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Abstract. In John Tantalo’s on-line game Planarity the player is given
a non-plane straight-line drawing of a planar graph. The aim is to make
the drawing plane as quickly as possible by moving vertices. In this paper
we investigate the related problem MINMOVEDVERTICES which asks for
the minimum number of vertex moves. First, we show that MINMOVED-
VERTICES is NP-hard and hard to approximate. Second, we establish
a connection to the graph-drawing problem 1BENDPOINTSETEMBED-
DABILITY, which yields similar results for that problem. Third, we give
bounds for the behavior of MINMOVEDVERTICES on trees and general
planar graphs.

1 Introduction

It is somewhat surprising that many people still draw graphs by hand, usually
not on a piece of paper but on a computer display. Modern technology gives us
the means to edit a drawing by dragging vertices. Even when we use an automatic
graph-drawing tool, we often do some manual polishing to obtain nicer drawings.

In this paper, we consider the problem of editing a given drawing to obtain
another drawing that fulfills a certain criterion. We restrict ourselves to straight-
line drawings of planar graphs. Our edit operation is “moving vertices.” When
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we move a vertex v to a new position, the incident edges are redrawn so that v is
again connected to its adjacent vertices by straight-line segments. Our criterion
is planarity. According to the famous theorem of Wagner [12], Fary [2], and
Stein [9] every planar graph has a plane straight-line drawing. We want to obtain
such an embedding from a given (usually non-plane) straight-line drawing. Our
goal is to minimize the number of vertices to move. This is a natural question
because the less vertices we move the better the mental map [7] of an observer
is preserved when making a given drawing plane, e.g., in a step-by-step fashion.
Note that for a given straight-line drawing the minimum number of moves can
also be seen as the edit distance from the closest plane drawing.

At the 5th Czech-Slovak Symposium on Combina-
torics in Prague in 1998, Mamoru Watanabe asked the
following question, which concerns a special case of our
problem: Is it true that every polygon P with n ver-
tices can be untangled, i.e., turned into a non-crossing
polygon, by moving at most en of its vertices for some
absolute constant e < 1? Pach and Tardos [8] have an-
swered this question in the negative by showing that Fig.1: Two drawings
there must be polygons where at most O((nlog n)2/3) of K4: ¢ is not plane,
of the vertices can be kept fixed. They also gave a sim-  §’ is plane; d(0, §) = 1.
ple algorithm (which can be implemented in O(nlogn)
time) that always keeps more than \/n vertices. In a longer version of this pa-
per [3] we show that their algorithm is not optimal. Pach and Tardos [8] in turn
asked the following question: can any straight-line drawing of any planar graph
with n vertices be made plane by vertex moves while keeping 2(n?) vertices
fixed for some absolute constant v > 07 We still do not know the answer to this
question, but we report some progress.

There is a popular on-line game that is related to the problem of Pach and
Tardos. In John Tantalo’s game Planarity [10] the player is given a non-plane
straight-line drawing of a planar graph. The player can move vertices, which
always keep straight-line connections to their neighbors. The aim is to make the
drawing plane as quickly as possible. We study the game from three view points:
(a) algorithms, (b) mathematics (upper-bound constructions), and (c) complex-
ity. Our complexity results (detailed below) made us understand why it is so
hard to play the game well.

4] o’

Formalization. In this paper, a drawing of a graph G = (V, E) will always mean
a straight-line embedding of G in the plane R2. Since such an embedding is
completely defined by the position of the vertices, it corresponds to an injective
map 6: V — R2. A drawing is plane if no two edges cross, i.e., they are only
allowed to intersect in a common endpoint. A graph is planar if it admits a plane
drawing; trivially not every drawing of a planar graph is plane.

The vertez-moving distance d between two drawings § and ¢’ of a graph G is
defined as the number of vertices of G whose images under ¢ and ¢’ differ:

d(5,6") = [{v € V | 6(v) # &' (v)}]-
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This distance can easily be computed. Given our edit operation, d represents the
edit distance for straight-line drawings of graphs. Figure 1 shows an example.
Using d we can express the central question of this paper as follows.

