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ABSTRACT General Terms

We give a complete description of the Voronoi diagram of three Theory, Algorithms.
lines inIR3. In particular, we show that the topology of the Voronoi
diagram is invariant for three lines in general position, that is, that Keywor ds
are pairwise skew and not all parallel to a common plane. The tri-
sector consists of four unbounded branches of either a non-singularvoronoi diagram, medial axis, quadric surface intersection.
quartic or of a cubic and line that do not intersect in real space.
Each cell of di_mension two consists of two connected_ components]  INTRODUCTION
on a hyperbolic paraboloid that are bounded, respectively, by three
and one of the branches of the trisector. The proof technique, which
relies heavily upon modern tools of computer algebra, is of interest
in its own right.

This characterization yields some fundamental properties of the ) s . .
Voronoi diagram of three lines. In particular, we present linear agram of_lm_es iR* under the Euchdear_l metric.
semi-algebraic tests for separating the two connected components Voronoi d|agrams.have been the subject of a tr.emendous.a.lmount
of each two-dimensional Voronoi cell and for separating the four of research. For points, these diagrams and their complexities are

connected components of the trisector. This enables us to answelwe” u_nderstood a_nd optlr_nal algorlthms_ as well as robus_t and gfﬂ-
queries of the form, given a point, determine in which connected cient |mplementat|0ns exist for computing them in any dimension
component of which cell it lies. We also show that the arcs of the (see for instance [1, 2, 4,5, 6, 7, 14, 25, 26, 35]). Nevertheless,
trisector are monotonic in some direction. These properties imply

some important problems remain and are addressed in recent pa-
that points on the trisector of three lines can be sorted along eachPe's: 11-?6 same is true for segments and polygons in two dimen-
branch using only linear semi-algebraic tests. sions [17].

For lines, segments, and polyhedra in three dimensions much less
is known. In particular, determining the combinatorial complexity
of the Voronoi diagram ofi lines or line segments iR2 is an out-
standing open problem. The best known lower bourfd(is?) and

The Voronoi diagram of a set of disjoint objects is a decomposi-
tion of space into cells, one cell per object, such that the cell associ-
ated with an object consists of all points that are closer to that object
than to any other object. In this paper, we consider the Voronoi di-

Categories and Subject Descriptors

F.2.2 JAnalysis of Algorithms and Problem Complexity]: Non- the best upper bound @(n3+¢) [36]. It is conjectured that the com-
numerical Algorithms and Problemsseometrical problems and  plexity of such diagrams is near-quadratic. In the restricted case of
computations 1.1.2 [Symbolic and Algebraic Manipulation]: a set ofn lines with a fixed numberg, of possible orientations,
Algorithms—Algebraic algorithms1.3.5 [Computer Graphics]: Koltun and Sharir have shown an upper boun®¢i?*€), for any
Computational Geometry and Object ModelingGufve, surface, €>0[19].

solid, and object representations There are few algorithms for computing exactly the Voronoi dia-

gram of linear objects. Most of this work has been done in the con-
text of computing the medial axis of a polyhedraas,, the Voronoi
diagram of the faces of the polyhedron [9, 23]. Recently, some

Permission to make digital or hard copies of all or part of thisrknfor progress has been made on the related problem of computing ar-
personal or classroom use is granted without fee providaddbpies are rangements of quadrics (each cell of the Voronoi diagram is a cell
not made or distributed for profit or commercial advantage aatidbpies of such an arrangement) [3, 18, 24, 32, 33]. Finally, there have bee
bear this notice and the full citation on the first page. Toyooiherwise, to many papers reporting algorithms for computing approximations of

republish, to post on servers or to redistribute to listguies prior specific the Voronoi diagram (see for instance [10, 13, 16, 37])
permission and/or a fee. ST )

SCG'07,June 6-8, 2007, Gyeongju, South Korea. In this paper, we address the fundamental problem of understand-
Copyright 2007 ACM 978-1-59593-705-6/07/0006 ...$5.00. ing the structure of the Voronoi diagram of three lines. A robust and
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Figure 1: Voronoi diagram of 3lines ¢4, ¢,, and ¢3 in general position: (a) Voronoi 2D-face of ¢1 and /5, i.e., set of points equidistant
to ¢1 and ¢, and closer to them than to ¢3. (b) Orthogonal projection of a 2D-face on a plane P with coordinate system (X,Y); the
plane’'s normal is parallel to the common perpendicular of ¢1 and ¢, and the X and Y-axes are parallel to the two bisector lines (in
P) of the projection of /1 and ¢, on P. The 2D-face isbounded by four branches of a non-singular quartic.

effective implementation of Voronoi diagrams of three-dimensional pairwise skew lines that are not all parallel to a common plane.
linear objects requires a complete and thorough treatment of the There are linear semi-algebraic tests for

base cases, that iS the diagrams Of thl’ee and fOUI’ |ines, pOintS or (|) deciding on which connected Components of the two-
planes. We also strongly believe that this is required in order to dimensional cell, point p lies, or

make progress on complexity issues, and in particular for proving iy geciding on which branches of the trisector, point p lies, re-
tight worst-case bounds. We provide here a full and complete char- spectively. ' '
acterization of the geometry and topology of the elementary though

difficult case of the Voronoi diagram of three lines in general posi- Furthermore, if the three lines are rational, these linear tests are
tion. rational.2 Moreover, there is a linear semi-algebraic test for

Main results. Our main result, which settles a conjecture of Koltun ~ (iii) ordering points on each branch of the trisector.

and Sharir [19], is the following (see Figure 1). ] ] - ]
Notice that the tests (i) and (ii) enable us to answer queries of

THEOREM 1. The topology of the Voronoi diagram of three the form, given a point, determine in which connected component
pairwise skew lines that are not all parallel to a common plane of which cell it lies. Notice also that tests (ii) and (i) should be
is invariant. The trisector consists of four infinite branches of ei- useful for computing the Voronoi diagrammfines since it requires
ther a non-singular quartit or of a cubic and a line that do not  to locate the points equidistant to four lines on a Voronoi arc of three
intersect inP3(R). Each cell of dimension two consists of two con-  of these lines.
nected components on a hyperbolic paraboloid that are bounded, The rest of the paper is organized as follows. The next section
respectively, by three and one of the branches of the trisector. gives the proof of Theorem 1. In Section 3, we present some fun-

. . . . damental properties of the Voronoi diagram of three lines and algo-

The proof technique, which relies heavily upon modern tools yithms for separating the components of each cell of the diagram.
of computer algebra, is of interest in its own right. We also pro- e also prove the Monotonicity Property and Theorem 2. Finally,
vide a geometric characterization of the configurations of three lines ;¢ give, in Section 4, a geometric characterization of the config-

(which are pairwise skew and not all parallel to a common plane) rations of three lines in general position such that their trisector
whose trisector is not generic, that is consists of a cubic and a line. ;gntains a line.

