correct (”on”) or wrong (”off”).

Now, the joint distribution to define is:

P (0x,
−→
Z ,
−→
D) = P (Ox)

s
∏

i=1

P (Di)P (Zi|Ox, Di) (9)

that is definingP (Di) and definingP (Zi|Ox, off) and
P (Zi|Ox, on). DefiningP (Di) corresponds to defineP ([Di =
off]) which is simply the probability that the i-th sensor
produced a wrong measurement. The previously defined
P (Zi|Ox) is assign toP (Zi|Ox, on) because it models the
correct behavior of the sensor. ForP (Zi|Ox, off), without
any kind of information, a non-informative distribution which
assign the same probability to each sensor measurement, is



chosen for the two possible states,ox, of the cell.
If there is no information about the current behavior of the
sensor, the used distribution is just the marginalization over
all the possible state of each measurement:

P (Ox,
−→
Z ) = P (Ox)

s
∏

i=1

∑

D

P (Di)P (Zi|Ox, Di) (10)

Finally it is equivalent, to replace each sensor model
P (Zi|Ox) by the distribution:

p(on)P (Zi|Ox) + p(off)U(Zi) (11)

whereU(Zi) is a uniform distribution overZi.
This kind of transformation of the sensor model adds a certain
inertia related to the probability of wrong measurement. It
means that a good sensor measurement must be received
several times to be considered by the system as relevant as
a sensor measurement without error model. The more wrong
measures are likely to occur, the more inertia the system needs
to filter. This inertia is the price for the robustness added by
the fault modeling.
An other very important feature added by the error model is
that it implies that all the probabilities are non zero. Thusin
eq. (2), p(ox,y) is never zero neither for occ, nor for emp.
If not, the cell occupancy would remain always the same
whatever a sensor measurement is received. The consequence
would be an occupancy building very sensitive to sensor
failure. And it is also possible to use logarithm representation
for probabilities which increases the numerical stabilityand is
required for the implementation of the fusion process.
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Fig. 7. Probability distributions over possible sensor range measurements
knowing that the14th cell is occupied (a),(c) (resp. empty (b),(d) ). Here the
sensor can return30 values of distances, the “no impact” value is not plotted,
the a priori over the occupancy of cells ( the prior )u is set to0.1. (a),(b)
Dirac elementary sensor models; (c),(d) Gaussianelementary sensor models.

F. Discussion and properties of the complete model

the goal of this section is to provide a numerical description
of the probability function in order to justify implementation

simplifications. here are presented the qualitative properties
of the complete sensor model with failure modeling. For that
purpose we consider the simple case of the Dirac model as in
the section II-C.

p(z|[Oρ = occ]) =






p(on)uz−1(1− u) + p(off)U(Zi) if z < ρ
p(on)uρ−1 + p(off)U(Zi) if z = ρ
p(off)U(Zi) otherwise.

(12)

p(z|[Oρ = emp]) =






p(on)uz−1(1− u) + p(off)U(Zi) if z < ρ
p(off)U(Zi) if z = ρ
p(on)uz−2(1− u) + p(off)U(Zi) otherwise.

(13)

whenz 6= “no impact”.
Here is given an original theorem that states boundaries for

the occupancy of a cell when the measured distance varies.
This theorem (see demonstration in appendix VIII) allows to
make approximation such that considering constants instead of
varying function for occupancy updates in the cases of high
u.

Let:

γb =
1

1 + (1 + kū)l
(14)

γi =
k + 1

1 + k + l
(15)

where:

ū = 1− u (16)

k =
p(on)

U(Zi)(1− p(on))
(17)

l =
p(emp)
p(occ)

(18)

Theorem:for a cell with indexρ and a measurement at
index z and a Diracelementary sensor model,

• if ρ < z

p(occ) ∈ [γb; γb +
lkū

1 + (1 + kū)l
(1− (1− ū)z−2)],

• if ρ = z p(occ) ∈ [γi; γi +
lk

1+k+l
(1− (1− ū)z−1)].

When the failure rate is fixed,i.e. for values ofū close to
zero,p(occ) varies very slowly withz. In this case, the prior
is very high,i.e. thea priori is that a cell is almost empty and
the occupancy of a cell tends to become independent of the
distance of the detection event (fig. 8(c)). For example, with
ū = 10−6, p(on) = 1.0−3.5 10−4, andl = 1 the variation all
along the600 cells of the field of view is less than1.1 10−3.
The same conclusions hold for the occupancy of the cell where
the detection event occurs (fig. 8(d)). It justifies some part
of the very simple implementation of OGs like in [12], that
decreases the occupancy of all the area before the detected
obstacle by a constant and increases the occupancy area at the



detected obstacle by a constant7. And it is a property that can
speed up the OG building if choosing such hypothesis about
occupancy prior. In particular, storing the whole conditional
probability distribution over the sensor measurements foreach
cell position can be avoided. It saves the memory of two
matrices ofN × (N + 1) values, one for each occupancy
state occ and emp but more important: it saves all the memory
access to these values which is the major time consuming task
in hardware implementations (see section V).