How close is a given drawing of a planar graph to being plane with
respect to the vertex-moving distance d?

For a drawing ¢ of a planar graph G, denote by MMV (G, 6) the minimum number
of vertices that need to be moved in order to make § plane. MMV measures
distance from planarity: MMV(G,§) = ming d(4,d"), where ¢’ ranges over all
plane drawings of G. This gives rise to the following computational problem.

MINMOVEDVERTICES(G, §): Given a drawing ¢ of a planar graph G, find
a plane drawing ¢’ of G with d(d,d") = MMV(G, ).

Sometimes this question is better studied from the symmetric point of view.
Given a drawing ¢ of a graph G, we denote by MKV (G, §) the maximum number
of vertices that remain fixed when making ¢ plane. We refer to such vertices as
fized vertices. Obviously it holds that MKV(G, ) = n — MMV(G, §), where n
is the number of vertices of G. MKV measures similarity with the closest plane
drawing. The corresponding problem is defined as follows.

MAXKEPTVERTICES(G, §): Given a drawing J of a planar graph G, find
a plane drawing ¢’ of G with MKV(G, ¢) fixed vertices.

Let MKV(G) = ming arawing of ¢ MKV(G, d) denote the maximum number of
vertices of G that can be kept fixed when starting with the worst-possible draw-
ing of G.

Our results. First, we prove that the decision versions of MAXKEPTVER-
TICES and equivalently MINMOVEDVERTICES are NP-hard, see Section 2. We
also prove that MINMOVEDVERTICES is hard to approximate. Namely, for any
e € (0,1] there is no polynomial-time n!~*-approximation algorithm for MIN-
MOVEDVERTICES unless P = N'P.

Second, we establish a connection to a well-known graph-drawing problem,
namely 1BENDPOINTSETEMBEDDABILITY. Given a planar graph G = (V, E)
with n vertices we say that a graph is k-bend (point-set) embeddable if for any
set S of n points in the plane there is a one-to-one correspondence between V
and S such that G can be k-bend (point-set) embedded on S, i.e., the edges of
G can be drawn as non-crossing simple polygonal chains with at most k& bends.
Kaufmann and Wiese [4] showed that (a) every 4-connected planar graph is 1-
bend embeddable, (b) every planar graph is 2-bend embeddable, and (c¢) given
a planar graph G = (V, E) and set S of n points on a line, it is NP-complete
to decide whether there is a correspondence between V and S that makes it
possible to 1-bend embed G on S. We strengthen their result by showing that
the problem remains hard even if the correspondence is given. We also show that
an optimization version of the problem is hard to approximate.

Third, we give bounds on MKV(G) for trees and general planar graphs, see
Sections 3 and 4, respectively. Table 1 summarizes the best known results. A
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graph class where ‘ lower bound ‘ upper bound
cycles Pach & Tardos [8] [vVn] O((nlogn)?/?)
trees Section 3 [v/n/3] [n/3]+4 777
planar graphs Section 4 3 2¢/n

Table 1: Known bounds for MKV(G), where n is the number of vertices of G.

lower bound of k means that we can make any drawing of any graph G in the
given graph class plane while keeping at least k vertices fixed. An upper bound
of k means that there is an arbitrarily large graph G in the given graph class
and a drawing 0 of GG such that at most k vertices can stay fixed when making &
plane.

Independently, Verbitsky [11] recently achieved the following results. He con-
siders the function MMV(G) = max 5 plane drawing of ¢ MMV(G, 0), to which he
refers as the shift complexity of a graph. He, too, observes that MMV (G) < n—3
(i.e., MKV(G) > 3) for planar graphs with n > 3 vertices. Further he gives two
linear upper bounds on MMV (G) depending on the connectivity of G. By re-
duction from independent set in line-segment intersection graphs he shows that
computing MMV(G, ¢) is NP-hard.