The characterization of Theorem 1 yields some fundamental
properties of the Voronoi diagram of three lines which are likely to
be critical for the analysis of the complexity and the development 2. PROOF OF THEOREM 1
of efficient algorithms for computing Voronoi diagrams and medial ~ We consider three lines igeneral positionthat is, that are pair-
axes of lines or polyhedra. In particular, we obtain the following Wwise skew and not all parallel to the same plane. The idea is to
results. prove that the topology of the trisector is invariant by continuous
deformation on the set of all triplets of three lines in general posi-
tion and that this set is connected. The result then follows from the
analysis of any example.

We show that the trisector is always homeomorphic to four lines
that do not pairwise intersect. To prove this, we show that the tri-
THEOREM 2. Let p be a point that lies in (i) a two-dimensional  sector is always non-singular iF*(R) and has four simple real
cell or (ii) the one-dimensional cell of the Voronoi diagram of three

MONOTONICITY PROPERTY Given three pairwise skew lines
that are not all parallel to a common plane, there is a direction in
which all four branches of the trisector are monotonic.

1 - - . . 2By rational linear test, we mean that the polynomials (whose signs
By non-singular quartic, we mean an irreducible curve of degree determine the connected components) are of degree one in the co-
four with no singular point if®3(C). ordinates of poinp and have rational coefficients.



Figure2: Threelinesin general position.

points at infinity. To show that the trisector is always non-singular,
we study the type of the intersection of two bisectors, which are
hyperbolic paraboloids.

vectorvp = (1,—a,0), ac R. Moreover, since the three lines are not
all parallel to a common plané; is not parallel to the plane= 0,
and so we can assume that lif3gis defined by poinpz = (x,y,0)
and vectovs = (a,B,1), x,y,a,B € R.

We denote byH j the bisector of lineg; and/j and byV; the
Voronoi cell of linest; and/j, i.e., the set of points equidistant &p
and/j and closer to them than @, k # i, j. We recall the following
well-known elementary facts. The Voronoi cells are connected and
star-shaped [21]. The bisector of two pairwise skew lines is a right
hyperbolic paraboloid, that is, has equation of the fae yXY,

y € R, in some coordinate system (see for instance[19]); for com-
pleteness we present a proof of this fact.

LeEmMA 3. The bisector of two pairwise skew lines is a right
hyperbolic paraboloid.

PROOF. The bisector of two lineg and/; is the set of pointp

We use the classic result that the intersection of two quadrics is Satisfying the equation

a non-singular quartic (i#3(C)) unless the characteristic equation
of their pencil has (at least) a multiple root. In order to determine
when this equation has a multiple root, we determine when its dis-
criminantA is zero.

This discriminant has several factors, some of which are trivially
always positive. The remaining, so-callegrds facteut, can be
shown, using Safey’s software [27], to be never negative. This im-
plies that it is zero only when all its partial derivatives are zero. We
thus consider the system that consists ofgtues facteurand all its

partial derivatives, and compute its Grébner basis. This gives three

”_ ]

l[(p— pi) x Vi (P—pj) xvjl®
vill2 vill2
Without loss of generality, we prove the lemma for the two lines
{1 and /. For these lines, the above equation simplifies into the
following equation of a right hyperbolic paraboloid:
B a
To1+a?

)

XY. )

O

equations of degree six. We consider separately two components oy 2 Algebr aic structure of thetrisector, Part |

solutions, one for which a (simple) polynomklis zero, the other
for which F # 0.

WhenF # 0, some manipulations and simplifications, which are
interesting in their own rights, yield another Grébner basis, with the

same real roots, which consists of three equations of degree four.
We show that one of these equations has no real root which implies

that the system has no real root and thus that 0 has no real

root on the considered component. We can thus conclude that, in

this case, the trisector is always a non-singular quarti3iR).
WhenF = 0, we show, by substituting = 0 in A and by using the
classification of the intersection of quadrics over the reals [12], that
the trisector is a cubic and a line that do not interse@3i(R).

We can thus conclude that the trisector is always a non-singular
guartic or a cubic and a line that do not intersect in real space and

thus that the trisector is always non-singulaPf{R).

We then prove that the trisector always contains four simple real
points at infinity and thus that it is always homeomorphic to four
lines that do not pairwise intersect. It follows that the topology of
the Voronoi diagram is invariant by continuous deformation on any
connected set of triplets of lines in general position. Next we prove
that the set of triplets of lines in general position is connected which
implies that the topology of the Voronoi diagram is constant. We
finally determine the topology of (any) one arbitrary triplet of lines,
which yields the result.

In the rest of this section, we prove Theorem 1.

