Hierarchies of probabilistic models of space for mobile robots: the bayesian map and the abstraction operator

Julien Diard 1 Pierre Bessiere 1 Emmanuel Mazer 1
1 E-MOTION - Geometry and Probability for Motion and Action
GRAVIR - IMAG - Graphisme, Vision et Robotique, Inria Grenoble - Rhône-Alpes
Abstract : This paper presents a new method for probabilistic modelling of space, called the Bayesian Map for- malism. It offers a generalization of some com- mon approaches found in the literature, as it does not constrain the dependency structure of the prob- abilistic model. The formalism allows incremental building of hierarchies of models, by the use of the Abstraction Operator. In the resulting hierarchy, lo- calization in the high level model is based on prob- abilistic competition of the lower level models. Ex- perimental results validate the concept, and hint at its usefulness for large scale scenarios.
Type de document :
Communication dans un congrès
Proc. of the Workshop on Reasoning with Uncertainty in Robotics, Aug 2003, Acapulco (MX), France. 2003
Liste complète des métadonnées

Littérature citée [15 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/inria-00182081
Contributeur : Christian Laugier <>
Soumis le : mercredi 24 octobre 2007 - 18:47:58
Dernière modification le : mercredi 11 avril 2018 - 01:53:58
Document(s) archivé(s) le : lundi 12 avril 2010 - 00:36:32

Fichier

diard03b.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : inria-00182081, version 1

Collections

Citation

Julien Diard, Pierre Bessiere, Emmanuel Mazer. Hierarchies of probabilistic models of space for mobile robots: the bayesian map and the abstraction operator. Proc. of the Workshop on Reasoning with Uncertainty in Robotics, Aug 2003, Acapulco (MX), France. 2003. 〈inria-00182081〉

Partager

Métriques

Consultations de la notice

245

Téléchargements de fichiers

291