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Abstract— Building occupancy grids (OGs) in order to model
the surrounding environment of a vehicle implies to fusion acu-
pancy information provided by the different embedded sensrs in
the same grid. The principal difficulty comes from the fact that
each can have a different resolution, but also that the resation
of some sensors varies with the location in the field of viewnl
this article we present a new efficient approach to this issubased
upon a graphical processor unit (GPU). In that perspectivewe
explain why the problem of switching coordinate systems isra
instance of the texture mapping problem in computer graphis.
We also present an exact algorithm in order to evaluate the
accuracy of such a device, which is not precisely known due to

interpret any kind and any number of sensors. Moreover, OGs
allow easily the combination of redundant sensors thattdimi
the effects of sensor breakdown and enlarges the robot field
of view.

For sensor data integration OGs require a sensor model
which is the description of the probabilistic relation thiaks
a sensor measurement to a cell state, occupied (occ) or empty
(emp). The objective of OG is to build a unique occupancy
map of the surroundings of an intelligent vehicle (the \dyyri

the several approximations made by the hardware. To valida
our method, the results with GPU are also compared to results
obtained through the exact approach and the GPU precision
is shown to be good enough for robotic applications. Therefe
we describe a whole and general calculus architecture to biai
occupancy grids for any kind of range-finder with a graphical
processor unit (GPU). And we present computational time reslts

equipped with several sensors. It is assumed that all sensor
information used can be summarized in terms of occupancy.
As explained in section II, it requires to get a likelihood
for each state of each cell of the V-grid per seAsahich

is called thesensor modelBut each sensor have its own
coordinate system for recording measurements, that is with

that can allow to compute occupancy grids for 50 sensors at&éme

_ _ a particular topology: Cartesian, polar, spherical, et a
rate even for a very fine grid.

particular position and orientation in the V-grid. For exae)
every telemetric sensor that uses the time-of-flight of aeyav
like laser range-finders, records detection events in arpola
At the end of the 1980s, Elfes and Moravec introducezbordinate system due to the intrinsic polar geometry ofevav
a new framework to multi-sensor fusion called occupangyropagation. Thus building a unique Cartesian occupandy gr
grids (OGs). An OG is a stochastic tessellated representatinvolves to change from the sensor map (the Z-grid) to a local
of spatial information that maintains probabilistic esites Cartesian map (the LC-grid) and/then to transform the LC-
of the occupancy state of each cell in a lattice [1]. lgrid into the V-grid with the good orientation and at good
this framework, each cell is considered separately for eapbsition. In the following paper, a general statement of the
sensor measurement, and the only difference between celisblem is presented with exact and approximate approaches
is the position in the grid. For most common robotic task¢hat solve this problem. In particular we obtain maps withou
the simplicity of the grid-based representation is esaéntiholes, compared to the strong Moiré effect in maps obtained
allowing robust scan matching [2], accurate localizatiowith the state-of-the-art line drawing method for lasergan
and mapping [3], efficient path planning algorithms [4] anéinders [3] (Fig. 1(a)). However, the OG mapping process has
occlusion handling for multiple target-tracking algonth [5]. obviously a computational cost that increases with the remmb
The main advantage of this approach is the ability to integraof sensors and the number of cells. But one of the major
several sensors in the same framework, taking the inheranivantages of the OG framework is that all fusion equations
uncertainty of each sensor reading into account, contraase totally independent for each cell of the grid, which nsake
to the Geometric Paradigm1], a method that categorizespossible to improve computing by allowing parallel alglonits
the world features into a set of geometric primitives. Theuch as those that are required for GPU programming. Thus
major drawback of the geometric approach is the numbierthis paper we present two contributions:

of different data structures for each geometric primitive , 3 general and exact algorithm for the switching of discrete
that the mapping system must handle: segments, polygons, coordinate systems, which we derived for the laser-
ellipses, etc. Taking into account the uncertainty of thesee range finder case and used as a criterion to evaluate the

measurements for each sequence of different primitives is performances of other methods in terms of correctness,
very complex, whereas the cell-based framework is generic

and therefore can fit every kind of shape and be used tdit is only necessary for the sensors that view the cell.

I. INTRODUCTION



(b)

Fig. 1. (a) 2D OG obtained by drawing lines with 1D occupanapping (for a SICK laser-range finder). The consequences aeiré effect (artificial
discontinuities between rays far from origin). (b) 2D OGaibed from the exact algorithm. All the OGs are 66m30m with a cell side of 5¢cmi,e. 720000
cells.

precision and computing advantages. b) Joint probabilistic distribution:the lattice of cells is

« a very efficient GPU implementation of multi-sensor type of Markov field and many assumptions can be made
fusion for occupancy grids including the switch of coabout the dependencies between cells and especially atjace
ordinate systems validated by the results of the previoaslls in the lattice [7]. In this article sensor models aredis
method. for independent cells i.e. without any dependencies, which

In the conclusions of the first study we demonstrate tte @ Strong hypothesis but very efficient in practice sinde al
equivalence between the occupancy grid sensor fusion &nd $glculus could be made for each cell separately. It leadseto t
texture mapping problem in computer graphics [6]. And ifpllowing expression of a joint distribution for each cell.

the second contribution, we use the parallel texture mappin

capabilities of GPU, to obtain a fast procedure of fusion and _ s
coordinate system switch. Thus, the experiments show that P(Oyy, Z) = P(Oxy) [ [ P(Zi|0ay) (1)
GPU allows to produce occupancy grid fusion for 50 sensors i=1

simultaneously at sensor measurement rate. Given a vector of sensor measurements— (217 o Zs)

The paper is organized as follows: we present first mati€ @PPly the Bayes rule to derive the probability for ¢elly)

ematical equations of sensor fusion and the 1D equations!®f®€ occupied:

telemetric sensor model we use. Then we focus on the switch

of coordinate systems from polar to Cartesian because for (00, 7) =

most telemetric sensors the intrinsic geometry is polaenTh Y R

we explain how to simplify the above switch of coordinate P(0s,y) [Ticy P(2il0,y) @)
systems to improve the computational time with parallelism p(oco [T;_, p(ziloco) + p(emp [T;_, p(z:lemp
taking into account precision and/or safety. Finally in thst For each sensori, the two conditional distributions

sections we present our GPU-based implementation and gb&imcc) and P(Z;lemp must be specified. This is called
results of fusion obtained for 4 sick laser range-findemwit(he sensor modelefinition.

centimetric precision.

B. General form of telemetric sensor model

II. SENSORFUSION IN OCCUPANCY GRIDS
For the 1D-case, the sensor models, used here (eq. (7),(8)),

A. Bayesian sensor fusion. are based upon the Elfes and Moravec Bayesian telemetric
The general problem of sensor fusion for OG is present8gnSOr models [1]. Now, is presented our own demonstrafion o
here first for a grid cell and several sensors. :Eg :jesu;tsdof [11, V]:’rt't'fh ?d g co?dpltlate f(:;mglliml tgcexpress
a) Probabilistic variable definitions: ependency ot the sensor modet on the Initial occtipancy
) of the grid cells. This initial hypothesis is called tpeor.

-
« Z =(%,...,Z;) a vector ofs random variableés one  The whole presentation is based upon the assumption that
variable for each sensor. We consider that each sensqpe telemetric sensor is of a time-of-flight type. This is an
can return measurements from a Set _active kind of sensor which basically emits a signal with a

« Ozy € O = {occemp. O, is the state of the bin fyeq velocityw at timet,, then receives the echo of this signal
(z,y), where(z,y) € Z*. at time ¢;, and then computes the distance of the obstacles
72 is the set of indexes of all the cells in the mMonitoreg o m the source withd — 2=t \We call$) the source location
area. of the emitted signal. h

2 Lo . . . _ __First, we consider an ideal case: when there are several
For a certain variable we will note in capital case the variable, in b | in th isibili v the fi .
normal cases one of its realization, and we will note(v) for P([V =«]) obstacles in the visibility area, only the first one (in terms
the probability of a realization of the variable. of time of flight) is detected.