2.1 Preliminaries

Let /1, /2, and /3 be three lines in general positione., that
are pairwise skew and not all parallel to a common plane. Refer
to Figure 2. Let(X,Y,Z) denote a Cartesian coordinate system.
Without loss of generality, we assume tliatand/, are both hor-
izontal, pass througlD,0,1) and (0,0, —1) respectively, and have
directions that are symmetric with respect to ¥i&-plane. More
precisely, we assume that lidgis defined by poinp; = (0,0,1)
and vectowvy = (1,a,0), and line/, by pointp; = (0,0,—1) and

The trisector of our three lines is the intersection of two right
hyperbolic paraboloids, sak » and# 3. The intersection of two
arbitrary hyperbolic paraboloids may be singular; it may be a nodal
or cuspidal quartic, two secant conics, a cubic and a line that in-
tersect, a conic and two lines crossing on the conic, etc (see [12
Table 4]). We show here that the trisector is always non-singular
by studying the characteristic polynomial of the pencilaf, and

13-

Let Q12 and Q1 3 be matrix representations @i » and # 3,

i.e. the Hessian of the quadratic form associated with the surface
(see, for instance, [11]). Theencilof Q1 andQq 3 is the set of
linear combinations of them, that iB(A) = {AQ12+Q13, VA €

R}. Thecharacteristic polynomiabf the pencil is the determinant,
D(N) = det(P(N\)), which is a degree four polynomial in. The
intersection of any two quadrics is a non-singular quarti®3fC),

if and only if the characteristic equation of the corresponding pencil
does not have any multiple roots (i) [34] (see also [12]). A
non-singular quartic oP3(C) is, in P3(R), either empty or a non-
singular quartic. Thus, since the trisector of our three lines cannot
be the empty set iiR3, the trisector is a smooth quartici#(R) if

and only if the characteristic equation of the pencil does not have
any multiple roots (irC).

The characteristic polynomial of the pencil is fairly complicated
(roughly one page in the format of Eq. (3)). However, by a change
of variableh — 2\ (1+ a2+ B2) and by dividing out the positive
factor (1+a%)2(1+a? + B?)3, the polynomial simplifies, without
changing its roots, to the following, which we still denoteby))
for simplicity.

D) = (0 +B? + 1) a®\* —2a(2ap® + ayB +aox— Pa + 2a+ 2a0® — Baa?) A3
+ (B?+6a°B? — 2pxa’ — 6Baa’ +6ypa’ — 6aPo — 2aPx+ 6axa’
+y?a® — 2aay+x%a? — 2ya a® + 6a%a® + a'a? + 4a%) A2
—2(xa—ya —2Ba? — B+2a0 +aa®) (xa—y—B+aa)\

+(1+8?) (xa-y—B+ac)®  (3)



Let A be the discriminant of the characteristic polynoniz\)

In the sequel, all polynomials are considered over the reals, that (with respect ta\). Recall thatD(A) admits a multiple root if and

is for A,a,a,B,Xx,y in R, unless specified otherwise. We start by
studying the sign oD(A).

LEMMA 4. The characteristic polynomiab(A) is never nega-
tive.

PROOF We prove that the real semi-algebraic set {x =
(A, a,xy,a,B) € R | D(x) < 0} is empty using a development
version of the RAGLB Maple library [27] which is based on the
algorithm presented in [29]. The algorithm computes at least one

only if its discriminant is zero.

COROLLARY 5. The discriminanf is never negative.

PrROOF By Lemma 4,D(A) is either always positive or has a
multiple root. If a degree-four polynomial is always positive, then it
easily follows from the definition that its discriminant is positive [8,
83 p. 119]. Furthermore, if a polynomial has a multiple root then
its discriminant is zero. [

point per connected component of such a semi-algebraic set and we REMARK 6. The proof thatA is never negative can also be

observe that, in our case, this set is empty. Before presenting Ourproved with theRAGLI8 library,

computation, we first describe the general idea of this algorithm.
Suppose first thas # R and letC denote any connected com-
ponent ofS. We consider her® as a function of all its variables
X = (A\,a,x,y,a,B) € R8. The algorithm first computes the set of
generalized critical valuéof D (see [29] for an algorithm comput-
ing them). The image b of C is an interval whose endpoifits

are zero and either a negative generalized critical value or minus

infinity. For anyv in this interval, there is a pointg € C such
thatD(xo) = v, and the connected component containip®f the
hypersurfaceD(x) = vis included in the connected componeht
Hence, a pointinC can be found by computing a point in each con-
nected component @b(x) = v. It follows that we can compute at

least a point in every connected component of the semi-algebraic

setS defined byD(X) < 0 by computing at least one point in every
connected component of the real hypersurface definef(lyy = v
wherev is any value smaller than zero and larger than the largest
negative generalized critical value, if any. Finally, a randomly cho-
sen pointp in R® also needs to be added,#i(p) < 0, to ensure
that we find a point in every connected componeng @f the case
wheres = RS,

Now, computing at least one point in every connected component

of a hypersurface defined () = v can be done by computing

the critical points of the distance function between the surface and

a point, say the origin, that is, by solving the systéii) = v,
X x grad D)(x) = 0. This conceptually simple approach, devel-
oped in [28], is, however, not computationally efficient. The effi-
cient algorithm presented in [29] computes instead critical points
of projections, combining efficiently the strategies given in [31]
and [30].

The result of the computation of at least one point in every con-
nected component of shows thats is empty (see the full paper for
details) and thus thab(x) > 0 for all x € RS. It should be noted

that these computations are very fast: they take roughly 3 seconds

of elapsed time on a standard PG.]

SRecall that the (real) critical values @b are the values of) at

its critical pointsy, i.e., the pointsg at which the gradient o>

is zero. The asymptotic critical values are similarly defined as,
roughly speaking, the values takenbyat critical points at infinity,
that is, the values € R such that the hyperplarze= cis tangent to
the surface = D(x) at infinity (this definition however only holds

for two variablesj.e., x € R?). More formally, the asymptotic crit-
ical values were introduced by Kurdyka et al. [20] as the limits of
D(xx) where(Xk)ken is a sequence of points that goes to infinity
while [[x|| - lgrady, D(Xk)|| tends to zero. The generalized critical
values are the critical values and asymptotic critical valiiég set

of generalized critical values contains all the extrema of function
D, even those that are reached at infinity.

4Sinces # RY, the boundary ofC is not empty and consists of
pointsx such thatD(x) = 0. The image of the connected g&by

the continuous functio® is an interval. Hence, zero is an endpoint
of the intervalD(C). The other endpoint is either an extremum of
D (and thus a generalized critical value) or minus infinity.

as in the proof of Lemma 4,
but the computation is then a lot more time consuming (roughly
10 hours instead of 3 seconds).

