Real-time Moving Obstacle Detection Using Optical Flow Models

Christophe Braillon 1 Cédric Pradalier 1 Jim Crowley 1 Christian Laugier 1
1 E-MOTION - Geometry and Probability for Motion and Action
GRAVIR - IMAG - Graphisme, Vision et Robotique, Inria Grenoble - Rhône-Alpes
Abstract : In this paper, we propose a real-time method to detect obstacles using theoretical models of optical flow fields. The idea of our approach is to segment the image in two layers: the pixels which match our optical flow model and those that do not (i.e. the obstacles). In this paper, we focus our approach on a model of the motion of the ground plane. Regions of the visual field that violate this model indicate potential obstacles. In the first part of this paper, we will describe the method we used to determine our model of the ground plane's motion. Then we will focus on the method to match both the model and the real optical flow field. Experiments have been carried on the Cycab mobile robot in real-time on a standard PC laptop
Type de document :
Communication dans un congrès
Proc. of the IEEE Intelligent Vehicle Symp., Jun 2006, Tokyo (JP), France. pp.466-471, 2006
Liste complète des métadonnées

Littérature citée [14 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/inria-00182027
Contributeur : Christian Laugier <>
Soumis le : mercredi 24 octobre 2007 - 18:32:26
Dernière modification le : mercredi 11 avril 2018 - 01:53:55
Document(s) archivé(s) le : lundi 12 avril 2010 - 00:30:58

Fichier

BPCL06.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : inria-00182027, version 1

Collections

INRIA | UGA | IMAG

Citation

Christophe Braillon, Cédric Pradalier, Jim Crowley, Christian Laugier. Real-time Moving Obstacle Detection Using Optical Flow Models. Proc. of the IEEE Intelligent Vehicle Symp., Jun 2006, Tokyo (JP), France. pp.466-471, 2006. 〈inria-00182027〉

Partager

Métriques

Consultations de la notice

231

Téléchargements de fichiers

3462