1) Probabilistic variable definitions:Only one sensor is @D\ HEE BE BE B |
considered. X

e Z € {"noimpact’}|JZ. Z belongs to the set of all rsescedel
p03$|b|e Value§ for the sensor with th.e additional Valgﬁfg. 2. In white (resp. black) the empty (resp. occupied)scein element
“no impact” which means that the entire scanned regiai A3, herek < z.

is free.

e 0, € O = {occemp}. o, is the state of the bin
either “occupied” or “empty”, where: € [1; N]. N is a) Definition : we defineA® as the set of all t-uples of
the number of cells in the 1D visibility area for a singlé~. type where the first occupied cell is theéh. Formally it is a
sensor shot. t-uple such ascy, ..., ce—1,Cor1,...,cn) € {occ emp V1

e« Gp € G, = {occgempBNIM=d ¢ represents a (Fig. 2) where:

state of all the cells in the visibility area except the « ¢; = empVi < k
x one. G, takes its values in the t-uples of cells « ¢, = occ

(1 = 015 -+ Co—1 = Op—1, Cot1 = Opt1, -+, CN = oN) To derive the equations of the sensor models we use the
2) Joint distributions: The probabilistic distribution de- b) Properties:
scribing the interaction between sensor values and a egé st 1) V(i j), i #j, AL AL =0
is, following an exact Bayes decomposition: 2) UAE = Go\{ (cn)pepiinis (o) | VP cp = emp }

3) if & < z there arek determined cells: thé — 1 first
cells: (cy, ..., cx—1), which are empty, and thieh: (¢;.),
« P(0O,) is the prior: this is the probability that in a cell which is occupied.
lies a surface that is reflective for the telemetric sensor  Thenp(Af) = u* (1 — u).
used. In this case the cell is called occupied. We note4) if k> x there arek — 1 determined cells: thé — 2 first

the probability that a cell contains no reflective surface ~ Cells: (c1,..., ca—1,¢o41, ..., ck—1) Which are empty
(empty): u. and the(k — 1)th.: (¢x) which is occupied.

« P(G,|0,) is the probability that, knowing the state ofa ~ Thenp(Af) = u*~2(1 — w).
cell, the whole visibility area is in a particular state. Eer c) Distributions P(Z|0,) : the probability distribution

we make a strong assumption: we assume that the staver Z expresses the following semantic. Knowing that the
of the cellz is non informative for the states of the othecell = is occupied, the sensor measurement can only be due
cells. So formally: P(G,|0,) = P(G,). However not to the occupancy of: or of a cell beforex in terms of
any hypothesis about the probability of some particulaisibility (Eq.4). So the probability that the measurement
state of G, is made. Then: the sole hypothesis is thas 0, comes from the probability that the first cell is
P(G,) only depends on the number of empty or occupieaccupied, which isl — « and produces a measurementdin
cells’. Pi([Z = 0]), and from the probability that the first cell is

e P(Z|0,,G,) depends of the sensor, but for@ll,, g,) € empty () and the second one is occupied and produces a
[1; N] x G, the distribution ovetZ depends only of the measurement i): P([Z = 0]) and so on ... Then we split
first occupied cell. Then we suppose that knowing thke marginalization sum into two complementary subsets of
position of the first occupied cetl;, in the sensor view G,: the set ofA” such asz is not the first occupied cell and
9z, P(Z|os, g..) behaves as if there were only occupied its complement (Eq.3). Then it leads to the following foranul
in all the area. We call this particular distribution over
the elementary sensor modé},(Z). occupied case:

To computeP(Z,0,) we derive, now, equations for the « if Z # “no impact”:
marginalization over all the possible states(of.

3) Inference :To avoid the numerical pitfall of considering p(Z|[0x = ocq)
all the possible cell states a¥,, an inference calculus is = Z P([Ga = g2])p(Z|[0x = 0, [G = ga])
done here based upon a marginalization sum. The heart of the 92€G
solution to the inference problem is to deal with the viipil z—1 . z—1 .
of a bin. Considering a perfect case, the first occupied cell => p(ANP(2) + (1= p(A5)P(Z) (3)
in the visibility area causes a detection. So knowing that th k=1 k=1
cell z is occupied, that cell is the last one which can cause a g 1 . e
detection. = Z w1 = u)Pe(2) +u " P(2) (4)
k=1

Therefore we give the next definition.
As mentioned above eg. 4 has two terms: the left term in

Swhich is a more general modeling than the uniform choice niadé]. the sum that comes from the possibility that a cell before



x is occupied and the right term that comes from the

a) Dirac model: when the sensor is ideal or has a

aggregation of all the remaining probabilities around th&andard deviation that is far smaller than the cell sizehan t

last possible cell that can produce a detection everin

the case of a Diraelementary sensor mogéhe precision
is perfect and the aggregation is completed &ig. 7(a).

The “no impact” case ensures that the distribution
normalized.

o if Z ="no impact”
p([Z = "no impact]|[0, = ocqd)
=1- Zr;ﬁ”no impact”p([z = T]|[Om = 00(})

empty case:
if Z 2 “no impact”:
we note openr= { (c,)per:ng\ (a3} | VP cp = emp }

p(Z][0; = emy) ()
Z p([Gm = gm])p(zl[Ow = emqa [Gw = gw])

92 €Ga
N

Z p(A];)Pk(Z) + p(opendz=mo impact”
k#x

|
—_

k
x

W1 = w)Pu(2)

>
Il
—

uk72(1 - u)Px (Z) +u"" 6 7m0 impact{6)

+
M=

k=z+1

There are three terms in the empty case: before theWherea
impact, after and the term “no impact”’. What is very
interesting is that in both occupied and empty model tf}
term before impact (left term) is exactly the same fig. 7(

and fig. 7(b). As above, the “no impact” case ensures thai

every case is considered.

e if Z="no impact”
p([Z = "no impact’|[0, = emg)
|

=1- (Zr p([Z = r]|[O. = emg)) + uN 16 7m0 impact”

4) Numerical models:

The information to handle to define tredlementary sensor

modelare:

« the range of possible values returned by the sensor whic
include maximal and minimal sensor field of view but

also granularity of the measures;

occupancy grid, it is suitable to modé%r(Z) with a Dirac
distributiorf (Fig. 7(a)-7(b)):

o 1.0if z=k
@“([Z =)= { 0.0 otherwise.

b) Gaussian modelsas all telemetric sensors are far
from perfect, the Dirac model is obviously inappropriate
in many cases. At this point the traditional choice [8]-[10]
favors Gaussian distributions, centered énand with a
variance that increases with
It models the failures of the sensor well. However in the
case of a telemetric sensor the possible values for the
measurements are always positive, but Gaussian assign non
zero probabilities to negative values. Worst, close to the
origin i.e. z = 0, this distribution assigns high values to the
negative measurements. Therefore we propose the following
discrete distribution based on the GaussiAf(y, o):

bi([Z2 =2]) =
if z€0;1]:
Sosey N (k= 0.5,0(k — 0.5))(u)du
if z€]l;n]:
JE N = 0.5,0(k - 0.5)) (w)du
if z ="no impact” :
Sinsp oo N (k = 0.5,0(k — 0.5)) (u)du.

(x) is an increasing function aof. We notice that

he probability of “no impact” is increased by the integrél o
e Gaussian ovdn; +oo|, which means that all the impact
rfaces beyond the sensor field of view are not detected.

An other Gaussian-based modeling was suggested in [11],
to take into account all short reflections that could drive
the echo to the signal receiver before the sensor has fin-
ished transmitting. These kind of telemetric sensor lis-
ten and emit by the same channel, so the sensor cannot
stand in both states: receiver and emitter, at same time.
Pe([Z2 =7]) =

if 2 ="no impact” :
S sotjuns oo N (k = 0.5, 0 (k — 0.5)) (u)du
else:

JET N (= 05,0(k - 0.5)(u)du.