The discriminant®d of the characteristic polynomial, computed
with Maple [22], is equal to

16a* (ax—y—B+aa)?(y+ax—aa—p)? (4)

times a factor that we refer to as thms facteurwhich is a rather
large polynomial of which we only show 2 out of 40 lines:

gros_facteur 8afa‘y? + 7a*B?x* — 4aB°x + 16a°p*x* + 32a*a%y?

- 22a%PP2x + yPaP + a?yPal — 2BxayPad + x8al + 10BxPa’a?.  (5)

LEMMA 7. The discriminant) is equal to zero if and only if the
gros facteuand all its partial derivatives are equal to zero.

PROOF. The polynomial (4) is not equal to zero under our gen-
eral position assumption. Indeexl= 0 is equivalent to saying that
lines/, and/, are parallel and the two other factors of (4) are equal
to the square of dép; — ps,Vvi,v3), fori = 1,2, and thus are equal
to zero if and only if¢; and ¢3 are coplanar, for = 1,2. It fol-
lows that (4) is always strictly positive. Thus, the discriminArig
equal to zero if and only if thgros facteuris zero. Furthermore, by
Corollary 5, thegros facteuris never negative, thus, if there exists
a point where th@yros facteurvanishes, it is a local minimum of
the gros facteurand thus all its partial derivatives (with respect to
{a,x,y,a,B}) are zero. [

Note that Lemma 7 says, in other words, that the zerds arfe
the singular poinsof thegros facteur
We now state our main lemma which implies that the discrimi-
nant is zero only if a simple condition is satisfied.

MAIN LEMMA. The discriminant\ is equal to zero only if y
ao=0orax+p=0.

PrROOF By Lemma 7,A is zero if and only if thegros facteur
and all its partial derivatives are zero. We prove below that this
implies that(y+ aa) (ax-+B) (14 a2+ p2)I =0, where

I = (2a(ya —Bx) —a2+1)2+3 (ax+B)? +3a (y+aa)®+3 (1+a2)2. (6)

As the two termg1+ a2 + B?) andl clearly do not have any real
solutions, this proves the lemma. (We discuss later how we found
these terms.)

Consider the system in the variablés, x,y,a,,u,v,w,t} that
consists of thegros facteur its partial derivatives, and the four

5Recall that the singular points of a surface are the points where all
partial derivatives are zero.



Gamma: =(2*a*(y*al pha- x*bet a) - (a"2-1)) "2
+3* (a*x+bet a) "2+3*a"2* (y+a*al pha) "2+3*(a"2+1) *2;

vV Vv

L:=[gros_fact, op(convert(grad(gros_fact,

[a, x,y,al Bha, beta]),list)),1-u*(y+a*al pha),
1-v*(a*x+beta), 1-we( 1+al pha”2+bet a"2), 1-t *Ganmm) | :
fgb_gbasis_elim(L,0,[u,v,wt],[a x,Y,alpha, beta]);

vV V VYV

pack_fgb_cal | _generic: "Maple: 975.98 sec"
[4

Table 1. For the proof of the Main Lemma.

equations

l1-u(y+aa)=0, 1l-v(ax+p)=0,

1-w(14+a?+p?) =0, 1-tr=0. (7)

The gros facteurand its partial derivatives have a common zero
(real or complex) such thay+ aa) (ax+B) (1+ a2 +p%)F #0

if and only if this system has a solution. This follows immediately
from the fact that the equations (7) are lineaujm, w,t.

of addingF to the system frequently adds embedded components to
the variety of solutions which explains why, later on in the process,

empty components are frequently encountered when splitting into
two components.

Our computations, presented in the full version of the paper, are
performed in Maple [22] using the Grobner basis package FGb de-
veloped by J.-C. Faugére [15] .

We use two functions, fgb_gbasis(sys,0,varsl,vars2nd
fgb_gbasis_elim(sys,0,varl,vaf2Jhat compute Grébner bases of
the systensys the first uses a degree reverse lexicographic order
(DRL) by blocks on the variables efarslandvars2(wherevars2
is always the empty set in our computation) and the second one
eliminates the variablearsland uses a reverse lexicographic order
on the variables ofars2 (The second parameter of the functions
refer to the characteristic of the field, here 0.)

We never output the Grébner bases which are too large to be use-
ful, except in the case where the basis is reduced to 1 (when the
system has no solution). We instead only report the first operand
of each polynomial of the base; an operanahieans that the poly-
nomial is the product of at least two factors; an operand ~ means
that the polynomial is a power of some polynomial; an operand

The Grobner basis of that system is reduced to the polynomial means that the polynomial is a sum of monomials.
1 (see Table 1) and thus the system has no solution (over the com- Our computation goes as follows. We first simplify our system

plexes). This concludes the proof[]

The real difficulty in the proof of the Main Lemma is, of course,

by consideringa = 2 because otherwise the Grdbner basis com-
putations are too slow and use too much memory to be performed
successfully. We first see after computibg, the Grébner basis of

to find the equations (7) that rule out all the imaginary components our system, thag+ 2a appears as a factor of one polynomial. This

of the set of singular points of thgros facteur Computing these

components is the actual key of the proof. We believe that the tech-

splits the solutions into those such tlyat 2o = 0 and the others.
We will study separately (in Lemma 9) the former set of solutions

nique we used can be of some interest to the community as it isand we only consider here the solutions suchyha®a £ 0. This is

rather. geperic a.nd could be applied to other problems. We thus done by adding the polynomial-lu(y+ 2a) to the system, where
describe in Section 2.3 how these components were computed bey is a new variable; indeed there is a one-to-one correspondence

fore finishing the study of the algebraic structure of the trisector, in
Section 2.4.

2.3 About the proof of the Main Lemma

We show in this section how we computed, for the proof of the
Main Lemma, the equations of (7) which correspond to hypersur-
faces containing the zeros of the discriminant.

Basically, we proceed as follows. We start from the system of
equations of thgros facteurand all its partial derivatives and use
the following techniques to study its set of solutions, or more pre-
cisely to decompose it into components defined by prime ifleals
This could theoretically be done by a general algorithm computing

between the solutions of the initial system such thaRa # 0 and
the solutions of the resulting system.