When theprior is fixed, the change of confidence in the
error model produces a global translation of the occupancy
probability (Fig. 8(a) and 8(b)). The more failure are likely to
occur, the smaller is the change in the occupancy (occupancy
is close to0.5) for each measurement.

G. Extension to 2D occupancy grids

The sensor model is defined in 1D, and each cell in this
sensor beam is defined by its radial coordinateρ. Moreover the
telemetric sensor is supposed to return the cell numberz where
a detection event occurs. The next problem in the processing
chain that builds a 2D occupancy grid is to compute the
Cartesian surface of occupancy from occupancy information
along the sensor beam (fig. 9).
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Fig. 9. Extension from 1D to 2D OG. (a) 1D OG, the occupancy along the
sensor beam is given for a sensor measurement in the 50th cell, a prior of
1.0 − 5.0 10−4, a failure rate of3.5 10−2, a Gaussianelementary sensor
modelwith a standard deviation of5.4cm, and with cells of5cm side size
and a field of view of30m. All the occupancy in the cells were0.5 before
the sensor reading. (b) 2D OG of a sensor beam with the same parameters
and a sensor aperture of7 degrees. The sensor is positioned in (0,0).

Thus the objective of the following section is to compute
P (Z|Ox,y) from a set of sensor beams (P (Z|[Oρ), for
different angles), that divide the sensor field of view. We
evaluate several algorithms to design an efficient and accurate
one.

III. 2D GRID CONSTRUCTION: SWITCH FROM POLAR TO

CARTESIAN GEOMETRY

A. Problem statement

To compare the measurements of two sensors at different
positions on a vehicle, each of them providing measurements
in its own coordinate system, the sensor information must be
switched to a common frame. That is an important node in

7in the cited implementation the constant is the same for the area before
and at the obstacle but it is easy to show that with the sensor model described
here to equalizeγi andγb leads to a negative prior.

the occupancy grid building chain. For telemetric sensors,the
problem is to switch from a polar to a Cartesian grid. All
the fast algorithms that achieve this goal, make approxima-
tions and especially those based on the GPU. Moreover, in
the computational graphics community the main criterion to
evaluate the results of GPU processings is visual quality. But
for our robotic application, which may involve person security,
we need quantitative evaluation. Therefore in the following, we
give a general formalization of this problem which leads us to
present an implementation of an exact solution. That allows
us to compare all the proposed algorithm and the hardware
based solutions with an exact one.

B. Mesh intersection for an exact solution

A mesh is a planar subdivision of space whose geometric
components are vertices, vertices that make edges and edges
that make faces that are equivalent to cells in the OG for-
malism. We define a discrete coordinate system switch as
the transformation that allows to define the same function for
different meshes of the same spaceS. Given a meshA, origin,
a meshB goal whereB ⊂ A (i.e. each point in the surface
covered byB belongs toA too) and 2 functions:

1) f : F (A)→ E whereF (A) is the set of faces inA and
E a vector space,

2) h: S → S which makes a bijective transformation from
a point of the goal to a point of the origin.

Thus it is possible to associate a pointx of a certain facec in
B to a pointu of a certain facec′ of A.

the problem is to find a functiong: F (B)→ E such as for
each facer ∈ F (B)

∫

t∈r

f(t)dt8 = g(r).

If there exists an analytical expression off , and if h is
differentiable and analytical expression of its derivatives exist,
a gradient analysis gives exact analytic equations for the
change of coordinate system through the following equation:

g(r) =

∫

t∈r

g(t)ds =

∫

t∈r

f ◦ h(t)|Dh(t)|dt. (19)

where Dh(t) is the Jacobian matrix ofh in t and |Dh(t)|
its determinant. But in most cases in Bayesian modeling,
functions are discretized due to learning processes or as the
result of Bayesian inference. In the general case, we do not
possess the analytical form of the sensor model (eq. (4),(6)),
but for a Diracelementary sensor modelwith a high prior,
thanks to the theorem of the previous section, such analytical
formula is available (eq. (14), (15)).

8Here, we consider, for the integral, the Lebesgue measure for simplicity,
but the formalism is general as soon as the measure of the intersection between
any face ofA and any face ofB is well defined.
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Fig. 8. (a) (resp. (b)) Occupancy probabilities (p(occ)) in a cell positioned before (resp. at) the cell where the detection event occurs with different kind of
failure probabilities. The probability of theprior being fixed:u = 1.0 − 1.0e−3. (c) (resp. (d)) Occupancy probability in a cell positionedbefore (resp. at)
the cell where the detection event occurs with different kind of prior. The probability of the error model being fixed:p(on) = 1.0 − 3.5e−4. For all graphs
l = 1.0.

1) The map overlay approach:the exact manner to compute
g(r) is to search all the faces ofA that intersectr (Fig 10a):
let Ir = {u ∈ F (A)|u ∩ r 6= ∅}.
For each facei of Ir, let compute the surface,s, of i∩ r and
the surface,sr, of r and keep their quotients

sr
(notedsi,r).

