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Hierarchies of probabilistic models of space for mobile robots:
the Bayesian Map and the Abstraction operator

Julien Diard* and Pierre Bessere and Emmanuel Mazer
Laboratoire GRAVIR / IMAG — CNRS
INRIA Rhone-Alpes, 655 avenue de I'Europe
38330 Montbonnot Saint Martin FRANCE

Abstract

This paper presents a new method for probabilistic
modelling of space, called the Bayesian Map for-
malism. It offers a generalization of some com-
mon approaches found in the literature, as it does

Thrun, 2003). More exceptionnally, one can find hierarchi-
cal POMDPs, as ifPineau and Thrun, 2092which is ar-
guably the work that bears the most resemblance to the one
presented here, although we do not use reward functions in
this work. The current work can also be related to Thrun’s ob-
ject mapping paradigriirhrun, 2002, in particular concern-

not constrain the dependency structure of the prob-
abilistic model. The formalism allows incremental
building of hierarchies of models, by the use of the
Abstraction Operator. In the resulting hierarchy, lo-
calization in the high level model is based on prob-
abilistic competition of the lower level models. Ex-
perimental results validate the concept, and hint at

ing the aim of transferring some of the knowledge the pro-
grammer has about the task, to the robot. Some hierarchical
approaches outside of the MDP community include Hierar-
chical HMMs and their variants (s¢®urphy, 2002 and ref-
erences therein), which, unfortunately, rely on the notion of
final state of the automata. Another class of approaches relies
on the extraction of a graph from a probabilistic model, like

its usefulness for large scale scenarios. for example a Markov Localization modgrhrun, 1998, or

a MDP[Lane and Kaelbling, 20§2Using such deterministic

: notions is inconvenient in a purely probabilistic approach, as
1 Introduction and related work we are pursuing here. Indeed, the current work uses probabil-
In robotics, modelling the environment that a robot has taties in all layers of the hierarchy of representations, allowing
face in a navigation task is a crucial problem, that has reus to propagate and handle uncertainties in a uniform and for-
ceived a lot of attention in the community. The most promis-mally coherent manner.
ing approaches rely on the probability calculus, especially Moreover, the main philosophy used by all the previous
for its capacity to handle incomplete models and uncertaitypproaches is to try to extract, from a very complex but in-
information. These approaches include — but are far fromractable model, a hierarchy of smaller models (structural de-
limited to — Kalman FilterdLeonardet al, 1994, Markov composition, sefPineau and Thrun, 2002 Of courseauto-
Localization modeld Thrun, 2000, (partially or fully) ob-  matically selecting the relevant decomposition of a problem
servable Markov Decision Procesd@outilier et al, 1999; into sub-problems is quite a challenge — this challenge be-
Kaelblinget al, 1994, and Hidden Markov ModelRabiner  ing far from restricted to the domain of navigation for robots
and Juang, 1993For references that present several of then¥acing uncertainties.
at once, giving unifying pictures, s¢Bessereet al, 2003; We pursue here an alternate route, investigating how, start-
Murphy, 2002; Roweis and Ghahramani, 1999; Snefthl,  jng from a set of simple models, one can combine them for
;997]. We will here assume that the reader has some familyjlding more complex models. The goal of this paper is
iarity with these approaches. _ . therefore to present a new formalism for building models of

In this domain of probabilistic modelling for robotics, hi- the space in which a robot has to navigate @agesian Map

erarchical solutions are currently flourishing — while still rep- model), and a method for combining such maps together in a
resenting a Very Sma” pal’t Of the Iiterature. The more achierarchica| manner (thﬁbstraction Operat()[

tive domain in this regard is decision theoretic planning: s formalism allows for a new representation of space,
one can find variants of MDPs that accomodate hierarchieg, which the final program is built upon many imbricated

or that sgalect automatically the partition of the state-spacg,gdels, each of them deeply rooted into lower level senso-
(see for instancéHauskrechtet al, 1998; Lane and Kael- yinotor relationships. Hierarchies of sensorimotor models
bling, 2001, or browse through the referencedRineau and  ggem also relevant to biologically inspired models, as it ap-
> Julien Diard is currently with the Laboratoire de Physiolo- pears that no single metric model can account alone for large

gie de la Perception et de Action, Colie de France, Paris SCale navigation capacities of animals (§eipers, 2000;

and the National University of Singapore. He can be reached al rullier etal, 1997; Franz and Mallot, 200p
Julien.Diard@free.fr. We will also argue that our approach draws away from the
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Figure 1: Structure of a Bayesian Robotic Program.