The termy+ 2a corresponds fairly clearly to the polynomial
y+aa with a= 2, and because of the symmetry of our problem
we also study separately the solutions such #éhat 3 = 0. Since
we assumea = 2, we only consider here the solutions such that
2x+ B # 0, by adding to the system the polynomiat (2, x+B).
Finally, we also add + w(1+a?+ B?) to the system, without
changing its set of real of real roots; we do this because the term
1+ o + B2 appears in the leading coefficient ) which sug-
gests that some component of solutions (without any real point)
might be included in % a2+ B2. (It should be noted that adding

such a decomposition, however, all existing implementations are this polynomial to the system changes the resulting Grobner ba-

far from being capable of handling our particular problem or even
a simpler sub-problem (see Remark 8).

sis, which shows that this addition indeed removes some imaginary
component from the system.) We compute the Grobner Hasis,

If the (reduced) Grobner basis of some system contains a polyno-of that system, eliminating the variabless,w, which gives a sys-

mial which has a factor, sdy, the solutions of the system splits into
two components, one of which such tirat= 0, the other such that

tem of four polynomials of degree six.
We then compute the Grébner basissf, eliminating the vari-

F # 0. We study separately the two components. One is obtained ablex. This gives a basibs; which is reduced to one polynomial

by adding the equatioR to the system and the other is obtained
by adding the equation-1tF and eliminating the variablg in-

of the formP2. We thus addP to the systenbs, (we do not add it
to bss sincebss does not depend ox). The Grobner basids;, of

deed, there is a one-to-one correspondence between the solutionghe new system contains several polynomials that are products of

of the initial system such th& # 0 and the solutions of the system
augmented by £ tF. Sometimes, frequently in our case, the com-
ponent- # 0 is empty, which corresponds to the situation where the
elimination oft results in the polynomial 1 (inducing the equation

factors. We see that if we add to the system the constraint that the
third factor of the first polynomial is not zero, the resulting system
has no solution. We thus add this factor to the system and com-
pute its Grobner basiss;. We operate similarly to gdiss. The

1=0). Note that in some cases the system contains a polynomialbasisbs; contains no product or power and we compute its Grébner

which is a square, say?, thus the component such tHat£ 0 is
obviously empty and we can adfdto the system without changing

basis,bs;, eliminatingy (eliminatingx gives no interesting basis).

its set of solutions (this however changes the ideal). This operation ' The functiongbasis(sys,DRL(var1,var2),elimjth or without the

6An ideal I is prime ifPQe I impliesPe T orQe I.

optional last argumerglim can also be used alternatively of these
two functions



The last polynomial obs; is a power and we proceed as before to
getbsg. We proceed similarly until we get to the babig».

The basisbs;» consists of three polynomials of degree four
(which is a simplification ovebs, which consists of four polyno-
mials of degree six). We observe that the last polynomidds
is

Mo = (4yo — 4Bx—3)2 +3(2x+B)? + 12(y+ 2a1)? + 75,

which is always positive over the reals.

y=—aa, Xx= B(Z%:H) +24/(1+a?) (02+p2+1) implies that

the trisector consists of a cubic and a line that do not intersect. We
assume in the following that this system is satisfied and4ha0.

We refer to the full version of the paper for the computations.

We first show that the characteristic polynomial of the pencil
generated by the bisectors is always strictly positive. Recall that
the characteristic polynomial is never negative (see Lemma 4). It
is thus sufficient to prove that it is never zero, or equivalently, that
its product with its algebraic conjugate (obtained by changing the

We have thus proved that all the complex solutions, such that sign of \/(1+a2) (a2 + B2+ 1)) is never zero. This product is a

a= 2, of the initial system (thgros facteurand all its partial deriva-
tives) satisfy(1+ a2+ p2) (y+2a) (2x+B) 2 = 0.

Finally, to get the polynomial’ of Formula (6), we performed
the same computation with= 3 anda =5 andguessed as an
interpolation of the polynomialB, I3, andls.

Note that all the computation for a fixedtakes roughly eight
minutes of elapsed time on a regular PC.

REMARK 8. All the computations from bgo bs» amounts to
finding polynomials that have a power which is a combination of
the elements of bgi.e. which are in the radical of the ideal gen-

erated by bs). Thus these computations would be advantageously

replaced by a program computing the radical of an idedlnfor-
tunately, all available such programs fail on the ideal generated by

bs, either by exhausting the memory or by running unsuccessfully

during several days and ending on an error. It is therefore a chal-
lenge to improve these programs in order to do this computation
automatically.

2.4 Algebraicstructureof thetrisector, Part |

We proved in the Main Lemma that the discriminaris equal to
zero only ify+aa = 0 orax+ 3 = 0. We prove in this section that
if A =0, the trisector is a cubic and a line that do not intersect. We

polynomialT in a,a,3,A. We compute, similarly as in the proof of
Lemma 4, at least one point per connected component of the real
semi-algebraic sefx = (a,a,B,A) € R*| T(X) — % < 0}. The re-
sulting set of points is empty, henT&y) is always greater or equal

to 1/2. It thus follows that the characteristic polynomial is always
strictly positive.

Since the characteristic polynomial(A) is always strictly pos-
itive and its discriminanf is zero,D(A) admits two (conjugate)
double imaginary roots. Lét; andA, denote these two roots. Re-
call thatD(A) = detP(A) with P(A) = AQq 2+ Q1 3 WhereQ; j is
the matrix associated with the hyperbolic parabolsid. It fol-
lows from the classification of the intersection of quadrics [12, Ta-
ble 4] that either (iP(A1) andP(A,) are of rank 3 and the trisector
2N Hy 3 consists of a cubic and a line that do not intersect or
(i) P(A1) andP(A2) are of rank 2 and the trisector consists of two
secant lines.

We now prove thaP(A1) and P(A,) are of rank 3. We com-
pute the Grobner basis of all thex3 minors of P(A\) and of the
polynomial 1—tW with

W= (1+2a%) (1+0%+p?) (ax—y—B+aa) (y+ax—aa —B).

