
HAL Id: inria-00182071
https://inria.hal.science/inria-00182071

Submitted on 24 Oct 2007

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Simultaneous Localization and Mapping using the
Geometric Projection Filter and Correspondence Graph

Matching
Cédric Pradalier, Sepanta Sekhavat

To cite this version:
Cédric Pradalier, Sepanta Sekhavat. Simultaneous Localization and Mapping using the Geometric
Projection Filter and Correspondence Graph Matching. Advanced Robotics, 2004. �inria-00182071�

https://inria.hal.science/inria-00182071
https://hal.archives-ouvertes.fr

Simultaneous Localization and Mapping using the Geometric

Projection Filter and Correspondence Graph Matching

Cédric Pradalier and Sepanta Sekhavat {pradalie,sekhavat}@inrialpes.fr

March 11, 2003

Abstract

A common way of localization in robotics is using triangulation on a system composed of

a sensor and some landmarks (which can be artificial or natural). First, when no identifying

marks are set on the landmarks, their identification by a robust algorithm is a complex

problem which may be solved using correspondence graphs. Second, when the localization

system has no a priori information about its environment, it has to build its own map in

parallel with estimating its position, a problem known as the simultaneous localization and

mapping (SLAM). Recent works have proposed to solve this problem based on building a map

made of invariant features.

This paper describes the algorithms and data structure needed to deal with landmark

matching, robot localization and map building in a single efficient process, unifying the pre-

vious approaches. Experimental results are presented using an outdoor robot car equipped

with a 2D scanning laser sensor.

Keywords

robotic localization, map building, landmark detection, landmark matching.

1 Introduction

When moving a robot, the classical way to deal with the modeling errors and the execution errors is

to equip the robot with some localization ability so that it can compute its error with respect to the

nominal path and correct it through a closed loop. A common way of localization is triangulation

using a system composed of a sensor and some landmarks or beacons (which can be artificial or

natural). This kind of architecture generally consists of three steps:

1. Feature extraction.

2. Feature identification and landmark identification.

3. Computation the robot pose using the identified landmarks.

Furthermore, when flexibility is required, it is interesting not to depend on a given description of

the environment. This is the simultaneous localization and mapping (SLAM). This problem adds

a fourth step to the preceding chronology: “Update the map using the observed features”.

Two of the preceding four steps present difficult problems: feature identification, and map

building. Both problems have been intensively studied in the last decade: for a start, for com-

puter vision researchers, data association is often a grounding problem. Without a robust data

association algorithm, computer vision technologies such as stereo-vision and 3D reconstruction

would not be achieved. Yet, in the field of mobile robot navigation, not much work on robust

data matching has been done. Most authors (see [6] for instance) use a simple Mahalanobis dis-

tance and a statistical test to do the data association. The work presented here will use a robust

matching algorithm based on correspondence graphs as described in [1] (see section 4.2 for more

details). Another efficient technique is the Joint Compatibility Branch and Bound presented in [5].

In other respect, SLAM is also a well known problem. The general approach used to involve

the building of a stochastic map, i.e. the map and the robot state are stored in a big state vector

which is updated using Kalman filtering ([4]). In 1997, M. Csorba ([2]) presented a new way of

dealing with this problem: the relative filter. The idea here is to build a map of features which

are invariant to robot pose instead of building an absolute map. In this way, the random variable

describing the map is independent of the variable describing the robot state. In 1999, P. Newman

([6]) extended this filter to the Geometric Projection Filter (GPF) which provides a way to produce

a geometrically consistent map from the relative features used in Csorba’s filter. But even in this

extension, the robust data association problem was not addressed. Another step on this subject

was made by M. Dean ([3]) who developed a non-linear version of the GPF.

The goal of this paper is to show that GPF and correspondence graphs can be used in a one-

pass process to obtain both robust matching and robust SLAM. Firstly, data used in the GPF

are very well suited for building a correspondence graph through invariant feature matching. Sec-

ondly, results from the correspondence graph matching can be easily used in the SLAM algorithm.

Furthermore, we choose to put the stress on the implementation efficiency, in order to have an

algorithm working on a real robot operating in its real environment with a real sensor.