usual characteristics of the common models of space (Seproduct of simpler terms (possibly stating conditional inde-
tion 2.3), and that it is also more general than these modelgendence hypotheses so as to simplify the model and/or the
(Sections 3 and 6). For brevity, this paper will discuss neithecomputations), and finally, assigns forms to each term of the
of the learning methods that can be included into Bayesiaselected product (these forms can be parametric forms, or re-
Maps (mapping process), nor of another operator for mergeursive questions to other bayesian programs). If there are
ing Bayesian Maps (the Superposition operator). Preliminaryree parameters in the parametric forms, they have to be as-
work about these issues and all the details missing in the cusessed. They can be given by the programragariori pro-
rent paper can be found in Diard’s Ph.D. thd§igard, 2003. gramming) or computed on the basis of a learning mechanism
The rest of this paper is organized as follows. Sec-defined by the programmer and some experimental data
tion 2 presents the basics of the Bayesian Robot Program- The second component is opgoceduralnature, and con-
ming methodology, and discusses some of its characteristicsists of using the previously defined description witdjues-
Sections 3 and 4 will quickly define our notion of Bayesiantion, i.e. computing a probability distribution of the form
Map, and the Abstraction operator, respectively. Experimen®(Searched Known). Answering a “gquestion” consists
tal results are presented Section 5, and the paper concludisdeciding a value for the variabl€earched according to
on some research perspectives. P(Searched | Known). Different decision policies are pos-
sible, in our robotic experiments we usually choose to draw
: : a value at random according to that distribution. It is well
2 Bayesian Robot Programming known that general Bayesian inference is a very difficult
The work we present here is based on BRP, a Bayesian Robptoblem, which may be practically intractable. But, as this
Programming methodology. We briefly summarize it here paper is mainly concerned with modelling issues, we will as-
but still invite the interested reader to refe{t®beltelet al,  sume that the inference problems are solved and implemented
2004 * for all the details about this methodology. in an efficient manner by the programndier
As this formalism is only based on the inference rules
needed for probability calculus, it is very general. Indeed, 2-2 Example
very wide class of probabilistic models found in the literature As an example of a Bayesian Robot Program, we will rewrite
can be rewritten in the BRP framework, as is shown in greathe Markov Localization model in the BRP formalism. It can
length in[Bessereet al, 2003; Diard, 200B%. For example, be seen as an extension of the Hidden Markov Model, where
we can rewrite the Markov Localization model into the BRP an action variable is added. Outside of the field of robotics,
formalism. We will use this particular example to illustrate it is sometimes called input-output HM§Bengio and Fras-

both the BRP formalism itself and its generality. coni, 1995; Cacciatore and Nowlan, 1994et us recall that
o a HMM is basically the decompositioR(O, S; S;—1) =
2.1 Definition P(S;—1)P(St | Si—1)P(O; | St), whereO, is a perception

variable,S; andS;_; are location variables at timeandt —1.
Starting from this structure, the action variable is used to

The first is adeclarativecomponent, where the user defines refine the t.ransition modet (5, | S;—1) intoP(_St | .At Stfl)'

a description. The purpose of a description is to specify aT_he resulting BRP model for Markov Localization is shown

method to compute a joint distribution over a set of relevanf'9ure 2.

variables{ X1, X, ..., X, }, given a set of experimental data 23 BRPVs. other models

0 and preliminary knowledge. This joint distribution is de- ' ' _

notedP(X, X, ... X, | 6 7). To specify this distribution, Let us now develop some remarks that arise from the compar-

the programmer first lists the pertinent variables (and definetson between the use of the BRP formalism and some aspects

their domains), then decomposes the joint distribution as &f the more common models of the representation of space
(see Section 1). In particular, we now focus on solving navi-

![Lebeltelet al, 2009 is currently in press. Please refer in the gation tasks using BRP programs.