The basis is equal to 1, thus thex3 minors of P(A) are not all

then show that the trisector always contains four simple real points Simultaneously equal to zero whéhz 0. Furthermoret 0 for

at infinity and conclude that the trisector is always homeomorphic
to four lines that do not pairwise intersect.

LEMMA 9. The discriminani is equal to zero if and only if

B(2a?+1)+2

a?(1+a%) (a?+p?+1)

y=-aa and x= or (8)

B a(2+a?)+2

« P (1+a?) (024 p2+1)
a .

and y= 9)

PROOF By the Main Lemmaf = 0 impliesy+aa =0 orax+
B = 0. Substitutingy by —aa in A gives an expression of the form
fo f12. Similarly, substitutingc by —/ain A gives an expression of
the formgg gf (recall thata #~ 0 since the lines are not coplanar, by
assumption). It follows thak = 0 if and only ify+aa = fi = 0
orax+p = g = 0, fori =0 or 1. Thef;i andg; are polynomials
of degree two inx andy, respectively. Solvingf; = 0 in terms
of x directly yields that the systey+aa = f; = 0 is equivalent
to (8). Similarly, solvingg; = 0 in terms ofy yields (9). On the
other hand, we prove that the solutionsyef aa = fp = 0 and
ax+f = go = Oareincluded in the set of solutions of (9) and (8),

respectively, which concludes the proof. Because of lack of space,

we omit here this proof. [

LEMMA 10. If A =0, the trisector of¢1, />, and /3 consists of
a cubic and a line that do not intersect in real space.

PROOF By Lemma 9A = 0 if and only if System (8) or (9) is
satisfied. By symmetry of the problem (we omit here the specifica-
tion of the symmetry) we only need to consider one of the compo-
nents of (8) and (9). Hence, it is sufficient to show that the system

8The radical of an ideal is the ideal{x | x" € I for somen € N}.

anyx,y,a, a,B in R such that the lineg;,¢,, and/3 are pairwise
skew (see (4) and the proof of Lemma 7). Thus the ranR(af
is at least 3. The rank d®(Aj), i = 1,2, is thus equal to 3 since
detP(A;) = 0. We can thus conclude that whAn= 0 the trisector
consists of a cubic and a line that do not intersect in real spdck.

We now state a proposition that shows that the trisector admits
four asymptotes that are pairwise skew and gives a geometric char-
acterization of their directions.

PrRoPOSITION 11. The trisector o1, ¢, and {3 intersects the
plane at infinity in four real simple points. Furthermore, the four
corresponding asymptotes are parallel to the four trisector lines of
three concurrent lines that are parallel 9, />, and /3, respec-
tively.

PROOF The trisector is the intersection of two hyperbolic
paraboloids. Any hyperbolic paraboloid contains two lines at
infinity. Hence the intersection, at infinity, of any two distinct
hyperbolic paraboloids is the intersection of two pairs of lines.
The intersection of these two pairs of lines consists of exactly four
simple real points unless the point of intersection of the two lines
in one pair lies on one line of the other pair. Because of lack of
space, we omit here the proof that this cannot happen under our
assumptions and the characterization of the four asymptofés.

THEOREM 12. The trisector of three lines in general position
consists of four infinite smooth branches of a non-singular quartic
or of a cubic and a line that do not intersect in real space.

PROOF As mentioned in the beginning of Section 2.2, the tri-
sector of tree lines consists of a smooth quartic unless the discrim-
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Figure 3: The parallelepiped formed by ¢4, ¢», and ¢3 and the &g
associated frame (C,v1,Vvo,V3) of positive orientation. Y )
L»X S
inantA is zero. Lemma 10 and Proposition 11 thus yield the re-
sult. [ Figure 4: Vertical ordering of the connected components of
25 TOpOl ogy of the Voronoi diagr am the two-dimensional Voronoi diagram cells above each region

induced by the projection of the trisector and the silhouette

curves of the bisectors; the ordering over the small cell in the

middleis T3 < T13 < Toz < Toz (i.e, avertical line over that cell
LEMMA 13. There is a one-to-one correspondence between the intersectstwice T3 and twice Tzz in that order).

set of ordered triplets of lines (in general position) and the set of

affine frames of positive orientation.

PrROOF Consider three lineé;, ¢, and/3 in general position
and refer to Figure 3. For the three choices of pairs of lihgg,
consider the plane containirfg and parallel to/j, the plane con-
taining /j and parallel t?j, and the region bounded by these two
parallel planes. The general position assumption implies that these

regions have non-empty interiors and that no three planes are par-3, PROPERTIES OF THE VORONOI
allel. The intersection of these three regions thus defines a paral- DIAGRAM AND ALGORITHMS

lelepiped. By construction, each of the lings/,, and/¢3 contains ) o
an edge of that parallelepiped. These lines are pairwise skew thus We present here some fundamental properties of the Voronoi di-
exactly two vertices of the parallelepiped are not on the lines. Each @9ram and algorithms for separating the two components of each
of these two points induces an affine frame centered at the point tWo-dimensional Voronoi cell and the four components of the cell
and with basis the three edges of the parallelepiped oriented from©f dimension one. Because of the lack of space, we omit all proofs
the point to the linegy, £, and/3, in this order. One of the point  (S€€ the full paper for proofs). N .