The remaining of this paper is organized as follows. Section 2 gives a description of the problem.

Section 3 presents our experimental platforms. The principles of the different steps of the algorithm

and the data structures we use are presented in Sections 4 and 5. Finally, experimental results of

our approach are shown in Section 6.

2

2 Problem statement

Throughout this paper, we will consider the case of a mobile robot moving in a regular outdoor

environment(a car park for instance) where some kind of landmarks (artificial or natural) can be

detected via a batch1 process. Let us stress the fact that even if we are not facing such rough

conditions as the Mars rover, we cannot rely on precise environment characteristics such as those

usually exploited in indoor environments (doors, corridors, turns, etc.). We will also assume

that the robot is equipped with some sensors from which the range and the bearing to a set of

landmarks can be measured (for instance, a stereo-vision device, or a 2D laser range finder). As for

the landmarks, we will assume that they can be detected, but not identified directly from sensor

readings (case of indistinguishable landmarks).

In these conditions, our objective is: to maintain an estimate of the robot position (Local-

ization) as accurate as possible, without any initial knowledge about the landmark placement

and to maintain a map of the landmarks in the environment (Map Building).

front

θ

O x

y

Absolute frame

Sensor frame

i i

Landmark i
(x ,y)

Figure 1: Definition of frames and variables

Formally, as shown in figure 1, the robot position will be described by the position (x, y) of its

reference point and its orientation θ, in some absolute frame. For the sake of simplicity, we will

consider that the sensor position and orientation can be described by the same variables in the

absolute frame: (x, y, θ). Landmarks position will be given in the absolute frame. Finally, we will

also define a sensor frame for the description of the landmark observations.

Now, let us have an overview of the specific difficulties related to this objective.

1One measurement returns a set of observation and robot movement during the acquisition process does not

affect the quality of the measure

3

2.1 Matching difficulties

Since we want to use indifferentiable landmarks, their identification must be done by the local-

ization software. For instance, assume that the robot knows a set L = {(xi, yi), i = 1..p} of

landmarks. After a sensor reading, we get a set O = {oi = (ri, θi), i = 1..n} of landmark measure-

ments in the sensor frame. Among these observations, some are known landmarks, some are real

landmarks seen for the first time and others are detection errors. The objective of the matching

process is to find a function I from [1..n] to [1..p] ∪ {∅} such that, for i ∈ [1..n], I(i) = j iff oi is

an observation of Lj and I(i) = ∅ iff oi cannot be identified.

To find this function, we would like to use a method robust with respect to the errors in

the estimation of the robot position and robust to erroneous detections. Figure 2 illustrates the

complexity of this task.

Observations (sensor frame) Known landmarks (absolute frame)

A
A

B

B

C C

Figure 2: The matching process

2.2 Map building difficulties

The four steps (feature extraction, matching, localization, and map update) of any SLAM algo-

rithm need to be executed at each time step. Once matching and robot localization have been

done, we face the classical difficulties of simultaneous localization and map building: as we are

building the map while localizing the robot, we want to avoid that the errors in the robot pose

estimation accumulate in the map estimation.

3 Experimental platform

Our experimental platform is a robotic golf cab called Cycab. This mini-car is equipped with

a Sick laser range finder2 with an efficient range of 30 meters and an uncertainty of about 5-10

centimeters. Laser scans are received at about 10 Hz and odometry readings are done at 40 Hz.

Our landmarks are cylinders covered with reflector sheets (see figure 3 and 4). Notice that other

2A Sick LMS220, to be accurate. As judiciously remarked by one of our reviewers, the LMS291 might be a

better choice with its uniform error model of accuracy.

4

Landmarks

range finder
Sick 2D laser

Cycab robot

Figure 3: The Cycab robot

cars reflective devices (lights and number plate) are sometimes detected as landmarks (see Figure

7). Finally, all our experimentations take place in the INRIA car park with manually placed

landmarks and parked cars.

�����
�����
�����
�����

���
���
���
���

20 meters

Landmarks

2D laser range-finder

Figure 4: Typical laser data

5

4 Principles

4.1 Invariant features

4.1.1 Definition

Given a set S, a subset E of S, and a group G of transformation from S to itself, a property

P (E) on E is said to be invariant to G if and only if ∀g ∈ G,P (g(E)) = P (E). For instance,

with a sensor such as our laser range finder, the transformation which gives observations of the

visible landmarks in the local frame is the composition of a rotation and a translation. For this

group of transformation, the distance between 2 landmarks and the angle between 3 landmarks

are invariant.