Then we obtaing(r) with the following exact formula:

g(r) =
∑

i∈Ir

si,rf(i). (20)

So the problem comes down to computing, for each face
r, its setIr. This problem is called the map overlay problem
in the computational geometry literature [13], and is the basis
of the exact algorithm presented below9 The computation of

9The complexity of the optimal algorithm [14] that solves this problem
is O(n log(n) + k) in time andO(n) in space wheren is the sum of the
numbers of segments in both subdivisionA and B while k is the number
of intersection points in both subdivisions. In the case of simply connected
subdivisions the optimal complexity isO(n+ k) in time and space [15], and
for convex subdivisions the optimal complexity isO(n+k) in time andO(n)
in space [16].

the map overlay is very expensive and to use this approach a
pre-computed map overlay is calculated off line.

2) Exact algorithm:To pre-compute the switching of coor-
dinate systems an adaptation of the algorithm of Guibas and
Seidel is used in order to obtain for each map ofB, the set
of indexes of faces ofA that intersect it and the surface of
each of these intersections. We choose to work with convex
subdivisions only, because it is easier to compute the surface
of the intersections which therefore are also convex. Then
for the switch from polar to Cartesian coordinate system, the
algorithm is the following:

With this algorithm we have computed the map for the
switch from polar to Cartesian coordinate system. It is pos-
sible to compute the two transformations, the one relative to
topology and the one relative to position at the same time ,just
by setting the relative positions of the two meshes.

C. State of the art

In the next paragraphs, two methods are reviewed. In this
section a qualitative description of two methods is given: the
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Fig. 10. (a) two subdivisions with dash lines and plain lines. In different
color patterns: the different cells in the meshA that intersect the ABCD cell
of meshB i.e IABCD . (b) overlaying the two subdivisions: adding vertex at
each intersection ofA andB. The colored cells are the parts of the colored
faces above that are included in ABCD.

first is the most used method in the robotic community, the
other is commonly used in computational geometry.

1) The robotic solution and the Moiré effect: as far as we
know, all the OGs shown in the literature resort to line drawing
to build the sensor update of laser range-finders [5], [3]. This
method is simple to implement with a Bresenham algorithm
and is fast because the whole space is not covered. But it
presents several drawbacks. An important part of the map (all
the cells that fall between two ray) fails to be updated. This
is a well known problem, called the Moiré effect (fig. 1(a))
in computer graphics literature. This effect increases with the
distance to the origin, and if the aim of the mapping is to
retrieve the shape of objects or scan matching algorithms
are used, the holes decrease the matching consistency. The
maximal error (tab. I) is important because space is not well

Algorithm 1 CoordinateSystemSwitch(polarA, CartesianB)

1: mapping← array(#(F (B)))
2: computeC(A): a convex approximation ofA
3: compute the map overlay ofC(A) andB
4: for each facef of the overlay do
5: find i ∈ F (C(A)) andr ∈ F (B) such asf ⊂ i ∩ r.
6: computes = surface(f)

surface(r)

7: append(r, s) to mapping[i].
8: end for

sampled and cells close to the origin are updated several
times because several rays cross them. This ray overlapping
induces bad fusion that makes some small obstacles appear or
disappear.
This is an important issue: the V-grid has a certain resolution,
i.e. a cell size and each sensor has its own resolution, thus
a good OG building system must handle these differences.
Therefore a property required for a good OG building system
is that it allows to scale the grid locally to match the sensor
resolution if precise investigations are needed, which means
that all the available information can be used.

2) Sampling approaches:The sampling approach is a com-
mon tool in computer graphics: in each cell of the Cartesian
mesh a set of points is chosen, then the polar coordinates
of those points are calculated, and the original values of the
function f in those coordinates. Eventually, a weighted mean
is calculated for the different values off and is assigned to the
Cartesian cell. Here the polar topology requires a non-regular
sampling,i.e. the number of samplesns for each Cartesian
cell is adapted according to the surface ratio of Cartesian and
polar surfaces:

(x,y)

dx

dρ

ρ
dθ

Ω

Fig. 11. Polar and Cartesian grids parameters.

ns(x, y) =
dx2

((ρ + dρ
2 )2 − (ρ− dρ

2 )2)dθ
=

dx2

ρdρdθ
(21)

where ρ is a range associated to the point(x, y) and
dρ, dθ, dx are the steps of the two grids (Fig. 11).

This approach, called adaptive sampling, solves the problem
of the singularity near the origin but still makes an approxi-
mation in choosing the location of the sample points and the
according weight. The adaptive sampling is very close to the
exact solution, in terms of the average number of samples per
Cartesian cell, and of the repartition of the samples according
to the distance with the singularity (fig. 12) and it is also



Fig. 12. In red, below: the analytical curve of the number of sample in
adaptive sampling given by the ratio between Cartesian and polar surface. In
green, above: cardinal of theIr sets in the overlay subdivision provided by the
exact algorithm. One can notice that the adaptive sample is an approximation
because the curve is below the exact one. The sampling schemeis hyperbolic
in the exact and approximate case.