2 Complexity

In this section, we investigate the complexity of MINMOVEVERTICES and of
1BENDPOINTSETEMBEDDABILITY with given vertex—point correspondence.

Theorem 1. Given a planar graph G, a drawing § of G, and an integer K > 0,
it is NP-hard to decide whether MMV (G, ) < K.

Proof. Our proof is by reduction from PLANAR3SAT, which is known to be
NP-hard [6]. An instance of PLANAR3SAT is a 3SAT formula ¢ whose variable-
clause graph is planar. Note that that graph can be laid out (in polynomial time)
such that variables correspond to points on the x-axis and clauses correspond
to non-crossing three-legged “combs” above or below the z-axis [5], see Fig. 2.
Let v and ¢ be the numbers of variables and clauses of ¢, respectively. We now
construct a graph G, with a straight-line drawing d,, such that the following
holds: 6, can be made plane by moving at most K vertices if and only if ¢ is
satisfiable. We fix K later.

=1 L\

vT v

| I

Fig. 2: Embedding of a planar 3-SAT formula.
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Fig. 3: Edge positions in variable gadget: immobile (thin solid black) and mobile (very
thick solid gray). The predestined positions of mobile edges either correspond to true
(thick solid blue) or to false (thick dotted red).

Our graph G, consists of two types of substructures (or gadgets), modeling
the variables and clauses of ¢. In our gadgets, see Figs. 3 and 4, there are two
types of vertices and edges; those that may move and those that are meant not
to move. We refer to the two types as mobile and immobile. If ¢ has a satisfying
truth assignment, all immobile (and a few mobile) vertices are fixed, otherwise
at least one immobile vertex must move. In the figures, immobile vertices are
marked by black disks, mobile vertices by circles, and their predestined positions
by little squares. Immobile edges are drawn as thin solid black line segments, mo-
bile edges as very thick solid gray line segments, and their predestined positions
are drawn as thick colored line segments.

Now consider the gadget for some variable x in ¢, see the shaded area in
Fig. 3. The gadget consists of a horizontal chain of a certain number of roughly
square blocks. Fach block consists of 28 vertices and 32 edges. Each block has
four mobile vertices, each incident to two very thick gray edges. In Fig. 3 the
four mobile vertices of the leftmost block are labeled in clockwise order a, d, b,
and c. Note that the gray edges incident to a and b intersect those incident to ¢
and d. Thus either both a and b or both ¢ and d must move to make the block
plane. Each mobile vertex w € {a,b,c,d} can move into exactly one position
w’ (up to wiggling). The resulting incident edges are drawn by thick dotted red
and thick solid blue line segments, respectively. Note that neighboring blocks in
the chain are placed such that the only way to make them plane simultaneously
is to move corresponding pairs of vertices and edges. Thus either all blocks of
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3-switch

Fig. 4: A clause gadget consists of three big 2-switches and two 3-switches. Each 3-
switch contains another small 2-switch. Note that not all immobile vertices are marked.

a variable gadget use the blue line segments or all use the red line segments.
These two ways to make a variable gadget plane correspond to the values true
and false of the variable, respectively.

For each of the 3c literals in ¢ we connect the gadget of the corresponding
variable to the gadget of the clause that contains the literal. Each block of
each variable gadget is connected to a specific clause gadget above or below the
variable gadget, thus there are 3¢ blocks in total. Each connection is realized by
a part of G, that we call a 2-switch. A 2-switch consists of 15 vertices and 14
edges. The mobile vertex ¢ of the 2-switch in Fig. 3 is incident to two very thick
gray edges that intersect two immobile edges of the 2-switch. Thus ¢ must move.
There are (up to wiggling) two possible positions, namely ¢; and ga, see Fig. 3.

