Support Vector Machines for burnt area discrimination

Olivier Zammit 1 Xavier Descombes 1 Josiane Zerubia 1
1 ARIANA - Inverse problems in earth monitoring
CRISAM - Inria Sophia Antipolis - Méditerranée , SIS - Signal, Images et Systèmes
Abstract : This report addresses the problem of burnt area discrimination using remote sensing images. The detection is based on a single post-fire image acquired by SPOT 5 satellite. To delineate the burnt areas, we use a recent classification method called Support Vectors Machines (SVM). This approach is compared to more conventional classifiers such as K-means or K-nearest neighbours which are widely used in image processing. We also proposed a new automatic classification approach combining K-means and SVM. The results given by the different methods are finally compared to ground truths on various burnt areas.
Type de document :
Rapport
[Research Report] RR-6343, INRIA. 2007, pp.37
Liste complète des métadonnées

Littérature citée [1 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/inria-00185101
Contributeur : Rapport de Recherche Inria <>
Soumis le : jeudi 8 novembre 2007 - 10:13:52
Dernière modification le : mercredi 31 janvier 2018 - 10:24:04
Document(s) archivé(s) le : mardi 21 septembre 2010 - 15:07:28

Fichiers

RR-6343.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : inria-00185101, version 2

Collections

Citation

Olivier Zammit, Xavier Descombes, Josiane Zerubia. Support Vector Machines for burnt area discrimination. [Research Report] RR-6343, INRIA. 2007, pp.37. 〈inria-00185101v2〉

Partager

Métriques

Consultations de la notice

394

Téléchargements de fichiers

186