closer in terms the quantitative error. Moreover the sampling
method offers two advantages. From a computational point of
view, it does not require to store the change of coordinate
map, i.e. for each Cartesian cell the indexes of the polar
cells and the corresponding weights that the exact algorithm
requires. This gain is important not due to memory limitation
but because memory access is what takes longest in the
computation process of the above algorithms. From a Bayesian
point of view, the uncertainties that remain in the evaluation
of the exact position of the sensor in the V-grid have a greater
magnitude order than the error introduced by the sampling
approximation (this is even more so with an absolute grid10).
The exactness in the switch of Z-grid to LC-grid is relevant
only if the switch between the LC-grid and the V-grid is
precise too. Thus in this context, a sampling approach is better
because it is faster and the loss of precision is not significant,
considering the level of uncertainty.
The sampling approach is potentially a parallel algorithm be-
cause each Cartesian cell is processed independently, whereas
the line algorithm is not because the Cartesian cells are
explored along each beam.

IV. CONSTRUCTING2D OCCUPANCY GRIDS USINGGPU

A. GPU architecture of occupancy grid building

The aim of this section is to describe the key steps of OG
building with GPU (fig. 13) in the general case (no particular
prior, any kind ofelementary sensor model) and in the Dirac
case with high prior. Two sensor models must be available: one
for the occupied cell statep(z|occ) and one for the empty cell
statep(z|emp). They are precalculated for each possible sensor
measurementz. Then the apropriate sensor model values are
selected for each sensor beam according to the corresponding
measured range in the beam. At this step a fan of sensor
models is constructed for each polar cell state. The next step is
a geometric transform that maps the sensor models to the grid
cells. For each cell and each state the weighted average of the
contribution of the sensor model of each beam is calculated.

10in a slam perspective, for example

This stage can be optimized in the case of the Dirac sensor
model with high prior and it is the subject of the following
paragraph. In general, complex solutions must be used as tex-
ture mapping to efficiently compute the geometric transform
for the whole grid. The geometric transform, inference and
fusion steps are computationally expensive because they are
processed for all cells. But as all cells are independant and
calculus are very simple, use of the GPU is critical because
with GPU cells are processed in parallel.

FUSION

NEW GRID 

inference
PREVIOUS GRID 

GPU STEPS

p(z|occ)

precalculated
sensor model

p(z|emp)

precalculated
sensor model

Geometric transform Geometric transform

Sensor model selectionSensor model selection

Fig. 13. General GPU architecture of occupancy grid building. The key steps
where the GPU provides major computational improvements are highlighted
in red.

B. Geometric transformation for Dirac sensor model and high
prior

for this model the possible approximations (fig. 8(c), 8(d),
u > 1 − 1.0e−6) make it possible to define three areas in
the map with geometric primitives: the empty area with a
polygon, the occupied areas with quadrilaterals and all the
remainding area is unknown (fig. 14).

The GPU implementation has two parts: the first is the
definition of the previous geometric primitives with the corre-
sponding values ofp(z|occ) andp(z|emp) associated at their
vertices; the second get the weighted average values in each
cell of the grid calculated by the GPU and make the inference,
then the fusion (fig. 15).

C. Equivalence with texture mapping for sensor model with
uncertainty

in the general case, the sensor model are non piecewise
constant functions and no geometric primitive can simply
be used. To handle this case efficiently, a mean to map 2D



Fig. 14. Geometric primitives used for the Dirac sensor model and high
prior case: in red the empty polygon, in grey stripes the quadrilaterals of the
occupied areas.

Fig. 15. Occupancy grid generated by the GPU with a geometrictransfor-
mation for a Dirac sensor model and a high prior. The result weakly differs
from fig. 1(b) with a calculus time many order faster.

functions on the grid is required.
In computer graphics, texture mapping adds surface features
to objects, such as a pattern of bricks (the texture) on a plan
to render a wall. Thus the texture is stretched, compressed,
translated, rotated, etc to fit the surface of the object. The
problem is defined as a transformation problem between the
texture image coordinates and the object coordinates [6]. The
main hypothesis is that there exists a geometric transformation
H that associates each object surface coordinate to each
texture coordinate:

H : R2 → R2

(x, y) 7→ (u, v) = (u(x, y), v(x, y))
(22)

Let ga(x, y) the intensity of the final image at(x, y) and
Ta(u, v) the intensity of the texture at location(u, v) in
continuous representation, the final intensity is linked tothe
texture intensity by:

ga(x, y) = Ta(u, v) = Ta(u(x, y), v(x, y)). (23)

The problem statement is how to define on the regular
grid of the image representation in computer memory this
continuous function. This is precisely a sampling problem
and the geometric functionH is a particular case of theh
function above (eq. 19).
Just considering the problem in OG: for the occ state of the
cells (for example) and for a certain measurementz in a

ray, the sensor model of each polar cell can be considered
as a texture:p(z|[O(u,v)=(ρ,θ) = occ]) that only depends of
the (ρ, θ) coordinates. Thus the problem is to map this polar
texture on its corresponding Cartesian space: a cone. The
transformation function is the mapping between the Z-grid
and the V-grid.

The equivalence between texture mapping and occupancy
grid building, is part of a strong link between images and OG
[1], and it suggests to investigate methods and hardware used
in computer graphics to process this key step of OG building,
as done in the following.