The evaluation of an invariant property P on the subset E will be called the invariant feature

associated with E.

4.1.2 Advantages

Invariant properties are useful when trying to match a set of observed objects with a set of known

objects. Indeed, their evaluation do not depend on the way the observation is made (for the full

demonstration of this property, one can refer to [3]). Let us assume that we want to map a set O

of observations in the sensor frame to a set L of known landmarks in the absolute frame. As we

know that the transformation which brings one frame to the other is the composition of a rotation

and a translation, we know that distances and angles are not modified by the observation. Thus,

instead of trying to match the individual observations whose position estimates are dependent

on the robot pose estimate, we will directly match the invariant features. As these features are

invariant to robot pose, the error in the feature estimations and in the robot pose estimation will

be uncorrelated and the matching can be successful even if the robot pose estimate is erroneous.

Besides their use in the matching process, invariant features can also be used in the map

building process (see section 4.3). Instead of building a map of landmarks positions, one can build

a map of invariant features. This is the principle of the relative map building as presented in

[2, 3, 6]. To avoid ambiguity, our map of the invariant features will be called Relative DataBase

or RDB.

In the following, we will show how, with adapted data structures, matching and relative map

building can be considered as a single process.

4.2 Invariant matching principle

Let us assume that we want to match a set O = {oi} of observations to a set L = {lj} of known

landmarks. We will use here the graph theoretic approach given in [1]. Basically, we will use

6

the correspondence graph concept: a correspondence graph is a graph whose nodes are potential

matches oi ↔ lj and whose edges express the relation “is consistent with”.

The matching will be done in three steps:

1. From L, build a database of the invariant feature. For instance, with distance invariant, for

each pair of landmarks (li, lj), store the distance d(li, lj).

2. Look for the observed invariant features in the database and add corresponding edges to

the matching graph. Again, with the distance invariant, for each pair (om, on), look for

the pairs (li, lj) whose distance is the closest to d(om, on) in the database and add edges

(om, li) ↔ (on, lj) and (on, li) ↔ (om, lj) to the correspondence graph.

3. Look for a maximum clique3 in the correspondence graph. Its nodes correspond to the

maximum subset of matches which are all consistent with each others. They will define the

I function.

For the sake of efficiency, step 1 should not be done at each iteration. This database can be

maintained over the iterations by appropriate actions when building the RDB (see Section 4.4)

4.2.1 Invariant choice

We have seen that invariant features such as distances and angles are interesting tools for the

matching procedure. Nonetheless, beside being invariant, the quantity we will use as a key for

matching should have some other properties:

Easy to compare : The key idea of invariant matching is to store invariant features in some

research tree and to look for a measured feature in the tree. Thus the comparison between

two features should be fast and easy. This property is not verified for angles.

Robustness : Let us assume that a first observation o1 has been matched to a landmark li and

that a second landmark lj is known to be visible. Then any observation on the circle centered

on o1 with radius d(li, lj) can be matched to lj . This is problematic since when we install

artificial landmark, it is difficult to guarantee that every distance between 2 landmarks will

be sufficiently different from the others. To avoid this kind of mismatch, invariant features

should be as discriminant as possible (i.e. they should not be easily associated with a set of

observations among which one is spurious).

With this criterion, neither distances nor angles seem satisfying. Thus, when ever possible, we

choose to match triangles: two triangles are said to match if their area is similar and if it exists a

rotation which make them superimposable. The area is both invariant and an interesting criterion

3In a graph, a clique is a subset of nodes which are all connected to each others.

7

since it depends both on lengths of the triangle edges and on the vertex angles. Nevertheless,

as two non-superimposable triangle can share the same area, we must add the rotation search to

differentiate them. One could argue that this makes triangle matching more complex than angle

matching. In fact, triangle matching can be done in two steps: first, using the area, a set of

candidate matches are selected; second, the rotation test is used to reject bad matches from the

selected set.