In the BRP formalism, a bayesian robotic program is a struc
ture (see Figure 1) made of two components.

meantime to a preliminary version, lattp://www-laplace. The first remark relies on the fact that, in BRP, a form

imag.fr/publications/Rayons/Lebeltel2000.pdf : appearing in a descriptioa' can be a question to another
’[Bessere et al, 2003 is downloadable from http: -

IImww-laplace.imag.fr/publications/Rayons/ 3The inference engine we use to tackle these problems has been

RR-4730.pdf . described elsewhe[8essereet al., 2003.
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Figure 2: The Markov Localization definition expressed in the BRP formalism.

descriptionc?. This allows the programmer to decompose cation estimation. In our Bayesian Map formalism, we will

a robotic program into sub-programs, as in structured comeonstraint what maps are used for (the questions), but not how
puter programming. Therefore, the first step for solving athe knowledge necessary for using the map is structured (the
navigation task is to imagine, or to copy from living beings decomposition).

(see[Kuipers, 2000; Trullieret al, 1997; Franz and Mallot,

2004), intermediary levels of descriptions or skills, that are 3 Bayesian Maps

relevant. This is somewhat different from most probabilistic o

models of space, that only rely on one level of description3-1 ~ Definition

i.e. that try to represent the environment using only one typeA Bayesian Map: is a description that defines a joint distri-

of features. Forms being questions to other descriptions is bution P(P L, L;; A), where:

key feature of our Abstraction Operator (see Section 4).

The second remark is that the first step when designing a
BRP description is the choice of variables. When dealing ) ) ) ]
with the representation of space, one usually selects a per- ® Lt is alocationvariable at timef,
ception variable, an action variable, and a location (or state) e L, is a variable having the same domain tHanbut at
variable. Therefore, the programmer has to choose a set of time#' (without loss of generality, let us assurtie> t),
locations that areelevant for solving the task at hand, in the
class of environments the robot will likely facehe choice of
the nature of these locations (metric or topologic, or dense or
sparse, for instance) should come a consequence of these ~ The choice of decomposition is not constrained. Any prob-
considerations This, again, somewhat differs from existing abilistic dependency structure can therefore be chosen here:
approaches, where the choice of model (Markov Localizatiorsee the recefifttias, 2003 for an example of how this lever-
or Kalman Filter, for instance), is rather a choice afepen- age can lead to interesting new models. Finally, the definition
dency structurer form definition that implies properties on of forms and the learning mechanism (if any) are not con-
the choice of variables (Kalman Filters are well suited to con-strained, either.
tinuous variables, for instance). In contrast, in the Bayesian For a Bayesian Map to be useable in practice, we need the
Map formalism, we will not put constraints on the choice of description to be rich enough to generathaviors We call
decomposition or forms: the programmer will have all lati- elementary behavioany question of the fornP(A* | X),
tude left for choosing the semantic of the location variablewhere A* is a subset of4, and X a subset of the other vari-
that solves his navigation task (the constraints on the choicgbles of the mapi.e., not in 4*). A behavior can be not ele-
of variables will merely be syntaxic). mentary, for example if it is a sequence of elementary behav-

The third and final remark is that, in BRP, the descriptioniors, or, in more general terms, if it is based on elementary
phase is considereiindependent of the utilization phase. behaviors and some other knowledge (which need not be ex-
This contrasts with most probabilistic models, where thepressed in terms of maps).
terms appearing in the decomposition are usually chosen for For a Bayesian Map to be interesting, we will also require
a particular inference (when they are not said to be the onl§hat it generateseveralbehaviors — otherwise, defining just
correct choice of decomposition, S&outilier et al, 1999).  a single behavior instead of a map is enough. Such a map
For example, action or transition models, which can be diffi-is therefore a ressource, based on a location variable relevant
cult to assess when the variables are not chosen well, are st@nough to solve a class of tasks: this internal model of the

very common because they are easily integrated into the Igvorld can be reified. _ _
A “guide” one can use to “make sure” that a given map will

“Assuming the inference space and time requirements issues ag€nerate useful behaviors, is to check if the map answers in a

taken care of by the programmer — usually by choosing a reasonabl€levant manner the three questiang., | P) (localization),
model, or decomposing further into sub-models. P(Ly | A L) (prediction) andP(A | Ly L) (control).

e P is a perception variable (the robot reads its values
from physical sensors or lower level variables),

e andA is an action variable (the robot writes commands
on this variable).
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Figure 3: The Bayesian Map model definition expressed in the BRP formalism.