D. GPU architecture for texture mapping

In this section we are going to give very technical details;
some may wish to go straight to the following section, devoted
to the experimental results. The GPU components for texture
mapping rely on basic approximation procedures and for each
of them it often exists dedicated process units that achievethe
associated calculus. The basics of the process are

• the way to choose the cells inA that are used in the
calculus for a cellr ∈ B. That is the sampling step.

• the way to choose the weight associated with the different
chosen cells inA. That is the interpolation step.

When defining the mapping for a cell of the goal mesh,
B, two great cases arise depending of the number of original
cells needed to deduce the value for a goal cell. An intuitive
evaluation for this number could be made with the ratio
between the surface of the cell in the goal mesh and mean
surface of the associated cells in the original mesh,A. Cells
in the goal mesh can have a surface:

1) far lower (Fig 16(a));
2) comparable (Fig 16(b));
3) far greater (Fig 16(c))

than the corresponding cells in the original mesh.
The two first cases are handled identically with amagni-

fication texture mapping and required only the fundamental
part of sampling and interpolation processes that is described
in subsection IV-E. The third case, calledminification, cor-
responds to what happens close to the polar origin in the
change of coordinate system from polar to Cartesian. The
main idea to process this case is to find a transformation of
the original mesh to get back a magnification case. And the
dedicated transformation to achieve that process is described
in the subsection IV-F.

E. Sampling and interpolation schemes for magnification

In graphical boards, all the information stored are mapped
on matrices of bytes. Therefore all the definitions of the choice
of sampling points and the choice of interpolation weights
are given for transformations between matrices. Thus origin
and goal cell values are accessed via integer coordinates in
rectangular matrices. And all the geometrical transformations
are inside the definition ofF (Eq. 22) which transform
continuous matrix coordinates into other continuous Patrice
coordinates.



(a) (b) (c)

Fig. 16. (a) and (b) cases of magnification: the goal cell overlap with few cells in the original mesh. (c) case of minification: the goal cell overlap many
cells in the original mesh.
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Fig. 17. The center of the cell ofB is the sample,u is its coordinate in theA
memory frame. The fractional part ofu−1/2, w = 0.4 is exactly the distance
from u to the center of the cell0 of A and1−w = 0.6 is the distance from
u to the center of the following cell1 of A. A linear interpolation keeps the
greatest weight from the closest cell of the sample: thus0.6 from c0 and it
remains0.4 from c1.

1) One dimensional interpolation:let us consider two 1D-
regular meshes (fig 17). The two meshes just differ by a
translation and the problem is to evaluate the function defined
onA on the center of the cells ofB. Let x the real coordinates
of the center of a cell inB andu = F (x) the real coordinates
of x in the memory representation ofA.
This is a very simple case of magnification because each of the
cells have identical shape, in this case a cell ofB could overlap
at most two cells ofA. The coordinates of the overlapped cells
are:

• i0 = ⌊u− 1/2⌋
• i1 = i0 + 1

In this simple case a linear interpolation realizes an exact
change of coordinate system, the weights are defined by:

w0 = 1− frac(u− 1/2)

w1 = 1− w0

and the value inB is:

g(x) = w0Ta(i0) + w1Ta(i1) (24)

2) Two dimensional interpolation:the process in 2D is
a combination of the 1D-process on the rows and on the
columns. Thus it provides four samples and four weights
and it is again exact for Cartesian regular meshes that differ
only by a translation. In the other cases, it gives a good
approximation because in a magnification case a cell ofcallB
overlap almost between one and four cells ofA and the
interpolation process guarantees that the closest cell of the
sample is the main contributor to the value for the goal cell.
Let (x, y) the real coordinates of the center of a cell inB and
(u, v) = F (x, y) the real coordinates of(x, y) in the memory
representation ofA. Since the goal cell has smaller or equal
size compare to the original cells, the approximated number
of original cells overlapped by the goal cell is fixed to4. Thus
sampling is defined with four points whose coordinates are:
{(i0, j0); (i0, j1); i1, j0); (i1, j1)} where

• i0 = ⌊u− 1/2⌋ andj0 = ⌊v− 1/2⌋
• i1 = i0 + 1 andj1 = j0 + 1

The weights in the interpolation follow a linear model: the
closer to the sample(u, v), the larger they are. They are based
upon the two numbers:

wα = 1− frac(u− 1/2)

wβ = 1− frac(v− 1/2)

wherefrac(x) denotes the fractional part ofx. The final
interpolated value for the 2D function is then:

g(x, y) =

wαwβTa(i0, j0) + (1− wα)wβTa(i1, j0) (25)

+ wα(1 − wβ)Ta(i0, j1) + (1− wα)(1 − wβ)Ta(i1, j1)



F. Minification and mipmapping

The definition of magnification given above was approxi-
mate, thus let us give a precise one now.