(C on the figure) defines a frame of positive orientation, the other  We start by presenting in Proposition 16 two properties, one on
defines a frame of negative orientati@{ on the figure). This con-  the asymptotes of the trisector and one on the incidence relations
struction exhibits a one-to-one correspondence between the set of€tween cells, which directly yield an unambiguous labeling of the
ordered triplets of lines (in general position) and the set of affine Components of the trisector. We then present two fundamental prop-

frames of positive orientation, which concludes the prodf] erties of the trisector. Finally, we present algorithms for separating
the two components of each two-dimensional Voronoi cell and the

four components of the cell of dimension one.
We consider any three lingg, ¢», and/3 in general position
(pairwise skew and not all parallel to a common plane) and an as-
THEOREM 15. The topology of the Voronoi diagram of three  sociated Cartesian coordinate systefnY, Z) such that th&-axis
lines in general position is invariant. is parallel to the common perpendicularéfand/, and such that

PROOF. Consider three lines in general position and a bisector the X andY-axes are parallel to the two bisector lines, in a plane
of two of them. The bisector is a hyperbolic paraboloid which is Perpendicular to thé-axis, of the projection of; and(, onto that
homeomorphic to a plane. The trisector lies on the bisector and it is Plane” Note that the orientations of the axes are not specified (ex-
homeomorphic to four lines that do not pairwise intersect, by The- C€pt for the fact that the frame has a positive orientation) and that
orem 12. Hence the topology of the regions that lie on the bisector the X andY-axes can be exchanged.
and are bounded by the trisector is invariant by continuous defor-
mation on any connected set of triplets of lines (in general position).
The topology of these regions is thus invariant by continuous de-
formation on the set of all triplets of lines in general position (by “Note that this setting is slightly different than the one described in

Corollary 14). It follows that the topology of the two-dimensional Sectti)on 2.1 s(ijnce, there, a?y_trtiplet omhreehl_ilnetshin gene(a![ pé)?ition

- ol : _ can be moved continuously into another while the associated frame
cells OT the Voronoi d'agr.am IS |r_1var|a_nt by such a contlngo%s de moves continuously; however, if the initial and final triplets of lines
formation. The Voronoi diagram is defined by the embeddirigin are in the setting of Section 2.1, it is not necessarily possible to
of its two-dimensional cells, hence its topology is also invariant by ensure that, during the motion, all triplets of lines remain in this
continuous deformation. ] setting.

We now prove that the set of triplets of lines in general position
is connected and conclude the proof of Theorem 1.

PROOF OF THEOREM 1. Theorem 1 follows from Theo-
rems 12 and 15 and from the computation of an example of a two-
dimensional cell of the Voronoi diagram (for instance the one shown
in Figure 1). O

COROLLARY 14. The set of triplets of lines in general position
is connected.

Labeling of thefour branches of thetrisector. LetVjj denote the
two-dimensional Voronoi cell of lineg and/j and letU;; andTj;




denote the connected component$/gfthat are bounded by one
and three arcs of the trisector, respectively (see Figure 1).

PrROPOSITION 16. Exactly one of the four branches of the tri-
sector of three lines in general position admits only one asymptote.
Let Gy denote this branch. Each celljjUis bounded by a branch
distinct from G and every such branch bounds a celj U

Let G, k=1,2,3, denote the branches of the trisector that bound
the componentyy, i, j # k. The labeling of the four branches of the
trisector by @, ...,Cy4 is unambiguous.

Note that differentiating betwede®; andC, cannot be done, as
far as we know, by only looking at the céli, (see Figure 1) but
can be done by looking at the other céllss andV,3. More pre-
cisely, differentiating betwee@; andC, on Figure 1 can be done
by computing a vertical ordering of the componddsandTij; the
branchCy is then characterized as the branch for whighappears
only on one of its side (see Figure 4).

Properties of thetrisector. We now present two important proper-
ties of trisector of the Voronoi diagram of three lines in general po-
sition. In particular, we prove the Monotonicity Property in Propo-
sition 18.

PrROPOSITION 17. The orthogonal projection of the trisector of
{1, {2, and/3 onto the XY -plane has two asymptotes parallel to the
X-axis and two asymptotes parallel to the Y -axis.

PROOF By proposition 11, the four asymptotes of the trisector
are parallel to the four trisector lines of three concurrent lines paral-
lel to ¢4, 2, and/3. The bisector to two lines through the origin and
parallel tof; and/; is the pair of planes of equatiofiy = 0. Hence
the asymptotes of the trisector are parallel to lines that lie in the pair
of planesXY = 0. The orthogonal projection of the asymptotes on
the XY-plane are thus parallel to thé- or Y-axis. It follows that
the number of asymptotes (in projection) that are parallel tocthe
axis (resp.Y-axis) is invariant by continuous deformation on any
connected set of triplets of lines in general position. The result fol-
lows from the fact that, on a particular example (see Figure 1), there
are two asymptotes parallel to tKeaxis and two others parallel to
theY-axis and that the set of triplets of lines in general position is
connected (Corollary 14).[]

We assume in the following th#te asymptote of Cis parallel
to the Y Z-plandas in Figure 1) by exchanging, if necessary, the
role of X andyY.

PrROPOSITION 18. Every branch of the trisector @, ¢2, and
{3 is monotonic with respect to the Y -direction (or every branch is
monotonic with respect to the X-direction).

PROOF Let 2 denote any plane parallel to tiZ-plane. The
arc Cy intersects plane an odd number of times (counted with
multiplicity) since Cop has only one asymptote (Proposition 16)
which is parallel to th& Z-plane. Furthermore, by Proposition 17,
the trisector has two other asymptotes parallel to Xteplane.
Hence plane? intersects the trisector in two points at infinity and
Co an odd number of times (in affine space). The trisector thus in-
tersecte? in at least three points in real projective space. There are
thus four intersection points (in real projective space) since there
are four intersection points in complex space (since the trisector is
of degree four) and if there was an imaginary point of intersection,

its conjugate would also be an intersection point (since the equa-

tions of the plane and quadrics have real coefficients) giving five
points of intersection.

Therefore the trisector intersects plafién two points inR3,
one of which lies ory. Since there are an odd number of intersec-
tion points orCyp, plane? intersect$y exactly once and any other
branch exactly once.[]

Algorithms. We consider here any three lines in general position
(pairwise skew and not all parallel to a common plane). We present
an algorithm for determining a rational linear test for separating the
two connected components of each two-dimensional Voronoi cell.
As we will see, this algorithm leads directly to another rational
linear test for separating the four connected components of the cell
of dimension one.

We start by presenting an algorithm for determining a plane sep-
arating the two components of any two-dimensional Voronoi cell.
Refer to Figure 5(a). This plane may not be rational; indeed, as we
shall see in Proposition 20, it is possible that no rational separating
plane exists.