By “relevant manner”, we mean that these distributionsone we present here is called the abstraction of maps, it is
have to be informative, in the sense that their entropy is “faidefined Figure 4, and commented in the rest of this section.
enough” of its maximumi( e. the distribution is different As stressed above, in a Bayesian Map, the semantics of the
from a uniform distribution). This constraint is not formally location variable can be very diverse. The main idea behind
well defined, but it seems intuitive to focus on these threghe abstraction operator is to buédBayesian Map: whose
questions. Indeed, the skills of localization, prediction anddifferent locations are other Bayesian Map5 ¢, ..., c".
control are well identified in the literature as means to gen-The location variable of the abstract map will therefore take
erate behaviors. Checking that the answers to these ques-possible symbolic values, one for each underlying rdap
tions are informative is a first step to evaluate the quality of &Each of these maps will be “nested” in the higher level ab-

Bayesian Map with respect to solving a given task. stract map, which justifies the use of the term “hierarchy” in
Figure 3 is a summary of the definition of the Bayesianour work. Recall that Bayesian Maps are designed for gener-
Map formalism. ating behaviors. In the abstract map, the lower level behaviors
a',a?,...,a" can be used for linking the locatiors. The
3.2 Generality of the Bayesian Map formalism action variable of the abstract map will therefore takgos-

We now invite the reader to verify that the Markov Local- sible symbolic values, one for each behavior of the underlying
ization model is indeed a special case of the Bayesian Mar\P‘aPS- In order to build an abstract map havintpcations,
model by comparing Figures 2 and 3. Recall that Kalmarthe programmer will have to have previously defimeldwer
Filters and Particle Filters are special cases of Markov Locallevel maps, which generatebehaviors. The numbersand
ization, as they add hypotheses over the choice of dependenéyare therefore small, and so the abstract map deals with a
structure made by the Markov Localization model. This im-SMall internal space, having retained of each underlying map
plies that Kalman Filters and Particle Filters also are specig®nly @ symbol, and having “forgotten” all their details. This
cases of Bayesian Maps. Just|f|e_s the use of the name “abstraction” for this operator.

Bayesian Maps can therefore accomodate many diﬁererﬁut this “summary mechamsm" has yet to be descnbgad: that
forms, depending on the needs or information at hand: fofS What the perception variable of the abstract map will be
example, one Bayesian Map can be structured like a real valsed for, as it will be the list of all the variables appearing in
ued Kalman Filter for tracking the angle and distance to soméhe underlying maps. o
feature when it is available. If that feature is not present, or Given the four variables of the abstract map, we define its
in cases where the linearity hypotheses fail, we can use adeint distribution P(P L, Ly A) with the following decom-
other Bayesian Map, which need not be a Kalman Filter (fofPOSition:
example, based on a symbolic variable).

Hierarchies built of Bayesian Maps (via the abstraction op-P(P Lo Lo A)
erator) can thus be hierarchies of Markov Localization mod- = P(P'L; Ly A ... P" L} Lj; A" Ly Ly A)
els, hierarchies of Kalman Filters, etc. Moreover, heteroge- n o
neous hierarchies of these models can be imagined: ML over = P(L;) H P(P' Ly Ly, A" | Ly)P(Ly)P(A | Ly Ly).
KFs, or evern KFs and one ML model, which, in our view, i=1
would be a formally satisfying alternative [fomatiset al.,