Finally, as a triangle is a rigid structure, it gives very strong constraints on the matching

process and is thus better concerning the robustness criteria.

When only two observations are present or when matching with triangles fails, we come back

to distances matching. When there is only one observation, it cannot be matched with a landmark

by our method.

4.2.2 Using position estimate

Since we are working on a localization system, we can assume that at any time an estimation of

the robot pose is available. It can be used to ease the matching process by selecting a subset of

potentially visible landmarks. To do this selection, we consider a very conservative upper bound

to the localization error and we select landmarks which would be visible even with this error. For

instance, on our mobile robot, we allow the following uncertainties: 2 meters in position and 10

degrees in orientation.

4.3 Localization principle

Once the matching process has been done, finding the robot pose is quite easy: we just have to find

the pose which corresponds the best to the measurements. The result is then fused with odometry

information through the well known Kalman filter. Practically, if we note O = {(xi, yi) = oi}

the set of observations expressed in the sensor frame and L = {(x′

i, y
′

i) = li} the set of matched

landmarks, finding the current pose corresponds to finding the (x, y, θ) minimizing

F (x, y, θ) =
∑

i

‖Rθ(oi) + Tx,y − li‖
2 (1)

where Tx,y = (x, y)T and Rθ is the rotation of angle θ. Fortunately, this least squares minimization

has the following closed solution. The resulting pose can thus be computed in time linear to the

number of matched landmarks.

• θ = arctan(
S

xy′−S
yx′

S
xx′−S

yy′

)

• x = x̄′ − (x̄ cos(θ) − ȳ sin(θ))

• y = ȳ′ − (x̄ sin(θ) + ȳ cos(θ))

8

• ∀a, ā = 1

n

∑
i ai

• ∀(a, b), Sab =
∑

i (ai − ā)(bi − b̄)

4.4 Map building principle

The map building algorithm we use is the GPF described in [3]. With this algorithm, two data

structures are maintained: the relative databases (RDB), i.e. the list of our invariant features,

and the absolute landmark map (ALM), i.e. the list of estimates of the landmark positions in the

absolute frame. After each observation, some of the features in the RDB are updated, and from

time to time, the ALM is updated according to the RDB (see below).

4.4.1 Relative databases

Unlike [3], we will maintain two databases: one to store the pairs of landmarks and the distance

between them, and one to store the triangles of landmarks and their area (see Figure 5 for an

illustration).

4.4.2 Building the maps

When a new landmark is observed, its position in the absolute frame is estimated using the

estimate of the robot pose. The landmark is then inserted at this position in the ALM. It is only

important that the landmark be inserted close enough to its “true” position, as the optimization

process will adjust its position later. After this, invariant features involving these landmarks are

added to the RDB. Practically, we add every segment and triangle which are not too far away from

the landmark since landmarks which are far apart are less likely to be observed simultaneously.

4.4.3 Absolute map optimization

The optimization of the absolute map consists in finding the landmark positions which match

the RDB as accurately as possible. Notice that as our RDB is made to be invariant to rotation

and translation, it may exist a planar transformation between the absolute map resulting from

optimization and the real one. In order to determine uniquely these floating parameters, we

consider that the first landmark added to the absolute map is at its true position. This determines

the unknown translation. As for the unknown rotation, it is determined by considering fixed the

direction from the first landmark to the second one.

4.4.4 The waiting room

In order to avoid inserting volatile landmarks (due to spurious observations for instance) in the

ALM, we defined a waiting room mechanism: specific databases are used to store the hypothesized

9

landmarks. One database will store the hypothesized landmarks map (HLM) and the other two

will store segments or triangles involving at least one hypothesized landmark: let us call them

“Hypothesized Relative DataBases” or HRDB as their structure is the same as the RDB.

When an observation is made, we first try to match it with the ALM. If this fails, we try to

match it with the HLM. If this fails again, the observation is added to the HLM and the HRDB

is updated, otherwise the matched hypothesized landmark win 1 point. Landmarks whose score

is greater than a specified minimum score are validated and enter the ALM. Let us call them

verified landmarks. After a predefined maximum time in the waiting room, old hypothesized

landmarks are eliminated. As for corresponding segments and triangles, they enter the RDB when

all the landmarks they depend on are verified, and they are deleted when one of their landmarks

is eliminated.

