Feature Selection For Self-Supervised Learning

Pierre Dangauthier 1 Pierre Bessiere Anne Spalanzani
1 E-MOTION - Geometry and Probability for Motion and Action
GRAVIR - IMAG - Graphisme, Vision et Robotique, Inria Grenoble - Rhône-Alpes
Abstract : A foundation of the developmental approach to robotics is that learning must be grounded on sensorimotor interaction. In order to behave autonomously, a robot has to build its own model of the world by searching and exploiting statistical regularities in his sensorimotor domain. Self-supervised learning consists in relying on previous knowledge to acquire new skills. We propose to mix self-supervised learning with our probabilistic programming method, the Bayesian Robot Programming Framework. This idea corresponds to achieve feature selection for searching for relevant sensors. We compare several feature selection algorithms and validate them on a real robotic experiment
Type de document :
Rapport
[Technical Report] 2005
Liste complète des métadonnées

Littérature citée [21 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/inria-00182037
Contributeur : Christian Laugier <>
Soumis le : mercredi 24 octobre 2007 - 18:33:41
Dernière modification le : mercredi 17 janvier 2018 - 10:44:41
Document(s) archivé(s) le : lundi 12 avril 2010 - 00:31:42

Fichier

dangauthier05devrob.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : inria-00182037, version 1

Collections

INRIA | UGA | LARA | IMAG

Citation

Pierre Dangauthier, Pierre Bessiere, Anne Spalanzani. Feature Selection For Self-Supervised Learning. [Technical Report] 2005. 〈inria-00182037〉

Partager

Métriques

Consultations de la notice

290

Téléchargements de fichiers

236