2001 In this decomposition, P(L;) and P(L.;) are defined

as uniform distributions.  All the terms of the form

: . P(P' Lt Li, A" | [L; = c]) are defined as follows: when
4 Abstraction of Bayesian Maps ¢ # ¢, the probabilistic dependency between the variables
Having defined the Bayesian Map concept, we now turn to”’, L;, Li,, A® of the mapc’ is supposed unknown, there-
defining operators for putting Bayesian Maps together. Thdore defined by a uniform distribution. Whereas whesa ¢,
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Figure 4: The abstraction operator definition expressed as a Bayesian Map.

this dependency is exactly what the maplefines. Therefore question likeP(A | [Ly = ¢] [P = p]): what is the prob-
this term is a question to the descriptignbut a question that  ability distribution over lower level behaviors, knowing all
includes the whole sub-description by asking for the joint dis-valuesp of the variables of the lower level, and knowing that
tribution it defines. Since the lasttermP(A | L; L), only  we want to “go to mag”? Answering this question thus al-
includes symbolic variables that have a small number of vallows to select the most relevant underlying behavior to reach
ues, it makes sense to define it as a table, which can be eas#ygiven high level goal. The computation is as follows:

a priori programmed or learned experimentally.

The abstract Bayesian Map is now fully defined, and, given P(A| Ly P)
n underlying maps, can be automatically built. The last step 1 n o
is to verify that it generates useful behaviors. Here, we will =~ ST PP L, L AT Ly) | P(A| Ly Ly).
examine the three guide questions of localization, prediction Ly \i=1

and control.
The localization question leads to the following inference
(derivation omitted):

This computation includes the localization question, to weigh
the probabilities given by the control modB(A | L; Ly ).
In other words, the distribution over the action variallén-

P(L,|P) = P(L,|P'L}LL A" ... P"L? L™ A™) cludes all localization uncertainties. Each underlying model
n is used, even when the robot is located at a physical location
_ 1 HP(PZ- LiLi, A"| L) that this model is not made for. As a direct consequence, there
Z 2 . K is no need tadecidewhat map the robot is in, or tewitch

from map to map: the computation considers all possibilities
The interpretation of this result is best explained with anand weighs them according to their (localization) probabili-
example (see Section 5). ties. Therefore the underlying maps need not be “mutually
As for the prediction and control questions, they are easilyexclusive” in a geographical sense.
computed: the control questiaR(A | [L; = I] [Ly = U'])
appears in the decomposition, therefore it requires no inferg Experimental validation

ence. The predicion question is an “inversio®(L, | [A = :
a [Li = 1)) x P([A=a] | [Ls =] Ly). We report here an experiment made on the well-known Koala

mobile robot platformf. In order to keep as much control
gs possible over our experiments and the different effects we
observe, we simplify the sensorimotor system and its environ-

50f course, using a joint distribution as a question is dangerousN€nt. We only use the 16 proximetdfs: = Pzo/...APxi5
with respect to the assumption that the inference is dealt with by th@f our robot, and keep two degrees of freedom of motor con-
programmer. Special care has to be taken for this quantity to be usd#ol, via the rotation and translation spe€dot andVtrans.
in the inference, as the dimension of the space of these distributiomhe environment we use is a 55 m area made of movable

makes them prone to degenerate quickly to numerical epsilons. Diglanks, that allow us to easily set up any configuration (see a
cussing the possible solutions to this problem is beyond the scopeof
this paper. 5Seehttp://www.K-team.com

Recall that the final goal of any Bayesian Map is to provide
behaviors. In the abstract map, this is done by answering



typical shape we use, Figure 5). The goal of this experimentonfigurations would have grown. We could then have re-
is to solve a navigation task: we want the robot to be able tgplaced thec¥*!! Bayesian Map by a Kalman Filter based
go hide in any corner, as if the empty space in the middle oBayesian Map. In the case of our experiments, that was not
the area were dangerous. necessary.

