Cosine Effect on Shallow Water Equations and Mathematical Properties

Carine Lucas 1
1 MOISE - Modelling, Observations, Identification for Environmental Sciences
Inria Grenoble - Rhône-Alpes, LJK - Laboratoire Jean Kuntzmann, INPG - Institut National Polytechnique de Grenoble
Abstract : This paper presents a viscous Shallow Water type model with new Coriolis terms, and some limits according to the values of the Rossby and Froude numbers. We prove that the extension to the bidimensional case of the unidimensional results given by [J.-F. Gerbeau, B. Perthame. Discrete Continuous Dynamical Systems, (2001)] including the Coriolis force has to add new terms, omitted up to now, depending on the latitude cosine, when the viscosity is assumed to be of order of the aspect ratio. We show that the expressions for the waves are modified, particularly at the equator, as well as the Quasi-Geostrophic and the Lake equations. To conclude, we also study mathematical properties of these equations.
Type de document :
Article dans une revue
Quarterly of Applied Mathematics, American Mathematical Society, 2009, 67 (2), pp.283-310. 〈10.1090/S0033-569X-09-01113-0〉
Liste complète des métadonnées

https://hal.inria.fr/inria-00186560
Contributeur : Carine Lucas <>
Soumis le : vendredi 9 novembre 2007 - 16:57:30
Dernière modification le : mercredi 11 avril 2018 - 01:58:34
Document(s) archivé(s) le : lundi 12 avril 2010 - 01:45:53

Fichier

CosineEffect.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Citation

Carine Lucas. Cosine Effect on Shallow Water Equations and Mathematical Properties. Quarterly of Applied Mathematics, American Mathematical Society, 2009, 67 (2), pp.283-310. 〈10.1090/S0033-569X-09-01113-0〉. 〈inria-00186560〉

Partager

Métriques

Consultations de la notice

294

Téléchargements de fichiers

197