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Abstract — To reach a given goal, a mobile robot first computes a moti@an fie

a sequence of actions that will take it to its goal), and thgecates it. Markov Decision
Processes (MDPs) have been successfully used to solve tthegaroblems. Their main
advantage is that they provide a theoretical framework tal @éth the uncertainties related
to the robot’s motor and perceptive actions during both pliaig and execution stages. This
paper describes a MDP-based planning method that uses arbhkéc representation of the
robot’s state space (based on a quadtree decompositioneoétivironment). Besides, the
actions used better integrate the kinematic constrainta efheeled mobile robot. These
two features yield a motion planner more efficient and bettéted to plan robust motion
strategies.
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Abstract— To reach a given goal, a mobile robot first computes
a motion plan (ie a sequence of actions that will take it to its goal),
and then executes it. Markov Decision Processes (MDPs) have
been successfully used to solve these two problems. Their ima
advantage is that they provide a theoretical framework to del
with the uncertainties related to the robot’'s motor and peraeptive
actions during both planning and execution stages. This pagr
describes a MDP-based planning method that uses a hierarahi
representation of the robot's state space (based on a quadte
decomposition of the environment). Besides, the actions ed
better integrate the kinematic constraints of a wheeled moite
robot. These two features yield a motion planner more efficiet
and better suited to plan robust motion strategies.

I. INTRODUCTION

thierry.fraichard}@nrial pes.fr

other hand, since the early nineties, approaches based on
Markov Decision Processes [6] have been used to address both
motion planning and motion execution problems [7]. Such
approaches also use a graph representation of the rokates st
space and their main advantage is that they provide a theo-
retical framework to deal with the uncertainties relatedht®
robot’s motor and perceptive actions during both planning) a
execution stages. Unfortunately, their algorithm comityeis
exponential in the number of edges of the graph which limits
their application to complex problems. Research have been
carried out in order to address this complexity issue by ecedu
ing the number of states through aggregation techniques [8]
This paper falls into this category, it describes a MDP-Hase

By design, the purpose of a mobile robot is to movBlanning method that uses a hierarchic representationeof th
around in its environment. To reach a given goal, the typicHtPOt's state space (based on a quadtree decompositioe of th

mobile robot first computes a motion strate@gy,a sequence

environment). Besides, the actions used better integhate t

of action that will take it to its goal), and then executeginematic constraints of a wheeled mobile robot. These two
it. Many researchers have studied these two problems sifig@tures yield a motion planner more efficient and betteedui

the late sixties-early seventies. In 1969, [1] introduced

tg plan robust motion strategies.

environment whose nodes corresponds to particular partstiy MDP model and the quadtree decomposition. Section Il
the environment, and whose edges are actions to move frofdegcribes in detail the approach proposed while section IV

particular part of the environment to an other. A graph dearBresents experimental results. Conclusions and futuspper
would return the motion strategy to reach a given goal. Sin#¥€s are given in section V.

then, different types of representations of the envirorimen
and different planning techniques have been proposed (for
instance, motion planning computes a moti@na continuous

Il. PATH PLANNING METHODS

This section presents the two methods used in our approach:

sequence of positions, to move from one position to aparkov Decision Processes and quadtree decomposition.

other [2]), but the key principle remains the same.

The decoupling between the planning stage and the e&x- Markov Decision Processes

ecution stage relies on the underlying assumption that th
robot will be able to successfully execute the motion stra-
egy computed by the planning stage. In most cases, t
assumption is violated unfortunately, mostly becauseoasti
arenon deterministicfor various reasonef wheel slippage),
a motion action does not always take the robot where intended
To overcome this problem, mobile robots are equipped with
different sensors in order to perceive their environmemnt an
monitor the execution of the planned motion. Then techréque *®
known as localisation techniques are used to solve the gmobl

at hand [3]: they are based on probabilistic models of astion
and perceptions and rely on Kalman filters [4], [5]. On the °

1Associate Professor at Joseph Fourier University, Gren(ER).
°Research Associate at Inria.

e1) Definition: a Markov Decision Process (MDP) models
agent which interacts with its environment. It is defined a
IS4—tuple< S, A, T,R >:

S is a finite set of states characterising the environment
of the robot in our caseS is usually obtained by a
regular decomposition of the environment or thanks to
a topological map;

A is a finite set of actions which permits the transition
between states. There is generally a discrete nhumber of
actions.