The 2-switch in Fig. 3 corresponds to a positive literal. For negated literals
the switch must be mirrored either at the vertical or at the horizontal line that
runs through the point m. Note that a switch can be stretched vertically in order
to reach the right clause gadget. Further note that if a literal is false, the mobile
vertex of the corresponding 2-switch must move away from the variable gadget
and towards the clause gadget to which the 2-switch belongs. In that case we
say that the 2-switch transmits pressure.

A clause gadget consists of three vertical 2-switches and two horizontal 3-
switches. A 3-switch consists of 23 vertices and 18 edges plus a small “inner”
2-switch, see the shaded area in Fig. 4. Independently from the other, each of the
two 3-switches can be stretched horizontally in order to reach vertically above
the variable gadget to which it connects via a 2-switch. The mobile vertex p of
the left 3-switch in Fig. 4 is incident to two very thick gray edges that intersect
two immobile edges of the 3-switch. Thus p must move. There are (again up to
wiggling) three possible positions, namely p1, p2, and ps. Note that we need the
inner 2-switch, otherwise there would be a forth undesired position for moving
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p, namely the one labeled p in Fig. 4. By construction a clause gadget can be
made plane by only moving the mobile vertices of all switches if and only if at
most two of the three big 2-switches transmit pressure, i.e., if at least one of the
literals in the clause is true.

The graph G, that we have now constructed has O(c) vertices, O(c) edges,
and X = 26¢ crossings; 4-3c in blocks and 2-7¢ in switches. By moving any mobile
vertex to any of its predestined positions, a pair of original crossings disappears.
If ¢ is satisfiable, G, can be made plane by moving K = X/2 mobile vertices
since no new crossings are introduced. If ¢ is not satisfiable, there is at least
one pair of crossings that cannot be eliminated by moving the corresponding
mobile vertex alone since all its predestined positions are blocked. Thus at least
two vertices must be moved to eliminate that pair of crossings—and still all the
other K — 1 pairs of crossings must be eliminated by moving at least one vertex
per pair, totaling in at least K 4 1 moves. Thus ¢ is satisfiable if and only if G,
can be made plane by moving exactly K (mobile) vertices.

Since there is enough slack in our construction, it is possible to place vertices
at integer coordinates whose total length is polynomial in the length L of a
binary encoding of . This and the linear size of G, yield that our reduction is
polynomial in L. a

We now consider the approximability of MINMOVEDVERTICES. Since
MMV (G,d) = 0 for plane drawings, we cannot use the usual definition of
an approximation factor unless we slightly modify our objective function. Let
MMV'(G,8) = MMV(G,d) + 1 and call the resulting decision problem MIN-
MOVEDVERTICES’. Now we can modify the above reduction to get a non-
approximability result.

Theorem 2. For any fived real ¢ € (0,1] there is no polynomial-time n'~¢-

approximation algorithm for MINMOVEDVERTICES' unless P = NP.

Proof. Let n, be the number of vertices of the graph G, with drawing J,, that
we constructed above. We go through all immobile vertices v of G,. Let N, be
the neighborhood of v. We replace v by a star with central vertex v adjacent

503_6)/ ° additional new vertices infinitesimally close

to the vertices in N, and n
to v. Let G be the resulting graph, 4 its drawing, and n < (nEE"E)/E + 1) -n, the
number of vertices of G. Note that ¢ is satisfiable if and only if MMV'(G, d) =
MMV'(G,,8,) = K+1. Otherwise, additionally at least one complete star has to
be moved, i.e., MMV'(G, §) > KJrnfo?’_E)/E + 2. Note that G can be constructed
in polynomial time since ¢ is fixed.

