Fast Object Extraction from Bayesian Occupancy Grids Using Self Organizing Networks

Dizan Alejandro Vasquez Govea 1 Fabrizio Romanelli 1 Thierry Fraichard 1 Christian Laugier 1
1 E-MOTION - Geometry and Probability for Motion and Action
GRAVIR - IMAG - Graphisme, Vision et Robotique, Inria Grenoble - Rhône-Alpes
Abstract : Despite their popularity, occupancy grids cannot be directly applied to problems where the identity of the objects populating an environment needs to be taken into account (eg object tracking, scene interpretation, etc), in this cases it is necessary to postprocess the grid in order to extract object information. This paper approaches the problem by proposing a novel algorithm inspired on image segmentation techniques. The proposed approach works without prior knowledge about the number of objects to be detected and, at the same time, is very fast. This is possible thanks to the use of a novel Self Organizing Network (SON) coupled with a dynamic threshold. Our experimental results on both real and simulated data show that our approach is robust and able to operate at normal camera framerate.
Type de document :
Communication dans un congrès
Proc. of the Int. Conf. on Control, Automation, Robotics and Vision (ICARCV), Dec 2006, Singapore (SG), France. 2006
Liste complète des métadonnées

https://hal.inria.fr/inria-00182011
Contributeur : Christian Laugier <>
Soumis le : mercredi 24 octobre 2007 - 18:06:38
Dernière modification le : mercredi 11 avril 2018 - 01:53:52
Document(s) archivé(s) le : lundi 12 avril 2010 - 00:30:14

Fichiers

Identifiants

  • HAL Id : inria-00182011, version 1

Collections

INRIA | UGA | IMAG

Citation

Dizan Alejandro Vasquez Govea, Fabrizio Romanelli, Thierry Fraichard, Christian Laugier. Fast Object Extraction from Bayesian Occupancy Grids Using Self Organizing Networks. Proc. of the Int. Conf. on Control, Automation, Robotics and Vision (ICARCV), Dec 2006, Singapore (SG), France. 2006. 〈inria-00182011〉

Partager

Métriques

Consultations de la notice

392

Téléchargements de fichiers

476