C. Boutilier, T. Dean, and S. Hanks, Decision theoretic planning: Structural assumptions and computational leverage, Journal of Artificial Intelligence Research, vol.10, pp.1-94, 1999.

J. Diard, La carte bayésienne ? Un modèle probabiliste hiérarchique pour la navigation en robotique mobile, Thèse de doctorat, 2003.

J. Diard, P. Bessière, and E. Mazer, Hierarchies of probabilistic models of navigation: the Bayesian Map and the Abstraction operator, IEEE International Conference on Robotics and Automation, 2004. Proceedings. ICRA '04. 2004, pp.3837-3842, 2004.
DOI : 10.1109/ROBOT.2004.1308866

URL : https://hal.archives-ouvertes.fr/inria-00182061

J. Diard, P. Bessière, and E. Mazer, A survey of probabilistic models, using the bayesian programming methodology as a unifying framework, The 2 nd Int. Conf. on Computational Intelligence, 2003.
URL : https://hal.archives-ouvertes.fr/hal-00019254

M. Hauskrecht, N. Meuleau, L. P. Kaelbling, T. Dean, and C. Boutilier, Hierarchical solution of Markov decision processes using macroactions, Proceedings of the 14th Conference on Uncertainty in Artificial Intelligence (UAI-98), pp.220-229, 1998.

B. J. Kuipers, The Spatial Semantic Hierarchy, Artificial Intelligence, vol.119, issue.1-2, pp.191-233, 2000.
DOI : 10.1016/S0004-3702(00)00017-5

T. Lane and L. P. Kaelbling, Toward hierarchical decomposition for planning in uncertain environments, Proceedings of the 2001 IJCAI Workshop on Planning under Uncertainty and Incomplete Information, 2001.

T. Lane and L. P. Kaelbling, Nearly deterministic abstractions of markov decision processes, Eighteenth National Conference on Artificial Intelligence (AAAI-2002, 2002.

O. Lebeltel, P. Bessière, J. Diard, and E. Mazer, Bayesian Robot Programming, Autonomous Robots, vol.16, issue.1, 2004.
DOI : 10.1023/B:AURO.0000008671.38949.43

URL : https://hal.archives-ouvertes.fr/inria-00189723

J. Leonard, H. Durrant-whyte, and I. Cox, Dynamic Map Building for an Autonomous Mobile Robot, The International Journal of Robotics Research, vol.11, issue.4, pp.286-298, 1992.
DOI : 10.1177/027836499201100402

K. Murphy, Dynamic Bayesian Networks: Representation, Inference and Learning, 2002.

J. Pineau and S. Thrun, An integrated approach to hierarchy and abstraction for POMDPs, 2002.

L. R. Rabiner and B. Juang, Fundamentals of Speech Recognition, chapter Theory and implementation of Hidden Markov Models, pp.321-389, 1993.

S. Thrun, Learning metric-topological maps for indoor mobile robot navigation, Artificial Intelligence, vol.99, issue.1, pp.21-71, 1998.
DOI : 10.1016/S0004-3702(97)00078-7

S. Thrun, Probabilistic algorithms in robotics. AI Magazine, pp.93-109, 2000.