« the precision or uncertainty of a sensor measure whichThys, we notice that the probability of “no impact” is
can varies with the obstacle distance for example. Wheirreased by the integral of the Gaussian overco, 1]. In
a range sensor measures the distance to an obstacle @yertwo modeling, introducing the special case of “no intpac

time, it records different measures due to the sensor oy§necessary to take the missed detections into account.
uncertainty. For an acceptable sensor, all the records are

in the close surroundings of the real obstacle distance.
The probability distribution of those records defines the

elementary sensor model

The first kind of information is provided in the technica
manuals of sensors whereas the second is often only pjarti%

described, therefore full equations are given here.

4Here we suppose thatis an integer which represents the cell index, which
fhe sensor measurement corresponds te:iff real it is |z | + 1.

SHere we assume that is the index of the cell which represents all the
ints with radial coordinate ik — 1; k], i.e. we assume a length affor
cell, for simplicity.



C. Discussions and model properties modelshe equality numerically holds far enoughv{k—

the goal of this section is to underline the link between 0-5) is enough- behind the impact location.
the above sensor _model (fig. _7) and the well known shape gf elementary sensor modehcertainty
OG after a detection event (fig. 3, 4 blue curves) that showl) Problem statementThe aim of this section is to show
three distinct area of occupancy: empty before the obstacle L
) ow a wrong modeling of thelementary sensor moddls-
occupied at the obstacle and unknown after the obstacleeln| ., " . : .
. . : . fribution can lead to a wrong OG in the current bayesian
precedent section, the sensor model is defined for a ceeHin C

. . model. In particular, it is possible to simulate sensor iregsl
and for each possible sensor measurements. In opposite, her P P

are presented the qualitative properties of the sensor ImoaCcordlng to an uncertainty model and obtain the resulting

. . ; % It is also equivalent to apply a convolution operation
from different cells point of view but for the same sensor .

. . , etweenelementary sensor modedsid the uncertainty model
reading. For that purpose we consider very simple cases.

n, - . . .
the Diracelementary sensor modadase, the equations for theto obtain the shape of the resulting OG. Therefore, in theé firs
cell numberp are:

paragraphs, the use of a model without uncertainty (a Dirac
model) is simulated with a noisy sensor. Then a statistical

w1 —u)if 2<p analysis of the laser range-finder uncertainty which is tised
p(2|[0, =0cd) = wtif z=p (7)  the experiments follows.

0 otherwise. 2) Dirac example:suppose that the Diraglementary sen-

w1 —w)if 2<p sor modelis the choosen model but the sensor uncertainty is
p(z][0, = emgd) = 0if z=p (8) a Gaussian. Despite the fact that the convolution of a Dirac

u*~2(1 — u) otherwise. by a Gaussian is a Gaussian, the convolution of the Dirac

elementary sensor modbl a Gaussian gives an occupancy

when z # “noimpact” andz > 1 and p > 1. Thus . 4 . . .
the equations of [1] holds if the uniform prior hypothesiéuncuon with the first occupied céliseveral cells behind the

u=1—wu=1/2is used. It is very interesting to notice,ObStaCIe cell (fig. 3).
that in the Dirac case, only three values are used to define the |,
values of a sensor model all along the sensor field of view.
For the otherelementary sensor modgtsoposed, only more
values are needed close to the cell where a detection event
occurs. 07
When P(O,,) is uniform, the inference calculus gives: 0s

0.8

p(z]ocg
p(zloco) + p(z|lemp

03

p(ocdz)

0.2

Thus in the case of all the aboetementary sensor models 01 ‘

the following qualitative properties hold: . e

o if x < randVvk € [1;z], Pu([Z = r]) ~ 0 which is the T % A e e e e e e
case for Gaussian elementary sensor model, accordingp 3. A 1D environement with only one obstacle in clb, the elementary

eq. 4, fig. 7(a)p(z]occ) ~ 0 while according to eq. 6, sensor modeks a Dirac one (in blue for a precise measurement). In bldmek, t

fig. 7(b) p(z|emp > 0. measurement noise is a Gaussian with a std of 5 cells. Inmedydcupancy

function that results of the observation 8000 range measurements with
Sop([Z = 7][[O = emg) > p([Z = r]|[Ox = 0cd)  ihe noise (normalized).
therefore:

p(ocdr) ~ 0 Such a wrong result is not acceptable as the map is no more

reliable for obstacle avoidance. With alementary sensor

model uncertainty that matches the own sensor noise, the
btained map still has its maximum occupancy at the obstacle

It means that, if there is a measurement jrthere is no
occupied cell before.
« if z > r then, almost only the left term in eq. 4 and eq.

are used to calculate the posterior and they are identi gﬁatmn (f|.g. 4).
Thus p(ocdr) =~ 0.5 It is possible to demonstrate that as long as the standard

That what ensures that after the impact all the cells haggviation of the sensor measurement noise is far smaller tha
the same probability, which means: no state (occupied grid cell, a Dirac model is suitable for OG building. But

empty) is preferred. That is the required behavior becau@g 599" as this hypothesis becomgs false the uncertainty of
those cells are hidden. The equality holds in the Dir e sensor measurements must be included irethmentary

case but for otheelementary sensor modeisdepends sensor modelbtherwise it leads to a wrong OG. Therefore for

on the uncertainty in the location of Fhe cell that prOduceSGIn this case a cell is considered as occupied if the prolabdi greater
the impact. For example, for Gaussielementary sensor thano.5.



an uncertain range-finder such as stereo camera, uncgrtagitour data set (which is more robust to the outliers) and we
must be included. But for a precise range-finder such as a lagbtain a value 0f).027m.

range-finder and large enough cells, Dirac model is suitable
Next section gives the estimated values that charactetfiees
uncertainty of a typical laser range-finder which allows to
define the OG and sensor model parameters. 016 |

0.18 T T T T T

T T T
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Fig. 4. A 1D environement with only one obstacle in celD, theelementary
sensor models a Gaussian one, with a std of cells (in blue for a precise The probability distributions of the measurements show

measurement ). In black, the measurement noise is a Gawgithaa std of 5 beIIshape distributions and a Gaussian distribution fit tive

cells. In red, the occupancy function that results of thesolzgion 0f10000 . . . . .
range measurements with the noise (normalized). experimental distributions (fig. 6). Then a good choice Fer t
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SICK LMS-291 laser range-finder is a Gausselementary
sensor modelwith a fixed standard deviation. For a grid
with cells that have a small widttb¢m), a simulation shows
that a Diracelementary sensor modebnvoluted with the
SICK LMS-291 sensor uncertainty still lead to a correct OG.
Therefore for our experiments we choose a Dieé@mentary
sensor modelbut we derive in the next sections all the
requested algorithms for any case of sensor uncertainty.

E. Modeling sensor failure

+ + &
o0z | : :‘gjﬁi 1) Formal error model: For modeling false alarm and
Z w missed detections it is possible to use a confidence model
P g (or error model) like in [11]. A different confidence model
o ‘%# I can be used for each sensor so that it is possible to deal with

£ the information about the amount of errors produced by each
sensor. The principle is to consider a new variable:

o D; € D = {onoff}. D, is the state of the measurement,
either correct ("on”) or wrong ("off").

Now, the joint distribution to define is:

0 ! ! ! ! ! ! ! !
0 5 10 15 20 25 30 35 40 45

Fig. 5. Estimation of the standard deviation in meter in @até in our data
set plotted against the mean in meter in abscissa.

3) Identification of Gaussian parameters for a SICK
LMS-291 laser range-finderthe LMS-291 in centimetric SN s
mode, gives measures fromto 8191 centimeters for361 P(0,, Z, D) = P(O;) [ P(D:)P(Z:|O, D;) 9)
angles from0 to 180 degree, one measure each half degree. i=1
To define an appropriatelementary sensor modeif our that is defining P(D;) and defining P(Z;|0O,,off) and
sensor, we acquire more than twenty thousand measuremént&;|O,,, on). Defining P(D;) corresponds to definB([D; =
of an outdoor static scene for each angle. Then we compuoff) which is simply the probability that the i-th sensor
estimations of the mean, the standard deviation (fig. 5) aptbduced a wrong measurement. The previously defined
record the probability distribution over the returned meas. P(Z;|0,) is assign toP(Z;|0,,0n) because it models the
In fig. 5 we can notice that the standard deviation seems to dmrect behavior of the sensor. Fét(Z;|0O,, off), without
independent from the distance thus we compute an estimateny kind of information, a non-informative distribution igh
this value by computing the median of the standard deviatiassign the same probability to each sensor measurement, is



chosen for the two possible states, of the cell. simplifications. here are presented the qualitative prtogser

If there is no information about the current behavior of thef the complete sensor model with failure modeling. For that
sensor, the used distribution is just the marginalizativaro purpose we consider the simple case of the Dirac model as in
all the possible state of each measurement: the section II-C.