1) Minification definition: let us defineν:

ν = max


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√
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2
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2







This value is related with the Jacobian (Eq. 26) in the
continuous change of coordinate equation (Eq.19) for the 2D
case:

|DH(x, y)| =
∣

∣

∣

∣

∣

∂u
∂x

∂u
∂y

∂v
∂x

∂v
∂y

∣

∣

∣

∣

∣

. (26)

It gives the maximum of the norms of each of the column of
the Jacobian (Fig. 18).
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Fig. 18. Up right: an elementary displacement in the goal. Upleft: the
equivalent displacement in the original space given by the derivatives of the
backward transformation H. Bottom left: in purple, a geometric view of the
Jacobian. Bottom right: in red, a geometric view of the surface value chosen
by the graphical board for defining the number of samples: it is a upper bound
since the parallelogram has a smaller area than the square constructed from
its larger side.

The Jacobian is the area of the image of the surface defined
by an elementary displacement(dx, dy) in the goal space by
H (Fig. 18). Soν is the maximum distance covered in the
original space for an elementary displacement in the direction
x or in the directiony in the goal space. Thusν2 is an
upper bound for the area covered in the original space by an
elementary displacement(dx, dy).
To define if there is minification: a comparison is made
between the areas in the origin and in the goal through
ν. If ν is lower than

√
2 there is magnification otherwise

minification. The natural choice would be to compareν to 1.0
but it is not optimal since four samples are used to evaluate
the function in the magnification process.

In the calculus ofν the choice of the maximum instead
of a product, for an area, is important to avoid the case
where the derivative in a dimension is very large while in

origin

(x,y) (dx,0)

(0,dy)

goal

H

(u, v)

( ∂u
∂y

, ∂v
∂y

)

( ∂u
∂x

, ∂v
∂x

)

Fig. 19. When a derivative is large whereas the other is small, the area of
the cell in the origin can be small. But as a large part of the original mesh
is covered a large number of samples is necessary to compute the goal value
thus minification sampling is required.

the other dimension the derivative is very small (Fig. 19).
In this case the Jacobian is small but the number of cells
covered in the original mesh is important. In last generation
of graphical board this problem is handled specifically
with anisotropic sampling and there are two kind ofν,
one for each dimension. Derivatives in the graphical board
are approximated by calculating finite differences using the
evaluation ofH for each corner of the goal cell.

a) For example in the Cartesian to polar mapping: :
∣
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(27)

and

ν2 = max

{

(cos2(θ) +
sin2(θ)

ρ2
); (sin2(θ) +

cos2(θ)

ρ2
)

}

Eq. 27 explains the number of sample choices in the adaptive
sampling (Eq. 21).

2) Sampling and interpolation formulas: mipmapping:in a
case of minification a cell in the goal grid overlap several cells
in the original one. Thus the solution chosen by the graphical
board is to compute an appropriate coarse resolution of the
meshA which gives a new grid with which magnification
could be used. Then the process of texture mapping is:

1) pre-compute several resolutions of the textureA;
2) calculate for each pixel ofB the two closest pre-

computed resolutions;
3) for the two resolutions calculate the magnification val-

ues;
4) interpolate linearly between the two magnification val-

ues based on the distance between appropriate resolution
and pre-computed ones.

To change from one resolution to a coarser one, each dimen-
sion is divided by a power of2. That provides a pyramid of
textures and the appropriate resolution is given by:

λ(x, y) = log2[ν(x, y)].

Then the two closest resolution are given by:

• d1 = ⌊λ(x, y)⌋
• d2 = d1 + 1



The magnification rules for sampling and interpolating are then
applied to each of the selected texture, yielding two corre-
sponding valuesg1(x, y) for the d1 resolution andg2(x, y)
for d2 resolution. The final value for the cell(x, y) is then
found as a 1D interpolation between the two resolutions:

g(x, y) = (1−frac(λ(x, y)))g1(x, y)+frac(λ(x, y))g2(x, y)

Fig. 20. A map of the values of the occupied sensor model in polar coordi-
nates,θ in abscissa andρ in ordinate at different scales. They correspond to5
level of mipmaps and are used to calculate the change of coordinate system.
The more hot is the color, the more probable is the sensor measurement
knowing that the radial cell is occupied. The sensor model follow a Gaussian
elementary sensor modelwith a standard deviation that increases with the
measured range and a high prior. These hypothesis fit the uncertainty of a
stereo camera sensor model.

The process of using several resolution of the original mesh
is called mipmapping and is accelerated by graphical boards.
These texture mapping schemes are part of the OpenGL2.0
specification, [17].
Thus it just remains to the programmer to defineH which
is the change of coordinate function. This definition could be
done by providing to the graphical board the result of each
of the required evaluation ofH . It is also possible to draw
geometric primitives: triangles, quadrilaterals or polygons
which vertex are given in the goal coordinate system and are
also associated with corresponding coordinates in the original

Fig. 21. Occupancy grid generated by the GPU. Compared to fig.20 the
geometric transformation apply, and each column in fig. 20 istransformed in
a triangle in the final grid.

coordinate system. Between each vertex interpolation is made
by the graphical board to deduce all required coordinates.
Therefore the first method is more precise but computationally
more expensive than the second.
In the case of polar to Cartesian change of coordinate system
two matrices are drawn with(ρ, θ) coordinates one for occ
and one for emp. Each column of a matrix corresponds to
one angle and one range measurement and in this column
is plotted the sensor model corresponding to the current
range measurement. Then mipmaps of the two matrices are
computed. Finally the change of geometry is processed by
drawing geometric primitives: for each range measurement
the corresponding quadrilateral is drawn in the Cartesian grid,
each of the vertex of the quadrilateral is associated with the
corners of the line of the 1-D sensor-model.