The first programming step is to analyse this task into sub- The two other Bayesian Maps we define are:
tasks. We particularize three situations that are relevant for o .corner gescribes how to navigate in a corner, using
solving the task: the robot can either be near a wall, and it 5 symbolic location variable that can take 4 values:
should follow it in order to reach the nearest comner, orthe  p,.n17c £t Front Right, Rear Le ft and Rear Right.
robot can be in a corner, and it should stop, or finally it could This is enough for solving tasks like “quit-corner-and-
be in empty space, and should therefore go straight, so as to follow-right”, “away-from-both-walls”, “stop”.

leave the exposed area as quickly as possible. ' L . .
P q yasp o cempty—space which is very simple, describes how to

5.1 Low level Bayesian Maps navigate in empty spacége. when the sensors do not

Given this analysis, the second programming step is to define  S€€ @nything. The behaviors defined here are “straight-
one Bayesian Map for each of the three situations. They all ~2head”and “stop”.
use the same perception variable= Px and the same action 5 o  Apstract Bayesian Map
variableA = Vrot A Vitrans.

The first map,c**! describes how to navigate in pres-
ence of a single wall, using a location variablg =

6 A Dist: the phenomenon “wall’ is summed up by We l?btain a maptc, whose location variable id,; =
. . wa corner EMP’ —Sspace 1 1 1
an angle and a distance.  Therefore®e! defines 1¢°* +¢ , CEPY }. The action variable lists

P(Px 0, Dist, 0, Disty Vrot Virans | ¢*e'). We have the behaviors defined by the low level mapsd =

implemented this map using 12 possible angle values, and oILow-;maIl-nght, go-c':lj\{vay{frct)rr]n-walkl. ). The rSest tc_;f th4e
different distances. This lead to a compact model, yet accy2PSract map Is accorading to the schema given section 4.
rate enough to solve the sub-tasks we wanted to solve. The We want here to discuss the localization question. Let us

dependency structure we choosed&! on right hand sides assume that the robot is in empty space: all its sensors read
omitted): 0. Let us also assume that the robot is currently applying the

“straight-ahead” behavior, that séts-ot andVi¢rans near 0
P(Pzx 0y Dist; 0y Disty Vrot Virans) (no rotation) and 40 (fast forward movement), respectively,
_ . A . . using sharp Gaussian distributions.
= Pl DZStt)HP(le | 0¢ Dist:) P(6r Disty) Let us consider the probability to be in location
‘ cempty=space (with  standing forwall, ¢ for corner and

Given these three maps, the third and final program-
ming step is to apply the abstraction operator on them.

P(Vrot | 0, Dist, 0y Disty) e for empty — space):
P(Vtrans | Ht Dzstt 9t/ Dzstt/) P([Lt _ Cempty—space} | P)
P(@t DZStt) andP(Gt/ DZSt,L/) are uniform probablllty dis- P(Pw LY Lw Aw | [Lt _ Cemptyfspace])
tributions. Each term of the fOl’nP(P(L’i | 0, DiStt) o P(Pc LctLe/tAc | [L — cempty—space])
is a set of Gaussians, that was identified experimentally, P(P L% L’é A | [Ltt = cempty—space])
t’ -

by a supervised learning phase: we physically put the
robot in all 36 possible situations with respect to theOf the three terms of the product, two are uniforms, and one
wall, and recorded proximeter values so as to compute exs the joint distribution given by-c"Pty—space  That joint
perimental means and standard deviations. Finally, thelistribution gives very high probability for the current sit-
two control termsP(Vrot | 0, Dist, 6y Disty) and  uation, as decribing the phenomenon “going straight ahead
P(Vtrans | 0; Dist; 0 Disty) were programmed “by in empty space” basically amounts to favoring sensory read-
hand”: given the current angle and distance, and the anglegs of 0 and motor commands near 0 and 40Went and
and distance to be reached, what should be the motor com‘trans, respectively. The situation is quite the opposite for
mands? P([L; = ¢ | P): for examplec**! does not favor at all
This map successfully solves navigation tasks like “follow- this sensory situation. Indeed, the phenomenon “I am near
wall-right”, “follow-wall-left”, “go-away-from-wall”, “stop”, a wall” is closely related to the fact that the sensors actu-
using behaviors of the same name. For exampleally sense something. The probability of seeing nothing on
“follow-wall-right” is defined by the probabilistic question the sensors knowing that the robot is near a wall is very low:
P(Vrot Vitrans | Pz [Ly = (90,1)]): compute the prob- P([L; = ¢¥*!] | P) will be very low. The reasoning is simi-
ability distribution on motor variables knowing the sensorylar for P([L; = ¢<""¢"] | P).
input and knowing that the location to reachfis= 90 °, This computation can thus be interpreted asrdgeogni-
Dist = 1 (wall on the right at medium distance). tion of the most pertinent underlying mégr a given sensory
This map is an instance where a Kalman Filter could havesituationP. Alternatively, it can be seen asaeasure of the
been used instead. For example, if we had required a moreoherence of the variables each underlying map, or even
accurate computation of the angle and distance to the walhs aBayesian comparison of the relevance of modafsas-
the supervised learning method we used would not have beesessed by the numerical value of the joint distributions of each
manageable anymore, as the time to experimentally visit allower level model. Since these distributions include (lower
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Figure 5: 2D projection of the estimated “validity zones” of the map¥!, ccorner et cempty—space  The right part of the
figure is a screenshot of the localization module of the abstract map, that shows the “comparison” and competition between the
underlying models. The winner is marked by the central dot: in this case, the robot was near a wall.