P(0,,7) = PON [ PID)P(Z10,. D) (10)

i=1 D (][0, = ocd) =
Finally it is equivalent, to replace each sensor model P(Oﬂ)uz_i(l — u) +p(off)U(Z;) if z < p
P(Z;|0,) by the distribution: plonu?™" + p(off)U(Z;) if = = p (12)
IO (7 1 p(off)U(Z;) otherwise.
on i1 0z 0o i
p(on)P(Z;|Og) + p(off)id(Z;) (11) p(z][0, = emp) =
wherel{(Z;) is a uniform distribution over,. plomu*=t(1 —u) + p(off U (Z;) if 2 < p
This kind of transformation of the sensor model adds a aertai p(offU(Z;) if z=p (13)
inertia related to the probability of wrong measurement. It plon)u*=2(1 — u) + p(off ) (Z;) otherwise.

means that a good sensor measurement must be received )

several times to be considered by the system as relevantq$n z # “no impact”.

a sensor measurement without error model. The more wrondiere is given an original theorem that states boundaries for
measures are likely to occur, the more inertia the systerdseéhe occupancy of a cell when the measured distance varies.
to filter. This inertia is the price for the robustness addgd B his theorem (see demonstration in appendix VIII) allows to
the fault modeling. make approximation such that considering constants idsiEa

An other very important feature added by the error model ¥&rying function for occupancy updates in the cases of high
that it implies that all the probabilities are non zero. Tlhus u-

eq. (2),p(o.,) is never zero neither for occ, nor for emp. Let:

If not, the cell occupancy would remain always the same 1
whatever a sensor measurement is received. The consequence " = m (14)
would be an occupancy building very sensitive to sensor kil
failure. And it is also possible to use logarithm represgota Yi = Trhrl (15)
for probabilities which increases the numerical stabdihd is
required for the implementation of the fusion process. where:
u = l1l—u (16)
p(on)
k= a7)
U(Z;)(1 — p(om)
em
| = plemp (18)
" " p(oco)
u HWHWWW M Theorem:for a cell with indexp and a measurement at
N G D B () D index z and a Diracelementary sensor model
o if p<z
N ) lku
ocg ; — —(1-(1—a)*?
- p(occ) € hb’%+1+(1+kﬂ)l( (1—u)*7)],
o if p=2zp(0c) € [yi;vi+ g (1— (1 — @)~ )],
When the failure rate is fixed,e. for values ofu close to
zero,p(occ) varies very slowly withz. In this case, the prior

(©) (d) is very high,i.e.thea priori is that a cell is almost empty and
Fig. 7.  Probability distributions over possible sensorgemeasurements the occupancy of a cell tends to become mdependent of the

knowing that thel4th cell is occupied (a),(c) (resp. empty (b),(d) ). Here thélistance of the detection event (fig. 8(c)). For exampleh wit
sensor can returB0 values of distances, the “no impact” value is not plottedg; — 109, p(on) =1.0—-3.5 10—%, and! = 1 the variation all
the a priori over the occupancy of cells ( the priorw)is set t00.1. (a),(b) - : : -3
Dirac elementary sensor modekg),(d) Gaussiarelementary sensor models along the600 Cells_Of the field of view is less than1 10™".
The same conclusions hold for the occupancy of the cell where

) _ ) the detection event occurs (fig. 8(d)). It justifies some part

F. Discussion and properties of the complete model of the very simple implementation of OGs like in [12], that
the goal of this section is to provide a numerical descriptiadecreases the occupancy of all the area before the detected

of the probability function in order to justify implemeniat obstacle by a constant and increases the occupancy area at th



detected obstacle by a constamnd it is a property that can the occupancy grid building chain. For telemetric sensibes,
speed up the OG building if choosing such hypothesis abqurbblem is to switch from a polar to a Cartesian grid. All
occupancy prior. In particular, storing the whole conditib the fast algorithms that achieve this goal, make approxima-
probability distribution over the sensor measurementgémh tions and especially those based on the GPU. Moreover, in
cell position can be avoided. It saves the memory of twihe computational graphics community the main criterion to
matrices of N x (N + 1) values, one for each occupancyevaluate the results of GPU processings is visual quality. B
state occ and emp but more important: it saves all the memdoy our robotic application, which may involve person seétgr
access to these values which is the major time consuming tagkneed quantitative evaluation. Therefore in the follayyine
in hardware implementations (see section V). give a general formalization of this problem which leadsais t
When theprior is fixed, the change of confidence in thegresent an implementation of an exact solution. That allows
error model produces a global translation of the occupanag to compare all the proposed algorithm and the hardware
probability (Fig. 8(a) and 8(b)). The more failure are likéd based solutions with an exact one.
occur, the smaller is the change in the occupancy (occupancy

is close t00.5) for each measurement. B. Mesh intersection for an exact solution

G. Extension 1o 2D occupancy grids A mesh is a planar subdivision of space whose geometric

The sensor model is defined in 1D, and each cell in thigmponents are vertices, vertices that make edges and edges
sensor beam is defined by its radial coordinatiloreover the {hat make faces that are equivalent to cells in the OG for-
telemetric sensor is supposed to return the cell numbérere 3jism. We define a discrete coordinate system switch as
a detection event occurs. The next problem in the processing transformation that allows to define the same function fo
chain that builds a 2D occupancy grid is to compute th&fierent meshes of the same spateGiven a meshd, origin,
Cartesian surface of occupancy from occupancy informatignmeshs goal whereB C A (i.e. each point in the surface
along the sensor beam (fig. 9). covered byB belongs toA too) and 2 functions:

1) f: F(A) — E whereF'(A) is the set of faces ind and
E a vector space,
1 2) h: S — S which makes a bijective transformation from
a point of the goal to a point of the origin.

Occupancy probabilties.

Thus it is possible to associate a painbf a certain face: in
B to a pointu of a certain face’ of A.
the problem is to find a functiog: F(B) — E such as for

o each facer € F(B)

@ (b)
Fig. 9. Extension from 1D to 2D OG. (a) 1D OG, the occupancy@lthe f(t)dt® = g(r).
sensor beam is given for a sensor measurement in the 50thacetior of ter

1.0 — 5.0 104, a failure rate of3.5 10~2, a Gaussiarelementary sensor
modelwith a standard deviation df.4cm, and with cells ofscm side size  If there exists an analytical expression ¢f and if h is

and a field of view of30m. All the occupancy in the cells wei@5 before ; ; ; ; ; Aoy
the sensor reading. (b) 2D OG of a sensor beam with the saramptETS differentiable and analytical expression of its derivasiexist,

and a sensor aperture ofdegrees. The sensor is positioned in (0,0). a gradient anal)_/Sis gives exact analytic equations for_ the
change of coordinate system through the following equation

Thus the objective of the following section is to compute
P(Z|O4,) from a set of sensor beams R(Z|[O,), for g(r) :/ g(t)ds = f o h(t)|Dh(t)|dt. (19)
different angles), that divide the sensor field of view. We ter ter

evaluate several algorithms to design an efficient and ateur . . . .
where Dh(t) is the Jacobian matrix ok in ¢ and |Dh(t)|

one. its determinant. But in most cases in Bayesian modeling,
IIl. 2D GRID CONSTRUCTION SWITCH FROM POLAR TO  functions are discretized due to learning processes ores th
CARTESIAN GEOMETRY result of Bayesian inference. In the general case, we do not

