Hierarchies of probabilistic models of navigation: the Bayesian Map and the Abstraction operator

Julien Diard 1 Pierre Bessiere 1 Emmanuel Mazer 1
1 E-MOTION - Geometry and Probability for Motion and Action
GRAVIR - IMAG - Graphisme, Vision et Robotique, Inria Grenoble - Rhône-Alpes
Abstract : This paper presents a new method for probabilistic modeling of space, called the Bayesian Map formalism. It offers a generalization of some common approaches found in the literature, as it does not constrain the dependency structure of the probabilistic model. The formalism allows incremental building of hierarchies of models, by the use of the Abstraction operator. In the resulting hierarchy, localization in the high level model is based on probabilistic competition of the lower level models. Experimental results validate the concept, and hint at its usefulness for large scale scenarios.
Type de document :
Communication dans un congrès
Proc. of the IEEE Int. Conf. on Robotics and Automation, Apr 2004, New Orleans, LA (US), France. 2004
Liste complète des métadonnées

Littérature citée [16 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/inria-00182061
Contributeur : Christian Laugier <>
Soumis le : mercredi 24 octobre 2007 - 18:44:42
Dernière modification le : mercredi 11 avril 2018 - 01:56:01
Document(s) archivé(s) le : lundi 12 avril 2010 - 00:34:29

Fichier

diard04.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : inria-00182061, version 1

Collections

INRIA | UGA | IMAG

Citation

Julien Diard, Pierre Bessiere, Emmanuel Mazer. Hierarchies of probabilistic models of navigation: the Bayesian Map and the Abstraction operator. Proc. of the IEEE Int. Conf. on Robotics and Automation, Apr 2004, New Orleans, LA (US), France. 2004. 〈inria-00182061〉

Partager

Métriques

Consultations de la notice

536

Téléchargements de fichiers

140