Now suppose there was a polynomial-time n'~¢-approximation algorithm A
for MINMOVEDVERTICES’. We can bound its approximation factor by n'=¢ <
((11&?76)/E +1) -nw)l_E < (2715‘;376)/6 -nw)l_e = 21_5714(;,3736)/E < 2nfp3736)/5. Now
let M be the number of moves that A needs to make § plane. If ¢ is satisfiable,
then M < MMV'(G,8) - n'=¢ = (K + 1) -nl=¢ < (n, + 1) - 208739/ =
on(2/E 4 O(ngf’*?’a)/g). On the other hand, if ¢ is unsatisfiable, then M >

MMV'(G,d) > nggfa)/g. Since we can assume that n, is sufficiently large, the

1—e
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result of algorithm A (i.e., the number M) tells us whether ¢ is satisfiable. So
either our assumption concerning the existence of A is wrong, or we have shown
the NP-hard problem PLANAR3SAT to lie in P, which in turn would mean that
P=NP. O

We now state a hardness result that establishes a connection between
MINMOVEVERTICES and the well-known graph-drawing problem 1BEND-
POINTSETEMBEDDABILITY. The proof uses nearly the same gadgets as in the
proof of Theorem 1: Set G, to a copy of G, where each length-2 path (u,v,w)
containing a mobile vertex v is replaced by the edge {u,w}. The vertices of G:D
are mapped to the corresponding vertices in J,. Then it is not hard to see that
G;, has a 1-bend drawing iff the given planar-3SAT formula ¢ is satisfiable.

Theorem 3. Given a planar graph G = (V, E) with V C R?, it is NP-hard to
decide whether G has a plane drawing with at most one bend per edge.

Now suppose we already know that G has a plane drawing with at most one
bend per edge. Then it is natural to ask for a drawing with as few bends as
possible. Let 3(G) be 1 plus the minimum number of bends over all plane one-
bend drawings of G. Then we can show the following hardness-of-approximation
result concerning bend minimization.

Corollary 1. Given a fized ¢ € (0,1] and a graph G = (V,E) with V C R?
that has a plane one-bend drawing, it is NP-hard to approzimate 3(G) within a
factor of n'—=.

For the proof we slightly change the clause gadget in the proof of Theorem 1,
see Figure 5. For the calculations, see the proof of Theorem 2.

3 Trees

In this section we give a lower bound on MKV for trees. We use the following
well-known theorem.

Theorem 4 (Erd6s and Szekeres [1]). Let A = (a1,...,a,) be a sequence
of n different real numbers. If n > sr + 1 then A has an increasing subsequence
of s+ 1 terms or a decreasing subsequence of r + 1 terms.

In particular, this theorem implies that a sequence of n distinct integers
always contains a monotone subsequence of length at least v/n —1+1 > [/n].

Theorem 5. For any drawing § of an n-vertex tree T, MKV(T,6) > [\/n/3].

Proof. We pick an arbitrary root r of 1. Let h > 0 be the height of T" with
respect to r. Fori =0, ..., h let level ¢; be the set of vertices of T" that are at tree
distance i from r. For j € {0, 1,2} let L; be the union of all ¢; with i = j mod 3.
According to the pigeon-hole principle at least one of the three sets, say Ly,
contains at least n/3 vertices. We label the vertices of Ly with the integers
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many
—_——

Fig. 5: Gadget of clause C for the non-approximability proof concerning the number of
edges with one bend. The edges ec and e, can now be drawn in four combinatorially
different ways (thin solid blue vs. thick solid blue vs. dotted red vs. dashed green). This
makes sure that there always is a drawing with at most one bend per edge. However,
if the given planar 3SAT formula ¢ has no satisfying truth assignment, then for every
truth assignment there is a clause that evaluates to false, and in the corresponding
gadget a large number of edges of type b needs a bend.

from 0 to |Lg| — 1 such that (i) all vertices in the same level are consecutive in
alternating directions, i.e., from left to right for every even-numbered level in L
and from right to left for every odd-numbered level in Lo, and (ii) a level closer
to the root gets smaller labels, see Fig. 6.

Let ¢ be a line such that the projection 7 orthogonal to ¢ does not map any
two vertices of the given drawing ¢ to the same point. The image of 7 induces
an ordering of the vertices in Ly. By the Theorem 4, this ordering contains a
monotone subsequence Fy C Ly of at least [y/n/3] vertices.