Linear test for separating the two connected components of a
two-dimensional Voronoi cell.

Input: three lines(1, ¢2, and/3 in general position and+# j €
{1,2,3}.

Output: a half-spaceH;; that strictly containdJjj and whose
complement strictly containg;.

(i) Determine a Cartesian coordinate systefY,Z) such that
the Z-axis is parallel to the common perpendicularpénd

£ and such that th& andY-axes are parallel to the two
bisector lines, in a plane perpendicular to taxis, of the
projection of/; and/;j onto that plane.

In this frame, compute all the critical values of the trisector
with respect to theX-axis. If there is no critical value, ex-
change theX- andY-axes (and compute the critical values
with respect to the nev{-axis).

(iii) Compute theX-values of the two trisector asymptotes that
are parallel to the¥ Z-plane. If the minimum of these val-
ues is smaller than the smaller critical value, then change the
orientation of theX-axis. Denote byX; the smallest critical
value (with respect to th¥-axis) of the trisector and b,

the smallest of the other critical values and of the two asymp-
tote X-values.

Pick a valuex'in (Xq,X2). The half-spacet;j, of equation

X < X containdJjj and the half-spack > X containsjj.

(ii)

(iv)

The algorithm requires computing the critical values of the tri-
sector with respect to the andY -directions. We proved (in Propo-
sition 18) that the trisector has no critical values in one of these
directions. We show below that the trisector admits at most four
critical values with respect to the other direction. We consider be-
low the coordinate system obtained after Step (ii) of the algorithm
above.

LEMMA 19. The trisector has three or four critical values with
respect to the X-direction. Moreover, the trisector has one critical
point on G, one on GUC,, and either two on gor Cy is a line
perpendicular to the X-axis.

The following proposition shows that the separating plane com-
puted in the above algorithm may not be rational.

ProPOSITION 20. There exist three rational lines for which the
two connected components of any two-dimensional Voronoi cell
cannot be separated by a rational plane.

We now present an algorithm for determining a rational lin-
ear semi-algebraic test for separating the two components of any
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Figure 5: Separating the two components of a two-dimensional Voronoi cell.

two-dimensional Voronoi cell of three rational lines. Refer to Fig-
ure 5(b).

Rational linear test for separating the two connected compo-
nents of a two-dimensional Voronoi cell.
Input: three rational linegy, ¢, and/3 in general position in a

coordinate syster(X,Y,Z) andi # j € {1,2,3}.

Output: two rational half-spacedj; andH]f such that; NHj
strictly containdJj; and its complement strictly contaiiig .
(i-iii) 1dem as in the previous algorithm.

(iv)

v)

(vi)

Compute the twoy-values of the two trisector asymptotes
that are parallel to th&XZ-plane. LetY; < Y, denote these
two values.

Determine a poinA with rational coordinates in the original
(X,Y,Z)-frame such that itX-, Y-, andZ-coordinates in the
(X,Y,Z) frame are in(X1,X2), in (Y1,Y2), and equal to O,
respectively; leiXa denote itsX-coordinate in the&X,Y,Z)
frame.

Determine two point8 andC with rational coordinates in
the original (X,Y,Z)-frame such that theiX-, Y-, and Z-
coordinates in théX.,Y,Z)-frame are, foB, in (X1, Xa), in
(—,Y1), and equal to O, respectively, and @yrin (X1, Xa),

in (Y2,+e), and equal to O, respectively.

(vii) Let R (resp.P{j) be the plane through andB (resp.C) that

is parallel to thez-axis. LetHi’j (resp.Hi’j’) be the open half-

space bounded plariy (resp.P{j) that contains the point at
infinity in the —X-direction.

REMARK 21. Note that, if the three input lines are not ratio-
nal, the above algorithm remains valid except for the fact that the

output half-spaces are not necessarily rational anymore (since the

common perpendicular t§ and/j is not necessarily rational).

Separ ation of the four connected components of thetrisector of
threelines.

Consider three line&,, ¢, and/3 and the half-spaclel{j andH{j/
obtained by the above algorithm. Proposition 16 (and Remark 21) for determining a rational test for answering queries of the form,
directly yields the following result.

PROPOSITION 22. For any point p on the trisector ofy, ¢,
and /3, if p belongs to both half-spaces(jl-and I—|’J-’ for some i
j €{1,2,3} then p lies on g (with ke {1,2, 3} distinct from i and

i), otherwise p lies on g Furthermore, if the three input lines are
rational, this linear semi-algebraic test is rational.

We conclude this section by proving Theorem 2.

PROOF OFTHEOREM 2. First, the algorithms of this section and
Proposition 22 present some (rational) linear semi-algebraic tests
for separating the connected components of the Voronoi cells of
dimensions one and two. Second, we can compute, as described
in Steps (i-ii) of the above algorithms, a direction in which every
branch of the trisector is monotonic, which gives a linear test for
ordering points on each trisector.

4. CONFIGURATIONSOF THREE LINES
WHOSE TRISECTOR CONTAINS A
LINE

We present a geometric characterization of the position of three
lines in general position such that their trisector consists of a cubic
and a line. In what follows, the parallelepiped and frame associated
to the three lines are the one introduced in the proof of Lemma 13
(see Figure 3). We show that, if the trisector of three lines in gen-
eral position contains a line, then the cer@eof the parallelepiped
associated to the lines lies on the trisector line. Furthermore, this
trisector line is the line throug® and parallel to the interior trisec-
tor of the associated frame. Conversely, we also show that if the
directions of the three input lines are not in some special configu-
ration, then the trisector contains a line if and only if it contains the
center of the associated parallelepiped. Because of lack of space,
we omit the precise meaning of interior trisector, the description
of the special configuration, and all proofs (see the full paper for
details).

5. CONCLUSION

We presented a complete description of the Voronoi diagram of
three lines in general position. We also presented some algorithms

given a point, determine in which connected component of which
Voronoi cell it lies. We also showed that points on a branch of the
trisector of three lines can easily be ordered by comparing their co-
ordinates in a particular direction, which is however not necessarily
rational.
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