V. EXPERIMENTAL RESULTS

We test the three algorithms: line drawing, adaptive sam-
pling and GPU building on real data,i.e. 2174 sick scans.
We obtain the results that are summarized in tab I. We
made a simulation with 4 Sicks to compare fusion results
too and we obtained the following results: Fig 23(c). To
evaluate the algorithms, they are compared to the output of
the exact algorithm. The absolute difference between the log-
ratios of occupancies are calculated to evaluate both average
and maximal errors. The average calculus time on a CPU is
given then we focus on correctness and the possibility to have
parallel algorithms. The results in the tab. I are computed for a
fine grid resolution: cell side of5cm and a wide field of view:
60m×30m, i.e.720000 cells and one sick sensor that provides
361 measurements. The CPU used is an Athlon XP 1900+
and the graphical board, a NVIDIA GeForce FX Go5650.
Our contribution in these comparisons is that, to the best of
our knowledge, the exact algorithm was never used before.
The average and maximal errors of the adaptive sampling and
GPU building (tab. I) are small compared to the line drawing
algorithm; for adaptive sampling calculus time is, however,
more expensive.

A. Precision of the GPU building algorithm

The obtained precision is close to the exact solution, not as
close as with the adaptive sampling method but far better than
with the line drawing method. Details close to the vehicle are
well fit and any kind of resolution could be achieved for the



Method Avg. Error Max. Error avg. time
exact 0 0 1.23s (CPU)
line drawing 0.98 25.84 0.22s (CPU)
sampling 0.11 1.2 1.02s (CPU)

GPU 0.15 1.8
0.049s on MS
0.0019s on board

TABLE I

COMPARISON OF CHANGE OF COORDINATE SYSTEM METHODS.

Fig. 22. Experimental vehicle with 4 Sicks LMS-291, one at each corner.

OG. To avoid the infinite increasing of the required precision
close to the sensors and for safety, we choose to consider the
worst occupancy case for every cell that lies within a30cm
radius around the sensor. Outside this safety area the remaining
error is almost zero so that when considering these particular
grids, precision is very close to that obtained with the exact
algorithm.

B. Performance

To evaluate the results an NVIDIA GeForce FX Go5650 for
the GPU is used ( tab I ). For the GPU, two calculus times
are given: first the computation time with the result transfer
from the GPU to the CPU in memory main storage (MS) and
second without this transfer. The difference is important and
in the first case most of the processing time is devoted to data
transfer, so if further computations were made on GPU, a lot
of time could be saved. In this case the amazing number of
50 sensors can be computed at real-time with the GPU. It is
important to note that, as only the result of the fusion needs
to be sent to the main storage, a little more than half a second
remains to compute OGs for other sensors and fusion when
using a10Hz measurement rate. So in the current conditions if
resulting grid is send back in memory main storage,12 others
sensors can be processed at the same time because the fusion
process takes about as long as the occupancy computation,i.e.
2ms.

VI. SENSORFUSION USINGGPU

Using such a dedicated hardware have a lot of advantages.
In particular, plenty of basic operations such as image addition

are straightforward with a GPU. In fact, sensor fusion in OGs
can be performed with OGs additions: floating number have
a limited precision, so to avoid numerical pitfalls, a logarithm
fusion is, indeed, often used. On the actual graphical boards,
floating precision is restricted to32 bits, so this is an important
issue of the sensor fusion on GPU, thus the logarithm fusion
is presented here. As the occupancy is a binary variable,
a quotient between the likelihoods of the two states of the
variable is sufficient to describe the binary distribution.The
quotient makes the marginalization term disappear and thanks
to a logarithm transformation, sums are sufficient for the
inference.

log
p(occ|−→z )

p(emp|−→z )
= log

p(occ)

p(emp)
+

n
∑

i=1

log
p(zi|occ)

p(zi|emp)
(28)

For each sensor, the two appropriatepolar sensor model
gridsare constructed with the associated set of mipmaps.
For each Cartesian cell, the two sensor models at the right
resolution are fetched then an interpolated value is calculated
from samples of each of them, then the log-ratio is calculated.
The final value is added to the current pixel value. This process
uses the processor units dedicated to transparency in the
graphical board. The occupancy grid for each sensor appears
as a layer where transparency decreases as the occupancy of
the cell increases.

And the final grid, fusion of all sensors, is just the sum of
all the layers.