level) location and action variables, the maps are not onlfo Conclusion

recognized by sensory patterns, but also by what the robot i?\/e have presented a formalism called the Bayesian Map,
currently doing. which is a generalization of most probabilistic models of

N , space found in the literature. Indeed, it drops the usual con-
The localization guestion can therefore be used to asseigraints on the decomposition, on the choice of forms, even
the “validity zones” of the underlying mapse. the places

of the environment where the hypotheses of each model hol(ﬁn the implementation of the probability distributions. We
Experimentally, we have the robot navigate in the environ ave presented an operator, called the Abstraction operator,

or building hierarchies of Bayesian Maps.

ment, and ask at each time step the localization question. We .
can summarize visually the answer, for example by draw- The experiments we presented are of course to be regarded

) -__only as “proofs of concept”. Their simplicity also serves di-
ing values forL,, and report the drawn value on a C"’Irtes""mdactic purposes, while on the other hand, the task considered

map of the environment. A (simplified but readable) result 'Sgould have been achieved in many other ways. However,

shown Figure 5. As can _be seen, the robot correctly €% ese experiments, in our view, are a successful preliminary
nizes each situation that it has a model for. As a conclusion tep toward applying our formalism. Part of the current work
let us note that the resulting zones are not contiguous in th aimed at enriching the Bayesian. Maps presented here for

environment: for example, all the corners of the environment” . . . .
are associated with the same symbol, nameRy,*". This %Srtwltg% igf?::gg;ég?:gig%r?é our formalism when con-

effect is known aperceptual aliasing But this very simple Moreover. since each man of the hierarchy is a full brob-
representation is sufficient for solving the task that was given,, ... . ' p ot VIS € pr¢
to the robot: we report here that the behavior “go-hide-in-ab'l'suc model over the four variables of perception, action

anv-corner” is indeed generated by the abstract ma and locations at two different time-steps, it is potentially
y 9 y P: very rich. Possible computations based on these maps in-

A typical trajectory for the robot, when we start it in the clude questions like the prediction questibiL, | A L),

middle of the arena, is to start by going straight ahead. A hich forms the basis gslanningprocesses. Hierarchies of
soon as a couple of forward sensors sense something, t yesian Maps are .therefore to be placgd alongside model
“empty-space” situation is not relevant anymore, and the’aSed approaches, instead of pure reactive approaches. Ex-
robot applies the next best model it has, depending on thBlOiting such knowledge by integrating a planning process in
correlation between what the sensors see: if it looks like U7 Bayesian Map formalism is also part of the ongoing work,

wall and moves like a wall, then the probability for the “wall” and also requires a full scale experiment to be validated.
model will be high. On the other hand, if it rather feels like a Although we are qnly at the pe_glnnlng of this fes.ea“?h
corner, then the corner model will win the probabilistic com- Irack, we do believe it is a promising one, and hope it will
petition. Suppose it was near a wall, then it starts to followSPark some interestin the community as well.

it, until a corner is reached. In our first version, because

the “corner” model was designed independently of the wallACKnowledgments
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