T:SxAxS — [0,1] is the state transition func-
tion which encodes the probabilistic effects of actions;
T(s,a,s!) is the probability to go from state to state

sf, when actioru is performed.



« R:S — R is the reward function used to specify theéA. States Definition

goal the agent has to reach and the dangerous parts ohs mentioned earlier, quadtree decomposition is used to
the environmentri(s) gives the reward the agent gets fofjetermine the states of the robot. The quadtree decompositi
being in states. of the robot’s environment yield a finite sét of rectangular
2) Optimal Policy:in MDP, the agent knows at each instangells (Fig. 1). The size of the smallest cell correspond$ieo t
its current state. Actions must provide all the informatfon robot size since it does not make sense to consider smaller
predicting the next state. Once the set of stafehas been cells. Moreover, the goal cell is chosen to have the minimum
defined and the goal state chosenpptimal policyr gives the sjze (e the robot size) to ensure that the robot will reach
optimal action to execute in each state$fn order to reach the goal with high accuracy. To define a state, the robot's
the goal state(s) (according to a given optimality crite}yio  orientation is taken into account: ther, ] orientation range
The two most important algorithms used to calculate thg discretized and a state is defined as follows:< ¢, 0 >
optimal policy areValue Iteration[6] and Policy Iteration[9].  with ¢ € C' ando is a subrangé—, 7. In our case, we have
The Value Iteration algorithm proceeds by little improverne ejght orientation subranges so as to have a good compromise
at each iteration and requires a lot of iterations. POIiewtjon between Comp|exity and realism. When the robot is in a state
however, yields greater improvement at each iteration agd-—< ¢ o >, we consider that it is in the middle ef with
accordingly needs fewer iterations, but each iterationeiy/ v the orientatioro whatever its exact position inand its exact

expensive. _ _ _ orientation (which is ifo— &, 0+ %] since we consider eight
Complexity results for this algorithms can be found in [10fprientations).

Each iteration is achieved ihS|® + O(|A||S|?) for Policy
lteration andO(]A||S|?) for Value Iteration. The number of B. Actions Definition
iterations needed to converge is quite difficult to detesmin
both algorithms seems polynomials |ifi| and|A]| [10].

B. Quadtree Decomposition — =
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Fig. 2. Examples of Dubins actions.
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“Classical” actions in MDP for mobile robots are of the
type “initial rotation on the spot, straight motion and final
EEEEEE H rotation on the spot”. To better account for the kinematic
M constraints affecting wheeled mobile robots and to limé th
. N _ _ slippage effect stemming from on-the-spot rotations, weeha
Fig. 1. Quadtree decomposition of a 2D environment: mixdts @ge grey introduced a novel type of actions defined by a sequence
whereas full cells are black. . . .

of motions along straight segments and circular arcs. Such

To decompose the environment, we use quadtree decdifitions are henceforth called Dubins actions as per [11] tha
position. It permits an approximate but fast and efficiefitroduced them for car-like robots.
modelling of the robot's 2D environment,. The principle of Given two adjacent states=< c,0 > ands’ =< ¢, 0’ >,
the quadtree decomposition is to recursively divide thei-en¥he problem is to compute the Dubins action allowing the
ronment in four identical square cells . Each cell is lalkllgobot to reach’ with the orientationo’, starting frome with
as being “ free” if there is no obstacle inside, “full” if it is the orientationo, without leavingc and ¢’. Since, such a
filled with an obstacle and “mixed” otherwise. Mixed cellearDubins action does not always exist, we also consider the
divided again in four and the process goes on until a givéfassical actions for the sake of completeness (a classical
resolution is reached. Fig. 1 depicts the result of the qeadt action between two adjacent cells always exists).
decomposition of a 2D environment: The number and size ofFig. 2 depicts several examples of Dubins actions. Depend-

the cells depends on the environment's characteristics. ~ ing on the respective sizes and positions of the start antl goa

L. B A cells, a Dubins actions is made up of a finite number of sttaigh
- DESCRIPTION OF THEAPPROACH segments and circular arcs.