A. Problem statement possess the analytical form of the sensor model (eq. (4),(6)

To compare the measurements of two sensors at dif'ferQHtt for a Diracelementary sensor modeith a high prior,

positions on a vehicle, each of them providing measurememgmkf t(,) the tlTetﬁrem of the previous section, such analytic
in its own coordinate system, the sensor information must ¥Mula is available (eg. (14), (15)).

switched to a common frame. That is an important node in

7in the cited implementation the constant is the same for tea hefore 8Here, we consider, for the integral, the Lebesgue measursirfplicity,
and at the obstacle but it is easy to show that with the senedehtescribed but the formalism is general as soon as the measure of theeot®mn between
here to equalizey; and~, leads to a negative prior. any face ofA and any face oB3 is well defined.
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Fig. 8. (@) (resp. (b)) Occupancy probabilitiesdcc)) in a cell positioned before (resp. at) the cell where thed&n event occurs with different kind of
failure probabilities. The probability of therior being fixed:u = 1.0 — 1.0e 3. (c) (resp. (d)) Occupancy probability in a cell positiorteefore (resp. at)

the cell where the detection event occurs with differentlkifi prior. The probability of the error model being fixeg{on) = 1.0 — 3.5e~%. For all graphs

[=1.0.

1) The map overlay approacthe exact manner to computethe map overlay is very expensive and to use this approach a
g(r) is to search all the faces of that intersect (Fig 10a): pre-computed map overlay is calculated off line.
let I, = {u € F(A)lunr # 0}.
For each face of I, let compute the surface, of i N r and 2) Exact algorithm:To pre-compute the switching of coor-
the surfaces,., of » and keep their quotient- (noteds;,). dinate systems an adaptation of the algorithm of Guibas and
Then we obtainy(r) with the following exact formula: Seidel is used in order to obtain for each map%fthe set
of indexes of faces of4 that intersect it and the surface of
each of these intersections. We choose to work with convex
g(r) = sirf(0). (20)  subdivisions only, because it is easier to compute the cairfa
i€l of the intersections which therefore are also convex. Then

So the problem comes down to computing, for each fad@r the switch from polar to Cartesian coordinate systers, th

r, its setl,. This problem is called the map overlay problen@lgorithm is the following:
in the computational geometry literature [13], and is theipa  With this algorithm we have computed the map for the
of the exact algorithm presented befoiihe computation of switch from polar to Cartesian coordinate system. It is pos-
sible to compute the two transformations, the one relative t

9The complexity of the optimal algorithm [14] that solvesstiproblem tOPOlogy and the one relative to position at the same tinst ,ju
is O(nlog(n) 4 k) in time andO(n) in space where: is the sum of the by setting the relative positions of the two meshes.
numbers of segments in both subdivisich and B while k is the number
of intersection points in both subdivisions. In the caseiofply connected C. State of the art
subdivisions the optimal complexity @ (n + k) in time and space [15], and . .
for convex subdivisions the optimal complexityGyn+k) in time andO(n) In_the next par_agraphs,_tvyo methods are rev'_ewe_d' In this
in space [16]. section a qualitative description of two methods is givém t



Algorithm 1 CoordinateSystemSwitch(polat, Cartesian3)
1: mapping<— arrayé(F(B)))
2: computeC'(A): a convex approximation aofl
3: compute the map overlay @f(A) and B
4. for each facef of the overlay do
5. findi e F(C(A)) and)r € F(B) such asf cinr.
6
7
8

sur face(f

computes = sur face(r)
append(r, s) to mapping].
: end for

sampled and cells close to the origin are updated several
times because several rays cross them. This ray overlapping
induces bad fusion that makes some small obstacles appear or
disappear.
This is an important issue: the V-grid has a certain resoyti
i.e. a cell size and each sensor has its own resolution, thus
a good OG building system must handle these differences.
Therefore a property required for a good OG building system
is that it allows to scale the grid locally to match the sensor
resolution if precise investigations are needed, whichnmaea
that all the available information can be used.

2) Sampling approachesthe sampling approach is a com-
mon tool in computer graphics: in each cell of the Cartesian

-\ mesh a set of points is chosen, then the polar coordinates
/é | . X/ée of those points are calculated, and the original values ef th
}

function f in those coordinates. Eventually, a weighted mean
is calculated for the different values gfand is assigned to the
Cartesian cell. Here the polar topology requires a nonlaegu
sampling,i.e. the number of sampless for each Cartesian
cell is adapted according to the surface ratio of Cartesigh a
polar surfaces:

e

——o-¢
—o-¢
— oo

(b)

Fig. 10. (a) two subdivisions with dash lines and plain linkesdifferent
color patterns: the different cells in the meghthat intersect the ABCD cell
of meshB i.e I4pcp. (b) overlaying the two subdivisions: adding vertex at
each intersection ofA and B. The colored cells are the parts of the colored
faces above that are included in ABCD.

first is the most used method in the robotic community, the Fig. 11.
other is commonly used in computational geometry.

1) The robotic solution and the Mdreffect: as far as we
know, all the OGs shown in the literature resort to line drayvi ) da? da?
to build the sensor update of laser range-finders [5], [3]sTh 7ns(Z,¥y) = i a =
method is simple to implement with a Bresenham algorithm ((p+ )2 = (o= 2)*)db ppd?
and is fast because the whole space is not covered. But itvhere p is a range associated to the poi@t,y) and
presents several drawbacks. An important part of the map (@b, df, dz are the steps of the two grids (Fig. 11).
the cells that fall between two ray) fails to be updated. This This approach, called adaptive sampling, solves the pnoble
is a well known problem, called the Moiré effect (fig. 1(a)bf the singularity near the origin but still makes an approxi
in computer graphics literature. This effect increasetihie mation in choosing the location of the sample points and the
distance to the origin, and if the aim of the mapping is taccording weight. The adaptive sampling is very close to the
retrieve the shape of objects or scan matching algorithragact solution, in terms of the average number of samples per
are used, the holes decrease the matching consistency. Thetesian cell, and of the repartition of the samples adegrd
maximal error (tab. I) is important because space is not wédtl the distance with the singularity (fig. 12) and it is also

Polar and Cartesian grids parameters.

(21)



This stage can be optimized in the case of the Dirac sensor
1 model with high prior and it is the subject of the following
paragraph. In general, complex solutions must be used as tex
ture mapping to efficiently compute the geometric transform
for the whole grid. The geometric transform, inference and
wl ] fusion steps are computationally expensive because they ar

processed for all cells. But as all cells are independant and

calculus are very simple, use of the GPU is critical because
s with GPU cells are processed in parallel.

Average number of samples per cell.

05 1 1s 2 25 s 35 4
Distance from the singularity in meter.

Fig. 12.  In red, below: the analytical curve of the number ample in

adaptive sampling given by the ratio between Cartesian afat gurface. In precalculated precalculated
green, above: cardinal of thg sets in the overlay subdivision provided by the sensor model sensor model
exact algorithm. One can notice that the adaptive sample &pproximation p(zJocc) p(zlemp)
because the curve is below the exact one. The sampling sdsemiperbolic

in the exact and approximate case.