We now make § plane while fixing the vertices in Fy. Consider the partition of
Fp into subsets fy, f3, fs, ... induced by the levels in Ly. We draw M-shaped and
U-shaped corridors between two consecutive subsets f; and f;;3, alternatingly
above and below §, see Fig. 7. No two such corridors intersect since consecutive
levels of Ly and thus consecutive subsets of Fy are ordered in alternating direc-
tion. It remains to move the vertices of T'\ Fy. Vertices in L; U L go to positions
near the bends of the corridors (see levels ¢; and ¢3 in Fig. 7); those in Lo \ Fj
can easily be placed at appropriate positions. a

4 Planar graphs

We now give bounds for the case of general planar graphs. We start with a rather
trivial lower bound.

Theorem 6. If 0 is a drawing of a planar graph G with n > 3 wvertices then
MKV(G,¢) > 3.



10 X. Goaoc, J. Kratochvil, Y. Okamoto, Ch.-S. Shin, and A. Wolff

level £y 0
level ¢,
level ¢5
level /3
level ¢4

level /5

level £g ¢'14 ® 15 16 17 18 19 20 21 €22 23 24

Fig. 6: The ordering of vertices on L.

Proof. Any planar graph admits a plane drawing §; in which no three points are
collinear and a plane drawing do in which some triplet of points is collinear. If
there are three vertices vy, ve, and vs whose images under § are not collinear, we
can find an affine transform L that maps 61 (v;) to §(v;). Since L o 4y is a plane
drawing of G that agrees with § on {v1,v2,v3} it follows that MKV(G, §) > 3.
If the images of all vertices are aligned under §, we apply the same argument
with 62. O

We now give an upper bound for general planar graphs that is better than the
upper bound O((nlogn)?/?) of Pach and Tardos [8] for cycles. Our construction
uses the sequence o, =

((q_l)qa (q_Q)Qa AR 2Qa Q7Q7 1+(q_1)Q7 ety 1+q7la AR q2_1a ERE (q_1)+Qa q— 1)

Note that o, can be written as (¢),0},...087"), where o, = ((¢ — 1)q + 4, (¢ —
2)g+1,...,2¢+1,q+1,1) is a subsequence of length ¢. Thus o, consists of q?

distinct numbers. Note that the longest monotone subsequence of o, has length g.

Theorem 7. For any integer ng there exists a planar graph G with n > ng
vertices and a drawing § of G such that MKV(G, §) < 2/n.

- - - - =

corridors

Fig. 7: Corridors to connect the vertices in Fp.
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(a) plane drawing of case 1 (b) drawing ¢ (w/o edges) (c) plane drawing of case 2

Fig. 8: Drawings of graph G4 (proof of Theorem 7).

Proof. For ¢ > 1 we define the graph G, as a chain of q* vertices all connected
to the two endpoints of an edge {a, b}, see Fig. 8a. Let ¢ be the drawing of G4
where the vertices forming the chain are placed on a vertical line £ in the order
given by o,. We place the vertices a and b below the others on ¢, see Fig. 8b.
Let ¢’ be a plane drawing of G, with MKV(G, §) = n — d(4,¢’). Since all faces
of G4 are 3-cycles, the outer face in ¢’ is a triangle. All faces of G contain a or
b. This has two consequences. First, a and b must move to new positions in ¢’,
otherwise all other vertices would have to move. Second, at least one of them,
say a, appears on the outer face.

Case 1: Vertex b also lies on the outer face.