Basically, our approach uses a quadtree decomposition to N ) o
define the set of states of a MDP (so as to reduce the numberState Transition Function Definition
of states). The decomposition is also used to define actimist 1) Introduction:in MDP, the transition function encodes in
better integrate the kinematic constraints of a wheeledilmoba probabilistic manner the non deterministic effects oioerst.
robot. Due to the quadtree decomposition, number and diversity of
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Fig. 3. How the transtion function is computed. Fig. 4. Uncertainty model for a translation.

actions is finite. Furthermore, the number of possible ,Ce”gefined by the actio_n_ executed gnd the WiShEd con_ﬁg_uration.
arrangements is considerable, that introduce problemsfioed Actually_, the probability of reaching the wished configoat

the set of reachable states. So, we can not define statetitmnsfs,the hlghegt, SO _the expectancy omust c_orrt—_:‘spond to the
function like it's done in the other works [12], [L3]. We nee ished configuration. Also, more the action is complex and

to abstract cells’ arrangement and sequence composing » moré the ungertamty |s_h|gh, so the action will permit
action. In next section, we present our method to compute t'iﬁ)edef'ne the covariance matriX fias tree parameters 4y,
state transition function.

2) Principle: in the next part of the paper, we calbnfigu-
ration a triple <x,y,0> where (x,y) is a geometric position in
the environment and < [-7,x] corresponds to the robot's
orientation in the environment. We callonf the set of
configurations.

Fig. 3 illustrates the principle we use to compute transitio
function. LetCw be the wished configuration after the robot
has done the actiom from configurationStr. On the figurega
is in black,Cw correspond to left cross, angkr at the right

cross. We define an intermediate functibalepending on the (@) (b)
action, the starting configuration and the wished configomat
modelling the incertitude on the wished configuration. W&eno Fig. 5. Uncertainty model for a circular arc motion.

1 : C — R this function, and we call itincertainty function
The elliptical dark grey disk on the figure 3 showing the set We have seen that Dubins actions combine translation
of configurations for whichl is greater tham with  close to and circular motions. Before defining uncertainty function
zero (to more visibility, we do not consider orientation et (precisely its covariance matrix) for any Dubins actiong w
figure). So the probability to reach a configuration in thiskdafirst define uncertainty function for elementary actioms,
grey area after the actiom is performed is not negligible. A translation and circular motions. The covariance matrix fo
states has a chance to be reach, if and only if, there existstlais two types of actions is defined by learning or could be
configurationc such asc € s and I(c) > e. In practise, the given a priori.
set of cells having a probability of being reached is show in We now illustrate our uncertainty models in Fig. 4 and 5.
striped grey, and correspond to the intersectioCofnd the In these figures, we do not consider orientations to clarifyy o
dark grey disk. After, we useflto compute the probability of presentation permitting to show a two dimensional repriasen
reaching each states in striped grey, after action dong@rgfar tion of the set of states and configurations (we only consider
from Str . cells and position, like in Fig. 3), and to consideas a two

3) Uncertainty Function Definitionthe purpose is to model parameters function.
by a functionl the uncertainty on configuration after the action Fig. 4 illustrates the uncertainty model for an elementary
done. We defind as a Gaussian, since intuitively, this type ofranslation. Fig. 4(a) shows the set of possible positidths (
function represents well the type of uncertainty we havatef elliptical grey disk) we obtain after the robot has executed
to. Indeed, the probability of reaching a position closefte t the action in black from the left cross to reach the wished
wished configuration is high, even though the probability afonfiguration (the right cross). The figure 4(b) shows the
reaching a position rather away from the wished configunati@ncertainty function/ which characterises the probability of
is nearly null. reaching each position. Intuitively, it seems that the utadety