GPU STEPS

‘ Sensor model selectio‘w ‘ Sensor model selectio‘w

closer in terms the quantitative error. Moreover the samgpli
method offers two advantages. From a computational point of
view, it does not require to store the change of coordinat%eomemc transforn]
map, i.e. for each Cartesian cell the indexes of the polar
cells and the corresponding weights that the exact alguorith

‘ Geometric transfo*rr

/
/PREVIOUS GRID

requires. This gain is important not due to memory limitatio ‘ inference ‘

but because memory access is what takes longest in the /
computation process of the above algorithms. From a Bayesia ’
point of view, the uncertainties that remain in the evahrati FUSION

of the exact position of the sensor in the V-grid have a greate
magnitude order than the error introduced by the sampling
approximation (this is even more so with an absolute§)id
The exactness in the switch of Z-grid to LC-grid is relevant
only if the switch between the LC-grid and the V-grid is
precise too. Thus in this context, a sampling approach tebet
because it is faster and the loss of precision is not sigmnifjcaFig. 13. General GPU architecture of occupancy grid bujdifhe key steps
considering the level of uncertainty. ;/r\:h;rg the GPU provides major computational improvemergshaghlighted
The sampling approach is potentially a parallel algorithen b

cause each Cartesian cell is processed independentlyeager

the line algorithm is not because the Cartesian cells dBe Geometric transformation for Dirac sensor model and high
explored along each beam. prior

for this model the possible approximations (fig. 8(c), 8(d),
u > 1 — 1.0e7%) make it possible to define three areas in
A. GPU architecture of occupancy grid building the map with geometric primitives: the empty area with a

The aim of this section is to describe the key steps of O@)Iyg.on,. the OCC.Upied areas \.Nith quadrilaterals and all the
building with GPU (fig. 13) in the general case (no particuIaﬂemaundIng area is unknown (fig. 14).
prior, any kind ofelementary sensor modeind in the Dirac , . ) _
case with high prior. Two sensor models must be available: OQ T_h?_ GPU |mplem_entat|on has_two_ parts: th_e first is the
for the occupied cell state(z|occ) and one for the empty cell ef|n|t|_on of the previous geometric primitives \.N'th the .
statep(z|emp. They are precalculated for each possible sensgfo"ding values 0b(z|ocg) andp(z|emp) associated at their
grtices; the second get the weighted average values in each

measurement. Then the apropriate sensor model values al Il of the arid calculated by the GPU and make the inf
selected for each sensor beam according to the corresrg)n(g%ﬂ of the grid calculated by the and make the inference,

measured range in the beam. At this step a fan of sen i the fusion (fig. 15).

NEW GRID

IV. CONSTRUCTING2D OCCUPANCY GRIDS USINGGPU

models is constructed for each polar cell state. The neptiste Equivalence with texture mapping for sensor model with
a geometric transform that maps the sensor models to the qm:ertainty

cells. For each cell and each state the weighted average of th,

contribution of the sensor model of each beam is calculated!n the general case, the sensor model are non piecewise
constant functions and no geometric primitive can simply

1090 a slam perspective, for example be used. To handle this case efficiently, a mean to map 2D



Fig. 14. Geometric primitives used for the Dirac sensor made high
prior case: in red the empty polygon, in grey stripes the glaerals of the
occupied areas.

Fig. 15. Occupancy grid generated by the GPU with a geometitsfor-
mation for a Dirac sensor model and a high prior. The resulikiyediffers
from fig. 1(b) with a calculus time many order faster.

functions on the grid is required.

ray, the sensor model of each polar cell can be considered
as a texturep(z|[Owv=(p,s = 0cd) that only depends of
the (p, #) coordinates. Thus the problem is to map this polar
texture on its corresponding Cartesian space: a cone. The
transformation function is the mapping between the Z-grid
and the V-grid.

The equivalence between texture mapping and occupancy
grid building, is part of a strong link between images and OG
[1], and it suggests to investigate methods and hardward use
in computer graphics to process this key step of OG building,
as done in the following.

D. GPU architecture for texture mapping

In this section we are going to give very technical details;
some may wish to go straight to the following section, destote
to the experimental results. The GPU components for texture
mapping rely on basic approximation procedures and for each
of them it often exists dedicated process units that actiteve
associated calculus. The basics of the process are

« the way to choose the cells i that are used in the

calculus for a cell- € B. That is the sampling step.

« the way to choose the weight associated with the different

chosen cells ind. That is the interpolation step.

When defining the mapping for a cell of the goal mesh,
B, two great cases arise depending of the number of original
cells needed to deduce the value for a goal cell. An intuitive
evaluation for this number could be made with the ratio

In computer graphics, texture mapping adds surface femtuptween the surface of the cell in the goal mesh and mean

to objects, such as a pattern of bricks (the texture) on a plarface of the associated cells in the original me4hCells
to render a wall. Thus the texture is stretched, compressgflthe goal mesh can have a surface:

translated, rotated, etc to fit the surface of the object. Theyy far jower (Fig 16(a));
problem is defined as a transformation problem between thez) comparable (Fig 16(b));
texture image coordinates and the object coordinates [&@. T 3) far greater (Fig 16(c))

main hypothesis is that there exists a geometric transfiimma th
H that associates each object surface coordinate to eac

texture coordinate:

RQ
(U,v) = (u(z,y),v(z,y))

Let go(z,y) the intensity of the final image dtr,y) and
T.(u,v) the intensity of the texture at locatiofu,v) in
continuous representation, the final intensity is linkedhe
texture intensity by:

H: 7R2
(z,y)

—

(22)

—

Ta(u,v) = Ta(u(:v,y)N(x,y)). (23)

ga(xay) =

n the corresponding cells in the original mesh.

he two first cases are handled identically withmagni-
fication texture mapping and required only the fundamental
part of sampling and interpolation processes that is desdri

in subsection IV-E. The third case, calledinification cor-
responds to what happens close to the polar origin in the
change of coordinate system from polar to Cartesian. The
main idea to process this case is to find a transformation of
the original mesh to get back a magnification case. And the
dedicated transformation to achieve that process is destri

in the subsection IV-F.

E. Sampling and interpolation schemes for magnification

In graphical boards, all the information stored are mapped
on matrices of bytes. Therefore all the definitions of theioho

The problem statement is how to define on the regulaf sampling points and the choice of interpolation weights
grid of the image representation in computer memory thése given for transformations between matrices. Thus rorigi
continuous function. This is precisely a sampling problerind goal cell values are accessed via integer coordinates in

and the geometric functioi/ is a particular case of thé
function above (eq. 19).

rectangular matrices. And all the geometrical transforomat
are inside the definition ofF" (Eq. 22) which transform

Just considering the problem in OG: for the occ state of tlewntinuous matrix coordinates into other continuous Patri

cells (for example) and for a certain measuremenin a

coordinates.



@ (b) ©

Fig. 16. (a) and (b) cases of magnification: the goal cell lapewith few cells in the original mesh. (c) case of minificati the goal cell overlap many
cells in the original mesh.

H In this simple case a linear interpolation realizes an exact
I change of coordinate system, the weights are defined by:
;f;‘;": T n wg = 1— frac(u—1/2)
w1 = 1—w0

and the value i3 is:

B sample:u(0.9)
. - > g(x) = woTa(io) + w1Te(i1) (24)
J ' 2) Two dimensional interpolationthe process in 2D is
* - + + a combination of the 1D-process on the rows and on the
L : columns. Thus it provides four samples and four weights
104 06 and it is again exact for Cartesian regular meshes thatrdiffe

only by a translation. In the other cases, it gives a good
: approximation because in a magnification case a celbffB
: ‘ overlap almost between one and four cells 4fand the
Co (05) C1 (05) . .
interpolation process guarantees that the closest celhef t
[0.0:3.0] sample is the main contributor to the value for the goal cell.
Fig. 17. The center of the cell @& is the sampleu is its coordinate in thed Let (z,y) the real Coordmates.()f the Center.Of a celldrand
memory frame. The fractional part of-1/2, w = 0.4 is exactly the distance (Us V) = F(Ia y) the r?al coordinates dfr,y) in the memory
from u to the center of the ceD of A and1 —w = 0.6 is the distance from representation of4. Since the goal cell has smaller or equal
u to the center of the following cell of A. A linear interpolation keeps the size compare to the original cells. the approximated number
greatest weight from the closest cell of the sample: thésfrom ¢y and it .. ! .
remains0.4 from c;. of original cells overlapped by the goal cell is fixed4oThus
sampling is defined with four points whose coordinates are:
{(i()v ]0)3 (7;07 .]1)7 ilajo); (ilajl)} where
e ip=|Uu—1/2] andjo, = |[v—1/2]
o 11 =19+ 1 andj1 =jo+1
The weights in the interpolation follow a linear model: the
Soser to the sampléuy, v), the larger they are. They are based
upon the two numbers:

1) One dimensional interpolatiorlet us consider two 1D-
regular meshes (fig 17). The two meshes just differ by
translation and the problem is to evaluate the function defin
on A on the center of the cells &. Let = the real coordinates
of the center of a cell i3 andu = F(z) the real coordinates we = 1-— frac(u—1/2)
of z in the memory representation of. wg = 1— frac(v—1/2)
This is a very simple case of magnification because each of the . i
cells have identical shape, in this case a celBafould overlap . tWherle{Tgc(ai) d(feno;[re]s g:je ffrac:!onql Ft)ﬁrt mc The final
at most two cells ofd. The coordinates of the overlapped celldterpoiated value for the unction s then.
are:

g(z,y) =
° iO = Lu — 1/2J wawBTa(iOajO) + (1 - wa)wBTa(ilajO) (25)
o i1=dg+1 + wa(l —wg)Ta(io, j1) + (1 — wa)(1 — wp)Talir, 1)



F. Minification and mipmapping

The definition of magnification given above was approxi-
mate, thus let us give a precise one now.
1) Minification definition: let us definev:

0 ©dy)

=
‘<

XY) (dx,0)

®

V = Imax

This value is related with the Jacobian (Eq. 26) in thEg. 19. When a derivative is large whereas the other is sriadl area of

continuous Change of coordinate equation (Eq.19) for the 2@ cell in the origin can be small. But_ as a large part of thgimal mesh
is covered a large number of samples is necessary to contpugoal value

case: ou ou thus minification sampling is required.
_ | 9z 9y
|IDH(z,y)| = | & v (26)
ox oy

) _ the other dimension the derivative is very small (Fig. 19).
It gives the maximum of the norms of each of the column qf, is case the Jacobian is small but the number of cells
the Jacobian (Fig. 18). covered in the original mesh is important. In last generatio
of graphical board this problem is handled specifically
with anisotropic sampling and there are two kind of
one for each dimension. Derivatives in the graphical board
are approximated by calculating finite differences using th

qu gu) o) evaluation ofH for each corner of the goal cell.
Y
el
L R &) (ax.0) a) For example in the Cartesian to polar mapping: :
ls] 0, .
% o _ cos.(é‘) sin(6) ‘ _1 27)
oo —sin(0)/p cos(8)/p | p
I and
i 02 2
0 0
d % v? = max {((3052 0) + W), (sin?(9) + o8 2( ))}
o Tty P p

Eq. 27 explains the number of sample choices in the adaptive

Fig. 18. Up right: an elementary displacement in the goal. l&fp the sampling (Eq 21). . . . ..
equivalent displacement in the original space given by twvatives of the 2) Sampling and interpolation formulas: mipmappirig:a

backward transformation H. Bottom left: in purple, a geaioetiew of the case of minification a cell in the goal grid overlap severélsce
Jacobian. Bottom right: in red, a geometric view of the sigfgalue chosen ;i the griginal one. Thus the solution chosen by the graphica
by the graphical board for defining the number of samples: at upper bound . . .
since the parallelogram has a smaller area than the squestrotied from Dboard is to compute an appropriate coarse resolution of the
its larger side. mesh A which gives a new grid with which magnification
could be used. Then the process of texture mapping is:
The Jacobian is the area of the image of the surface deflneq) pre-compute several resolutions of the textdre

by an elementary displacemefutr, dy) in the goal space by ) cajculate for each pixel o3 the two closest pre-
H (Fig. 18). Sov is the maximum distance covered in the computed resolutions;

original space for an elementary displacement in the d@Bct  3) for the two resolutions calculate the magnification val-
x or in the directiony in the goal space. Thus? is an ues:

upper bound for the area covered in the original space by aryy interpolate linearly between the two magnification val-

elementary displacemefdz, dy). _ _ _ ues based on the distance between appropriate resolution
To define if there is minification: a comparison is made and pre-computed ones.

between the areas in the origin and in the goal throu . .
9 g q% change from one resolution to a coarser one, each dimen-

v If.y IS lower than v/2 th(_are Is_magnification OtherWlsesion is divided by a power of. That provides a pyramid of
minification. The natural choice would be to compar® 1.0 . S )
t?extures and the appropriate resolution is given by:

but it is not optimal since four samples are used to evalua
the function in the magnification process. Mz, y) = logy[v(z,y)].

In the calculus ofv the choice of the maximum insteadThen the two closest resolution are given by:
of a product, for an area, is important to avoid the casee. dl = |\(x,y)]
where the derivative in a dimension is very large while in « d2=4d1+1



The magnification rules for sampling and interpolating aent
applied to each of the selected texture, yielding two corre-
sponding valueg!(z,y) for the d; resolution andg?(z,y)

for dy resolution. The final value for the cefls,y) is then
found as a 1D interpolation between the two resolutions:

9(@,y) = (1= frac(\(z,9)))g" (z, y)+ frac(M(=, y))g (z. y)

Fig. 21. Occupancy grid generated by the GPU. Compared t®€ighe
geometric transformation apply, and each column in fig. 2@aissformed in
a triangle in the final grid.

coordinate system. Between each vertex interpolation gema
by the graphical board to deduce all required coordinates.
Therefore the first method is more precise but computatipnal
more expensive than the second.

In the case of polar to Cartesian change of coordinate system
two matrices are drawn witlip, ) coordinates one for occ
and one for emp. Each column of a matrix corresponds to
one angle and one range measurement and in this column
is plotted the sensor model corresponding to the current
range measurement. Then mipmaps of the two matrices are
computed. Finally the change of geometry is processed by
drawing geometric primitives: for each range measurement
the corresponding quadrilateral is drawn in the Cartesiah g
each of the vertex of the quadrilateral is associated wigh th
corners of the line of the 1-D sensor-model.

V. EXPERIMENTAL RESULTS

We test the three algorithms: line drawing, adaptive sam-
pling and GPU building on real datage. 2174 sick scans.
We obtain the results that are summarized in tab I. We
made a simulation with 4 Sicks to compare fusion results
too and we obtained the following results: Fig 23(c). To
evaluate the algorithms, they are compared to the output of
the exact algorithm. The absolute difference between the lo
ratios of occupancies are calculated to evaluate both geera
and maximal errors. The average calculus time on a CPU is
Fig. 23-_ Abma_p of the \_/aluedS_ of the %_Cf(f:upied SeTsor Tnp]odel iHrmﬂorcg- given then we focus on correctness and the possibility t@ hav
e/ i abeissa i n rdnate o diferent scfes. Theyconespond © parallel algorithms. The results inthe tabs | are computedhf
The more hot is the color, the more probable is the sensor ureasnt fine grid resolution: cell side dicm and a wide field of view:
knowing that the radial cell is occupied. The sensor modévioa Gaussian  60m x 30m, i.e. 720000 cells and one sick sensor that provides
B e e Moreescs " 361, measurements. The CPU used is an Athion XP 1900+
stereo camera sensor model. and the graphlcal board, a NVIDIA GeForce FX Go5650.