VII. C ONCLUSION

Building occupancy grids to model the surrounding environ-
ment of a vehicle implies to fusion the occupancy information
provided by the different embedded sensors in the same grid.
The principal difficulty comes from the fact that each sensor
can have a different resolution, but also that the resolution of
some sensors varies with the location in the field of view. This
is the case with a lot of telemetric sensors and especially laser
range-finders. The need to switch coordinate systems is a fre-
quent problem in Bayesian modeling, and we have presented a
new approach to this problem that offers an exact solution and
which is absolutely general. This has lead us to evaluate a new
design of OG building based upon a graphic board that yields
high performances: a large field of view, a high resolution
and a fusion with up to13 sensors at real-time. The quality
of the results is far better than with the classic method of ray
tracing and the comparison with the exact results shows that
we are very close to the exact solution. This new design of
OG building is an improvement for environment modeling in
robotics, because it proves, in a theoretical and practicalway,
that a chip hardware can handle the task of fusion rapidly.
The gain of CPU-time can therefore be dedicated to other
tasks, and especially the integration of this instantaneous grid
in a mapping process. In future works, we plan to explore the
question of 3D OG modeling using graphical hardware. We



(a) (b)

(c)

Fig. 23. (a) V-grid with only the first sensor measurements. (b) V-grid with
the fusion of the two first sensors measurements. (c) V-grid with the fusion
of the four sensors.

will also investigate whether GPUs are suitable for other low-
level robotic tasks. Videos and full results could be found at
http://emotion.inrialpes.fr/∼yguel.
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VIII. A PPENDIX: PROOF OF SENSOR MODEL BEHAVIOR

FOR HIGH PRIOR

In this section we prove the theorem stated in section II-F
that characterizes the behavior of the complete sensor model
regarding the measured distance of the detected obstacle. In
particular, we prove that the probabilities in the sensor model
are almost independent of the measured distance for a high
confidence in the fact that a cell is empty. For simplicity, but
without loss of generality, we state that theelementary sensor
modelis a Dirac.

A. Occupancy of a cell before the cell where the detection
event occurs

In the following, we note:pt(o) for p(o|z1, . . . , zt) the
occupancy of a cell aftert consecutive measures. With eq.
2, 12 and 13, we derive the occupancy of a cell with index
ρ < z:

pt+1(occ) = a/(a + b),

where

a = p(off)U(Zi)pt(occ),

b = p(on)uz−2(1− u) + p(off)U(Zi))pt(emp).

Thus,

pt+1(occ) =
1

1 + (1 + kū(1− ū)z−2)l
(29)

where

ū = 1− u (30)

k =
p(on)

U(Zi)(1− p(on))
(31)

l =
pt(emp)
pt(occ)

(32)

All these terms are positives. And as(1 − ū)z−2 is a
decreasing function ofz sinceū is smaller than one,pt+1(occ)
is an increasing function ofz with limit:

lim
z→+∞

pt+1(occ) =
1

1 + l
= pt(occ).

So the maximum difference of occupancy for two different
sensor measurements is:

pt+1(occ)[z]− pt+1(occ)[z = 2]

=
1

1 + (1 + kū(1 − ū)z−2)l
− 1

1 + (1 + kū)l
(33)

=
lkū[1− (1− ū)z−2]

(1 + (1 + kū(1− ū)z−2)l)(1 + (1 + kū)l)
. (34)

(35)

Since, all terms are positives the left factor in the denomi-
nator in eq. 34 is greater than one, so:

pt+1(occ)[z]− pt+1(occ)[z = 2] ≤ lkū

1 + (1 + kū)l
[1− (1− ū)z−2]. (36)

For z = 2, pt+1(occ) = 1
1+(1+kū)l , and with the definition

of γb we demonstrate the first part of the theorem:

pt+1(occ) ∈ [γb; γb +
lkū

1 + (1 + kū)l
(1− (1− ū)z−2)] (37)

Thus for values of̄u close to zero,pt(occ) is almost constant
over all the possible range measurements. A Taylor expansion
of (1−ū)z−2 shows how the linear, quadratic and other powers
of z arise to explain the behavior of the sensor model as the
prior decreases (fig. 8).

B. Occupancy of a cell at the cell where the detection event
occurs

In the same schema as above, we write:

pt+1(occ) = 1/(1 + b/a),

Thus,

pt+1(occ) =
1

1 + l
1+k(1−ū)z−1

(38)

All these terms are positives. And as(1 − ū)z−1 is a
decreasing function ofz sinceū is smaller than one,pt+1(occ)
is a decreasing function ofz with limit:

lim
z→+∞

pt+1(occ) =
1

1 + l
= pt(occ).

So the maximum difference of occupancy for two different
sensor measurements is:

pt+1(occ)[z = 1]− pt+1(occ)[z]

=
lk

1 + k + l

1− (1− ū)z−1

1 + k(1− ū)z−1 + l
(39)

Since, all terms are positives the right denominator in eq. 39
is greater than one, so:

pt+1(occ)[z]− pt+1(occ)[z = 2] ≤ lk

1 + k + l
[1− (1 − ū)z−1]. (40)

For z = 1, pt+1(occ) = k+1
1+k+l

, and with the definition of
γi we demonstrate the second part of the theorem:

pt+1(occ) ∈ [γi; γi +
lk

1 + k + l
(1− (1 − ū)z−1)] (41)

One can notice that the variation is greater withz at the
impact than before since in eq. 34,ū appears in the additional
term.