So, defining the uncertainty functioh consists of deter- on the position is most important in the translation axe
mining the parameters of the Gaussian. This parameters #ran in the axe perpendicular to translation axe. Besidies, t



covariance matrix depends on actions features, and so, pinebability of staying in the same cell is 0.14 (cell 4) and

shape ofl shows well this feature. Most the translation iso on for other cells.

long, most the uncertainty area is large, so most elements o050 we obtain transition function because we compute the

covariance matrix are defined big. Also we see that evenpfobability of reaching each state, using uncertainty fiomc

the probability of reaching the wished configuration is weald which is defined by start state, action, and goal state.

the probability of reaching the wished cell is sizable. 5) On the Spot Rotationswe assume that uncertainty on
Fig. 5 illustrates the uncertainty model for a circular arthe position is equal to zero in the case of a rotation on the

motion. Fig. 5(a) shows the set of possible positions (tley grspot. So only states corresponding to the same cell arentke i

disk) we obtain after the robot has done the action in blagiccount and the uncertainty function takes only orientaiiio

from the down left cross to reach the wish configuration (thgarameter. Transition function for on-the-spot rotatiauld

up right cross). Fig. 5(b) shows the uncertainty functibn be defined directly and statically like it is done in [13].

which gh_aracterise the _chance of reaching each positias. ItD. Reward Function

most difficult to determine the uncertainty area for an arc of o ]

circle. Ref. [14] shows that this area could be approximatedtn® reward function is defined as follows:

by a disk of centre corresponding to the wished position R( _{ 0 if sis agoal

and depend on angle and radius characterising the arc. The —1 otherwise

symmetry of/ shows this feature. Also, as in the translation Thjs function is used in [15] et [13]. This simple gain

case, we see that even if the probability of reaching theedshfynction is sufficient and permits to distinguish the goalet

configuration is weak, the chance of reaching the wish cellfigym other states.

sizable. But there is more chance to reach an adjacent cell

in the case of arc of circle than in the case of translation. IV. RESULTS

Arc of circle displacement introduce more uncertainty thaf. Number of States Reduction

translation. . _ _ The first main advantage of our method is a reduction of
Then, the uncertainty function of actions composed ke number of cells due to the quadtree decomposition. & thi
several translations and/or several arc of circle actias dection, we study this reduction in more detail and show the

simply obtained as follow : the expectancy stay the wishe@ivantage of choosing a quadtree decomposition instead of a
configuration, and covariance mattiX is defined by summing regular decomposition.

the covariance matrix of each element of the sequence
composing the action M = Y M,,. If the sequence of
translation and arc of circle is important, the uncertaioty -
the final configuration is high. For example, if we look a
the action of Fig. 3, it is composed by two arc of circle
displacement and one translation. The expectancy comespao
to the gaol cross, and the covariance matrix is the sum of a
covariance matrix and translation covariance matrix. : .
4) State Transition Function Computatioronce I, the e BT
intersection of/ with S, the set of states, are defined, w
can assign a value at each state. This value is the prolyabi
for each state to be reached from a given state performin¢ =
given action. A state could be seen as a set of configuratio  °; - " " " . " : .
so it does not cause any problems to do intersectiohwith Percentage of free space
S.
If we do not consider orientation, and take ﬁgure 3 as drp. 6. Ev_olution of the cell number reduction when the pmbipa of the
. s . free space Increases.
example, we obtain the probability of reaching each celtifea
state, but we abstract from orientation) after action done :

Cells’ gain
8 3
e
a
Y
£4
“9
o
-
-
{*e
%
¢
B
.