Then there are just two possibilities for the embedding of G,: as in Fig. 8a
or with the indices of all vertices reversed, i.e., vertex i becomes ¢ — i — 1.
Now let 0 < i < j < k < ¢2 — 1 be three fixed vertices. By symmetry we
can assume that j lies in A(a,b,7). Then k also lies in A(a, b, i) since the chain
connecting j to k does not intersect the sides of this triangle. Note that k cannot
lie between ¢ and j on £ as otherwise one of the edges {a, k} and {b, k} would
intersect the polygonal chain connecting i to j. Thus, each triplet of fixed vertices
forms a monotone sequence along £. This in turn yields that all fixed vertices in
{0,...,¢*> — 1} form a monotone sequence along ¢. Due to the construction of o,
such a sequence has length at most ¢ = |v/n — 2].

Case 2: Vertex b does not lie on the outer face.

Then the outer face is of the form A(a, k, k+1) with 0 < k < ¢*>—2. The three
edges {b,a}, {b,k}, and {b, k+ 1} incident to b split A(a, k, k + 1) into the three
triangles A(a, k,b), A(a,b,k+1), and A(b, k, k + 1), see Fig. 8c. Every vertex of
¢’ lies in one of them. Since ¢’ is plane, vertex k — 1 must belong to A(a, k,b)
and, by induction, so do all vertices ¢ < k; similarly, all vertices ¢+ > k 4 1 lie
in A(a, b,k +1). We can thus apply the argument of case 1 to each of the two
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subgraphs contained in A(a,b, k) and A(a,b, k + 1). Thus at most 2,/n vertices
are fixed.

To summarize, case 2 yields a larger number of potentially fixed vertices and
thus MKV(G, ) < 2y/n. O

Remark 1. The proof of Theorem 6 actually yields a linear-time algorithm to
make a drawing of a planar graph plane while keeping three vertices fixed. The
drawing § in the proof of Theorem 7 can be slightly perturbed so that no three
vertices are aligned.

5 Conclusion

Inspired by John Tantalo’s on-line game Planarity we have introduced a new
and apparently simple graph-drawing problem, which turned out to be rather
difficult. There are many open questions. On the computational side, we showed
inapproximability for MINMOVEDVERTICES. However, this does not imply any-
thing for the approximability of MAXKEPTVERTICES, which remains open. Is
either problem in A"P? What about parameterized complexity?

On the combinatorial side, there are large gaps to be filled and other classes
of planar graphs to be studied.

References

1. P. Erdds and G. Szekeres. A combinatorial problem in geometry. Compos. Math.,
2:463-470, 1935.
2. 1. Fary. On straight-line representation of planar graphs. Acta Sci. Math. (Szeged),
11:229-233, 1948.
3. X. Goaoc, J. Kratochvil, Y. Okamoto, C.-S. Shin, and A. Wolff. Moving vertices
to make drawings plane, June 2007. Available at http://arxiv.org/abs/0706.1002.
4. M. Kaufmann and R. Wiese. Embedding vertices at points: Few bends suffice for
planar graphs. J. Graph Algorithms Appl., 6(1):115-129, 2002.
5. D. E. Knuth and A. Raghunathan. The problem of compatible representatives.
SIAM J. Discr. Math., 5(3):422-427, 1992.
6. D. Lichtenstein. Planar formulae and their uses. SIAM J. Comput., 11(2):329-343,
1982.
7. K. Misue, P. Eades, W. Lai, and K. Sugiyama. Layout adjustment and the mental
map. J. Visual Languages and Computing, 6(2):183-210, June 1995.
8. J. Pach and G. Tardos. Untangling a polygon. Discrete Comput. Geom., 28(4):585—
592, 2002.
9. S. K. Stein. Convex maps. Proc. Amer. Math. Soc., 2:464-466, 1951.
10. J. Tantalo. Planarity. Web site at http://planarity.net/, accessed May 21, 2007.
11. O. Verbitsky. On the obfuscation complexity of planar graphs, May & June 2007.
Available at http://arxiv.org/abs/0705.3748.
12. K. Wagner. Bemerkungen zum Vierfarbenproblem. Jahresbericht Deutsch. Math.-
Verein., 46:26-32, 1936.