4.5 Doing all in one process

Through the study presented in the current section, we have seen that the data needed in invariant

matching and in the relative filter are very similar. Furthermore, matching through the correspon-

dence graph is a very flexible process which can be adapted to fit the waiting room mechanism.

When matching observations with the ALM, we build a correspondence graph G from which a

clique Cm is extracted. The observations are then separated in a set of matched (∈ Cm) and

non-matched. These non-matched observations are matched with the HLM by adding edges (as

in Section 4.2) to G and finding in G the maximum clique Cem which contains Cm. This means

that we want the maximum set of matched hypothesized landmarks which are consistent with the

already matched verified landmarks.

The resulting algorithm is given in Table 1.

4.6 Note on the JCBB

One could wonder why we didn’t use the JCBB algorithm[5], instead of the correspondence graph

method. The main reason is that the JCBB is less well suited with the data used in the GPF. In

JCBB, invariant features are used in order to validate data association between landmarks. For

instance, when we try to match an observation O with a landmark L, we check that the distance

between O and the observations already matched Om is compatible with the distance between L

and the landmarks matched with Om. The objects used in the JCBB are mainly the landmark

positions and their uncertainty. It is thus well suited for the case when we have a map of landmarks

such as a stochastic map.

Conversely, in our work, we try to find directly the subset of invariant features which are

consistent with each others. Thus we are directly manipulating the invariants and we get the

10

Table 1: Simultaneous matching, localization and mapping algorithm (SMLAM)

[Matching and Localization]

1 Match observations with ALM (through associated invariant features in

RDB) → see 4.2.

2 If matching successes, compute sensor pose from the matched observations

→ see 4.3. Otherwise, sensor pose is only estimated using odometry.

[Map building]

3 Update the RDB → see 4.4.

4 Extend the correspondence graph by matching not yet matched observations

with the hypothesized landmarks → see 4.5.

5 Add yet unmatched observations to the waiting room: they become

hypothesized landmarks → see 4.4.4.

6 Add 1 to the score of all matched hypothesized landmarks → see 4.4.4.

7 Validate hypothesized landmarks with sufficient scores → see 4.4.4.

8 Eliminate hypothesized landmarks with excessive age → see 4.4.4.

landmark association as a kind of “side effect”. In this way, the correspondence graph matching

is thus better suited than the JCBB to the data used in the GPF, since this later provides a map

of invariant features.

Note that, as these two techniques are somewhat equivalent, there is little doubt that with

more programming work, JCBB could have been used to solve this problem. Nevertheless, corre-

spondence graphs seems more natural in this case.

5 Implementation

Now that we have the general frame of the SMLAM algorithm, a deeper reflection is needed on the

choice of the data structures. Indeed, we want this algorithm to work in real-time on our mobile

robot with updates as frequent as possible.

5.1 Necessary information

While the algorithm is running, information on different structures need to be stored. This is

illustrated in Figure 5: even if these structures are quite simple, the way they are managed will

determine the efficiency of the algorithm.

11

Hypothesized Landmarks
Map (HLM)

Segment DataBase
Sorted by lengths

Triangle DataBase
Sorted by areas

Relative DataBases (RDB)

Hypothesized Relative DataBases (HRDB)

Absolute Landmark
Map (ALM)

Observations
(Sensor Frame)

Observation 2

θ
r

Landmark 2
x y
Related segments
Related triangles

Related triangles
Related segments
x y
Landmark 1

Observation 1

θ
r

Landmark 0
x y
Related segments
Related triangles

Observation 0

θ
r

Length
Extremity 1 : Landmark
Extremity 2 : Landmark

Segment 2

Triangle 2
Area
Vertex 1 : Landmark
Vertex 2 : Landmark
Vertex 3 : Landmark

Data structures maintained by the map building algorithm

Data structures involved in the matching algorithm

Extremity 2 : Landmark

Segment 1

Length
Extremity 1 : Landmark

Triangle 1

Vertex 3 : Landmark
Vertex 2 : Landmark
Vertex 1 : Landmark
Area

Extremity 2 : Landmark
Extremity 1 : Landmark
Length

Segment 0

Triangle 0
Area
Vertex 1 : Landmark
Vertex 2 : Landmark
Vertex 3 : Landmark

Figure 5: Summary of the data structures needed in the SMLAM algorithm

5.2 Data structures

5.2.1 Absolute landmark map (ALM)

When updating the absolute map and when adding new landmarks to the RDB, we need to