TABLE Il

TABLE | CELL NUMBER REDUCTION
PROBABILITY OF REACHING A CELL
Environment size Average percentage of cells’ gaip
cell numper ! 2 3 4 S 6 ! 8 10 times the robot's sizg 40.9
probability | 0.0 | 0.0 | 0.03 | 0.14 | 0.0 | 0.01 | 0.13 | 0.64 0 times the robot’s size 535
cell number| 9 10 11 12 13 14 15 30 times the robot's sizd 78.7
probability | 0.0 | 0.01 | 0.03| 0.01| 0.0| 0.0 | 0.0 60 times the robot's sizd 84.3

If we look at table I, we see that the the probability of The chart of Fig. 6, illustrates the evolution of the cell rum
reaching the wished cell (cell number 8) is 0.64, and thHeer reduction when the proportion of the free space inceease



What is plotted is the ratio between the number of cel
obtained by a regular decomposition and the number of cg

obtained by a quadtree decomposition. They were compu + %{% I —*i
on a set of on thousand randomly generated environme YR '\% i
twenty times the size of the robot.. We can see that wh P Y
the proportion of the free space increases, the cell num B
reduction increases too. %

Table Il shows how significant is the gain with respect to th 1

size of environment: the bigger the environment, the hidiher
average cell number reduction. The cell number reduction
therefore maximum for large and quasi-empty environment

Since the algorithmic complexities of both Policy Iteratio
and Value lteration are a function of the number of stat{ |
and number of actions for each iteration, the reduction ef t
number of cells, and accordingly the number of states, yiel
a gain in running time. Our approach permits to apply MD
to bigger environments.

6?;— e

B. Motion Plan Examples

WX

NI -
s L

Fig. 8. Plan for 1496 states (187 cells, 8 orientations) agethwith Value
Iteration in 45 s.

cell. Each actions correspond to the optimal action for one

\ T L state.
¥ e % On these figures, we can see that the main feature of MDP
' ‘ /\ is kept: uncertainty on the action is integrated in the piagn

process. Indeed, safe actions are chosen: there are @pohe-

rotations and simple Dubins actions (like single transtzgior
i large circular arc motions). This phenomenon was foredeeab
because a rotation on spot generates an uncertainty on the

position close to zero, thus the collision risk is negligibbo
the robot will prefer doing a rotation, to place itself in the
position that will permit to do the safest displacement.

If we look at the right big case on Fig 7, we can see that
the robot will prefer take the north and turn away from goal
instead of reaching directly the goal. In fact, selecting th
action that permits to reach the goal directly is dangerowses
the corresponding Dubins action is complex (two circulasar
Fig. 7. Plan for 464 states (58 cells, 8 orientations) coegutith Value and. Qne translation) and ge_nerates lot of uncertainty on the
teration in 7 s. position at the end of the action, and furthermore the gdal ce

is close to some obstacle, so the collision risk is greater.

Figs. 7 and 8 show two plans generated using our methodAlso, obstacles remains repulsive: As we could see on the
On these plans, as described for Fig. 1, full cells are mght side of Fig. 7 the robot attempts to reach the big cell
black, free cells in white and mixed cells in grey. The goah order to move away from the obstacle. Also, in Fig. 8, if
corresponds to the cell with a cross. Each light grey arrowlse robot could go away from the obstacle by a safe action, it
represents an on-the-spot rotation. Dubins actions ane+epvould do that. This is the cell, on the right side of the figure,
sented by black segments and circular arcs (with arrowheddsthe actions planned in little cells.
attached to show the orientations). Fig. 9 shows a path extracted from second plan (Fig. 8).

When the plan is computed, we assign to each state an &g-extract a path from plan, instead of displaying the optima
tion which is the optimal action in order to reach the goal. Waction for all states, we choose a state as the initial stade a
have said that a state is defined as a couple <cell,orientatialisplay the sequence of actions permitting reaching thé goa
and that we consider eight orientations. So, on the plan, frem this initial state.
have eight states for one cell, thus there is eight actions peWe obtain more smooth path than by using discrete actions.




Fig. 9. Example of path

The next step of this work is to evaluate our planning
approach on a real robot using Markov localisation techesqu
as execution method [16]. An other interesting perspedsive
to study more complex and realistic methods to define the
reward function. The reward function could be modified to
make attractive certain classes of states. For instanagsst
where possible actions are less uncertain could be favored.
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