Our contribution in these comparisons is that, to the best of

The process of using several resolution of the original meslar knowledge, the exact algorithm was never used before.
is called mipmapping and is accelerated by graphical board$ie average and maximal errors of the adaptive sampling and
These texture mapping schemes are part of the OpenGL&PBU building (tab. 1) are small compared to the line drawing
specification, [17]. algorithm; for adaptive sampling calculus time is, however
Thus it just remains to the programmer to defifewhich more expensive.
is the change of coordinate function. This definition coudd b o o )
done by providing to the graphical board the result of ea¢h Precision of the GPU building algorithm
of the required evaluation off. It is also possible to draw The obtained precision is close to the exact solution, not as
geometric primitives: triangles, quadrilaterals or palgg close as with the adaptive sampling method but far better tha
which vertex are given in the goal coordinate system and aséth the line drawing method. Details close to the vehicle ar
also associated with corresponding coordinates in thenalig well fit and any kind of resolution could be achieved for the




g/lxtzt;od AVg. OError Max.OError 13;2' (t'cn;%) are straightforward with a GPU. In fact, sensor fusion in OGs
line drawing 098 55 &1 0.22s (CPU) can t_)e perfor_m_ed with OGs_addmon;: flogmng numper have
sampling 011 19 1.02s (CPU) a limited precision, so to avoid numerical pitfalls, a lagan
GPU 015 18 0.049s on MS fusion is, indeed, often used. On the actual graphical sard
0.0019s on board floating precision is restricted 82 bits, so this is an important
TABLE | issue of the sensor fusion on GPU, thus the logarithm fusion
COMPARISON OF CHANGE OF COORDINATE SYSTEM METHODS is presented here. As the occupancy is a binary variable,
a quotient between the likelihoods of the two states of the
SN variable is sufficient to describe the binary distributidine
il guotient makes the marginalization term disappear andckthan
to a logarithm transformation, sums are sufficient for the
inference.
p(ocd?) ploc)) | x~,  p(ziloco)
8 e =) ey 2 e emp 2

i=1

For each sensor, the two approprigtelar sensor model
gridsare constructed with the associated set of mipmaps.
For each Cartesian cell, the two sensor models at the right
resolution are fetched then an interpolated value is caied|
from samples of each of them, then the log-ratio is calcdlate
The final value is added to the current pixel value. This pssce
uses the processor units dedicated to transparency in the
graphical board. The occupancy grid for each sensor appears
as a layer where transparency decreases as the occupancy of

OG. To avoid the infinite increasing of the required preclrisiothe cell |ncr.eases.. ) o

close to the sensors and for safety, we choose to consider th&"d the final grid, fusion of all sensors, is just the sum of
worst occupancy case for every cell that lies withigam 2/l the layers.

radius around the sensor. Outside this safety area themamai

error is almost zero so that when considering these paaticul VII. CONCLUSION

grids, precision is very close to that obtained with the éxac
algorithm.

Fig. 22. Experimental vehicle with 4 Sicks LMS-291, one atteaorner.

Building occupancy grids to model the surrounding environ-
ment of a vehicle implies to fusion the occupancy infornmatio
B. Performance provided by the different embedded sensors in the same grid.

To evaluate the results an NVIDIA GeForce FX Go5650 fofhe principal difficulty comes from the fact that each sensor
the GPU is used ( tab | ). For the GPU, two calculus time&n have a different resolution, but also that the resatutib
are given: first the Computation time with the result transf&0mMe Sensors varies with the location in the field of viewsThi
from the GPU to the CPU in memory main storage (MS) anig the case with a lot of telemetric sensors and especiaibrla
second without this transfer. The difference is importard a range-finders. The need to switch coordinate systems is-a fre
in the first case most of the processing time is devoted to d&iigent problem in Bayesian modeling, and we have presented a
transfer, so if further computations were made on GPU, a [8¢W approach to this problem that offers an exact solutiah an
of time could be saved. In this case the amazing number\Which is absolutely general. This has lead us to evaluateva ne
50 sensors can be computed at real-time with the GPU. It4§sign of OG building based upon a graphic board that yields
important to note that, as only the result of the fusion neefigh performances: a large field of view, a high resolution
to be sent to the main storage, a little more than half a secodfed a fusion with up td3 sensors at real-time. The quality
remains to Compute OGs for other sensors and fusion Wh@fnthe results is far better than with the classic method pf ra
using al0H > measurement rate. So in the current conditionsffacing and the comparison with the exact results shows that
resulting grid is send back in memory main storafepthers We are very close to the exact solution. This new design of
sensors can be processed at the same time because the figferpuilding is an improvement for environment modeling in

process takes about as long as the occupancy computagionfobotics, because it proves, in a theoretical and practieg|
2ms. that a chip hardware can handle the task of fusion rapidly.

The gain of CPU-time can therefore be dedicated to other

VI. SENSORFUSION USINGGPU tasks, and especially the integration of this instantasepid
Using such a dedicated hardware have a lot of advantagesa mapping process. In future works, we plan to explore the
In particular, plenty of basic operations such as imagetaadi question of 3D OG modeling using graphical hardware. We



Fig. 23.  (a) V-grid with only the first sensor measuremerity \fgrid with
the fusion of the two first sensors measurements. (c) V-gitd the fusion
of the four sensors.

will also investigate whether GPUs are suitable for other-lo

(8]

El
[10]
[11]

[12]

[13]

[14]

[15]

[16]

[17]

level robotic tasks. Videos and full results could be fouhd a

http://enmotion.inrialpes.fr/~yguel.
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VIIl. A PPENDIX: PROOF OF SENSOR MODEL BEHAVIOR For z = 2, py11(0cO) = m and with the definition
FOR HIGH PRIOR of v, we demonstrate the first part of the theorem:
In this section we prove the theorem stated in section II-F lku

(0cO) € [vb; v + (1—(1—a)*"?)] (37)

that characterizes the behavior of the complete sensor Imod&+1
regarding the measured distance of the detected obstacle. | .
Thus for values ofi close to zerop; (occ) is almost constant

particular, we prove that the probabilities in the sensodeho . .
: . over all the possible range measurements. A Taylor expansio
are almost independent of the measured distance for a hi 5o . .
1—a)*~* shows how the linear, quadratic and other powers

confidence in the fact that a cell is empty. For simplicityt bu

: . of z arise to explain the behavior of the sensor model as the
without loss of generality, we state that telkementary sensor . :
modelis a Dirac. prior decreases (fig. 8).

14+ (1 + ka)l

.B. Occupancy of a cell at the cell where the detection event
A. Occupancy of a cell before the cell where the detectl%rg:curs pancy

event occurs ]
In the same schema as above, we write:

In the following, we note:p.(o) for p(o|z1,...,2:) the
occupancy of a cell aftet consecutive measures. With eq.
2, 12 and 13, we derive the occupancy of a cell with index pi+1(0co =1/(1+b/a),
p<z Thus,
pi+1(0co) = a/(a+b),
1
where pe41(0CQ) = ——7r (38)
I L+
= 0 +)p(0CC), " .
p(off) Z(_2 Jpi(0c9) & All these terms are positives. And 43 — @)*~! is a
= plonu” (1 —u) + p(of)U(Z;))p.(emp. decreasing function of sincew is smaller than oney; 1 (0cc)
Thus, is a decreasing function af with limit:
1 Lm pi41(0CC) = T3 p(0CC).
pe+1(0CC) = - .2 (29) . . .
1+ 1+ ka(l —a)*—2)l So the maximum difference of occupancy for two different
where sensor measurements is:
i = l—u (30) pit1(0cq)[z = 1] — pry1(0cq)z]
lk 1—(1—a)*!
_ p(on) = (39)
ko= U(Z:) (1 — p(on)) (31) 1+k+114+k(1—a)*~t 41
;o pr(emp 32 Since, all terms are positives the right denominator in 8q. 3
~ p(oco) (32) is greater than one, so:
All these terms are positives. And d3 — )2 is a _ — lk _ (1 —7)*1!
¢ | ) ) pr+1(0CQ[z] — pry1(0C[z = 2] < 1-1-u . (40)
decreasing function of sinceu is smaller than ones; 1 (occ) e 2 +1(00)] ] 1+k +l[ ( .
is an increasing function of with limit: For z = 1, py41(0CQ) = % and with the definition of
1 ~; we demonstrate the second part of the theorem:
lim p;41(0CC) = — = pi(0CO).
o L (0 € (v + — 2 —(1—(1—a) ) (41)
So the maximum difference of occupancy for two different Pt TR +Ek+1
sensor measurements is: One can notice that the variation is greater withat the
impact than before since in eq. 34 appears in the additional
per2(009l] - pra(ocgz =2 1 o A Saape
= - 33
1+ (A +ku(l —w)z=2) 1+ 1+ ku)l (33)
B lku[l — (1 —u)*~2 (34)
T+ (T +ku(l —a)==2)D) (1 + (1 + ka)l)
(35)

Since, all terms are positives the left factor in the denomi-
nator in eq. 34 is greater than one, so:

P2 (0€Q)[2] — pry(0cQ)[z = 2] < — 0

< m[l - (1- Q)Z_Q]. (36)