be able to do a linear traversal of this structure. During the matching process the building

and the treatment of the correspondence graph will be greatly simplified by random access to

the landmarks. Furthermore when validating or removing hypothesized landmarks, we want to

insert/erase landmarks in/from the database. Notice that the latter events are rare compared to

the others operations. Thus, a resizeable array will be used for these data (for instance, the STL

vector template).

5.2.2 Observations

As for the landmarks, we mainly need efficient linear traversal for this structure, but random access

makes things easier without impacting on performance. Again, an array is the best structure.

12

5.2.3 Triangles and segments

During the matching step, many search request will be executed (for instance, to search for a

segment whose length is similar to an observed segment). When validating and removing hypoth-

esized landmarks, many insertions and removals will be needed. Thus, the most efficient way to

deal with these needs is to use a equilibrated research tree such as a red/black tree indexed by

the invariants (segment lengths or triangle areas). The STL multimap template also implements

these functionalities.

5.2.4 Relations between landmarks, segments and triangles

Each landmark must know the segments/triangles it is involved in. This relation will be used

when validating or removing a landmark. When validating a landmark, each dependent segment

or triangle score should be incremented by one. When removing a landmark, every dependent

segments and landmarks should be destroyed. We thus need linear traversal, easy insertion and

easy removal. A doubly linked list will thus give the best results.

5.3 Complexity of the algorithm

Let no denote the number of observations already done, nl and nhl the number of verified and

hypothesized landmarks, nm the number of matches after step 1 (see Table 1) and nem the number

of matches added by step 4. Then we can express the complexity of each step (see Table 2) and

obtain the following global complexity (without absolute map optimization):

C = O(n3

o log(nl) + Cm + Cem), (2)

where Cm and Cem are the complexity of finding the maximum clique of a matching graph and

finding the maximum clique which contains a given complete subgraph. The a priori complexity of

these problem is exponential (it is a NP-hard problem). Nevertheless, when sufficient observations

are given, the use of our invariants in the building of the graph edges gives sufficiently strong

constraints to make the search tractable in real-time. Practically, finding the maximum clique in

our graph is done by finding the maximum subset of nodes with degree and cardinal compatible

with a clique and verifying that it is indeed a clique. Thus:

Cm ≈ O(no(nl + nhl) + n2

m)

Cem ≈ O(no(nl + nhl) + n2

em + nemnm)

Hence, since nm + nem < no and nhl � nl,

C = O(n3

o log(nl) + nonl) (3)

13

Table 2: Complexity of algorithm steps

Step Complexity

1 For each observed triangle, search it in the verified database: O(n3

o log(nl) + Cm).

2 Practical pose computation (see 4.3): O(nm).

3 Sort matched segment according to standard deviation on the estimation of their length:

O(n2

m log(nm)). See [3] for details.

4 For each observed triangle, search it in hypothesized database: O(n3

o log(nhl) + Cem).

5 Test each observation: O(no).

6 Test hypothesized landmarks: O(nhl).

7 For each verified landmarks (αnhl landmarks), build corresponding triangles and seg-

ments: O(αnhl(nl + nhl)
2), with α � 1.

8 For each eliminated landmarks (βnhl landmarks), delete corresponding triangles and seg-

ments: O(βnhl(nl + nhl)
2), with β � 1.

Note that in practice, no is never very big: less than 10 observations are visible at the same time.

Finally, when testing the algorithm on a 1.2GHz PC, the mean running time was less than 2

milliseconds (with a maximum of 50 ms when doing the absolute map optimization).

6 Experimental results

6.1 Trajectories and map

The experiments presented here were made on the INRIA car park, on the trajectory shown on

Figure 6. The only information given concerning the landmarks was that the distance between

any two of them is greater than 50 centimeters. Notice that this is the trajectory built online by

the robot, and that the robot was able at anytime to compute an estimation of its own position.

6.2 Performance evaluation

In order to validate our localization device, we need to have some information on the real trajectory.

Unfortunately, as in many experiments, this information is not available. Nevertheless, instead of

showing the system accuracy evaluated through the Kalman filter4, we use the following method.

Indeed, after each laser scan, we evaluate the position from which the scan was acquired. Thus,

we can estimate the absolute position of each laser echo and draw it on a bitmap image of the

environment. This is illustrated in Figure 7.

4The covariance matrix only reveals the confidence of the Kalman filter toward itself.

14

Start position(0,0)

backward

X position (in m)

Y
 p

os
iti

on
 (

in
 m

)
Landmarks
Trajectory

-500

0

500

1000

1500

2000

-500 0 500 1000 1500 2000 2500 3000

Figure 6: Computed trajectory

The quality of the localization system is revealed by three aspects of Figure 7. First, most of

laser impacts on a landmark (numbered from 1 to 14) are concentrated on a circle of diameter

30 centimeters (compared to the landmarks diameter: 15 cm). This is indeed a very good result

since the laser range finder is believed to have a 10cm accuracy. Second, the car marked by a “C”

in the figure has interesting aspects. Three sets of impacts have been seen on this car, one from

P1, one from P2 and one from P3. And even if the view points of this sets are far apart from each

other both in time and space, they are consistent and aligned (the fact that the set of points seen

from P2 is not on a straight line is due to the detection of the rear wheel and wing). This proves

both the accuracy and the stability of the algorithm. The alignment of the points on the building

“B” are also excellent proofs of these properties.

Notice that the map presented in Figure 7 is computed and available online without complex

alignment computation.

Now, concerning the robustness, these are the only cases where the algorithm fails:

• There is zero or only one visible landmark.

• There is two visible landmarks, but verified landmarks are so close to each other that correct

data association is impossible.

Practically, the way to maximize the algorithm robustness is to place the landmarks sufficiently

far from each other , and to place them such a way as to maximize the localization abilities (see the

author’s previous paper [7] for details). Note that with the landmark placement and the trajectory

presented in Figure 6, the localization was successful for all the collected laser scans.

15

P
1

P
2

P
3

1

2

3 4

6
57

9 10
11

12 13

14
8

C

Seen
from P1 from P3

Seen

Seen
from P2

C

B

Figure 7: Experimental validation

7 Conclusion

In this paper we presented an algorithm for concurrent matching, localization and map building.

The algorithm is based on a concept appeared in the last five years: the relative map filter and,

an older notion, the correspondence graphs. We presented data structures and an algorithm to

combine efficiently these two concepts. Finally, we have shown that the resulting implementation

is accurate, stable and fast.

As for future works, we want to use the resulting algorithm as a reference localization for more

complex tasks such as motion planning and obstacle avoidance.

References

[1] T. Bailey, E.M Nebot, J.K. Rosenblatt, and H.F. Durrant-Whyte. Data association for mobile

robot navigation : a graph theoretic approach. In Proc. IEEE Int. Conf. on Robotics and

Automation, 2000.

16

[2] M. Csorba and H. Durant-Whyte. A new approach to map building using relative position

estimates. SPIE, Vol. 3087:115–127, 1997.

[3] M. Deans and M. Hebert. Invariant filtering for simultaneous localization and mapping. In

Proc. IEEE Int. Conf. on Robotics and Automation, 2001.

[4] Guivant, Nebot, and Baiker. Autonomous navigation and map building using laser range

sensor in outdoor application. In Proc. IEEE Int. Conf. on Robotics and Automation, pages

pp 3817–3822, 2000.

[5] J. Neira and J. Tards. Data association in stochastic mapping using the joint compatibility

test. IEEE Trans on Robotics and Automation, 2001.

[6] P. Newman. On the structures and solution of simultaneous localization and mapping problem.

PhD thesis, Australian Center for Field Robotics,Sidney, 1999.

[7] C. Pradalier and S. Sekhavat. “localization space” : a framework for localization and planning,

for systems using a sensor/landmarks module. In Proc. IEEE Int. Conf. on Robotics and

Automation, 2002.

17

