
HAL Id: inria-00186857
https://inria.hal.science/inria-00186857

Submitted on 12 Nov 2007

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Iterative Methods for Visualization of Implicit Surfaces
on GPU

Rodrigo Toledo, Bruno Lévy, Jean-Claude Paul

To cite this version:
Rodrigo Toledo, Bruno Lévy, Jean-Claude Paul. Iterative Methods for Visualization of Implicit Sur-
faces on GPU. 3rd International Symposium on Visual Computing - ISVC’07, Jul 2007, Lake Tahoe,
United States. pp.598-609, �10.1007/978-3-540-76858-6_58�. �inria-00186857�

https://inria.hal.science/inria-00186857
https://hal.archives-ouvertes.fr

Iterative Methods for Visualization of Implicit
Surfaces on GPU

Rodrigo de Toledo1, Bruno Levy2, and Jean-Claude Paul3

1 Tecgraf – PUC-Rio, Brazil
2 INRIA – ALICE, France

3 Tsinghua University, China

Abstract. The ray-casting of implicit surfaces on GPU has been ex-
plored in the last few years. However, until recently, they were restricted
to second degree (quadrics). We present an iterative solution to ray cast
cubics and quartics on GPU. Our solution targets efficient implementa-
tion, obtaining interactive rendering for thousands of surfaces per frame.
We have given special attention to torus rendering since it is a useful
shape for multiple CAD models. We have tested four different iterative
methods, including a novel one, comparing them with classical tessella-
tion solution.

Fig. 1. The faces of two bounding boxes are used to trigger the fragment shader re-
sponsible for rendering the tori.

1 Introduction

When programmable GPU were designed, the main goal was to produce images
with better quality, while using standard triangle rasterization. However, this
innovation gave large flexibility to vertex and pixel processing, motivating some
completely new applications. One promising research area is the creation of new
GPU primitives, extending the default ones (triangle, line and point). These new
primitives do not aim to substitute the typical ones, but work together. The first
one to appear in the literature was the quadrilateral primitive [1], which is based
on mean value coordinates [2]. Implicit surfaces have also been directly imple-
mented on GPU based on ray casting, but, until recently, they were restricted

2 Rodrigo de Toledo1, Bruno Levy2, and Jean-Claude Paul3

to second order ones. Spheres, ellipsoids and cylinders are some examples of
quadrics ray-casted on GPU used in applications for molecule rendering [3, 4]
and tensor-field visualization [5]. The benefits of this new primitives compared to
tessellation are: image quality (precise silhouette and per-pixel depth/shading),
less memory usage and rendering efficiency.

Higher-order implicit primitives are a challenge for GPU implementation.
Shader languages still have important restrictions when compared to CPU pro-
gramming, including no support for stacks and recursive functions. We are in-
terested in rendering cubics and quartics with a scalable implementation. The
goal is to use them in practical applications that can benefit from this speed-up.
Systems for massive model visualization are an example of target use. Among
possible implicit surfaces of third and fourth degree, torus is the one with the
most useful shape. It is largely found in CAD models. According to Nourse et al.
[6] and Requicha et al. [7], 85% of industrial objects are described by plans and
quadrics and this number grows to 95% if toroidal patches are also allowed. For
this reason we have devoted special attention to torus as a new GPU primitive.

Loop and Blinn [8] were the first ones that investigated GPU implicit prim-
itives with degree up to four. In their work, the intersection equation (between
ray and surface) is solved using analytic techniques. In contrast, we adopted
iterative methods, which resulted in faster rendering and more precise surfaces.
We have used the Sturm method for both cubics and quartics. In the specific
case of tori, we have tested four different approaches, including a novel one called
double derivative bisection. In this work, we target per-pixel and per-vertex op-
timizations that result in high performance. We have measured the rendering
speed for a single torus and also for multiple tori (up to 16,000 tori at the same
time in the screen).

2 Related Work

GPU primitives are visualized through a ray-casting algorithm implemented in-
side the graphics card. The main computations are done in the pixel stage of
the pipeline. To trigger the per-pixel algorithm, it is still necessary to raster a
set of standard primitives. To keep GPU primitives compatible with rasterized
surfaces, the visibility issue between objects is solved by the z-buffer, updated
by both rasterization and ray-casting methods.

The concept of extended GPU primitives was first introduced by Toledo and
Levy [9]. They have created a framework to render quadrics on GPU without tes-
sellation. It is possible to visualize these surfaces with textures and self-shadows.
The potential applications mentioned in their work were molecule rendering
(using spheres) and tensor of curvature visualization (using ellipsoids). Later,
Romeiro et al. [10] extended the original idea to reconstruct CSG models.

Bajaj et al. [3] have developed special GPU primitives for molecule visualiza-
tion: spheres, cylinders and helices. The later are a derivation of cylinders used
to represent secondary structures on molecules. They have reported interactive
rendering for molecules with up to 100,000 atoms.

Lecture Notes in Computer Science 3

Fig. 2. Cubic surface examples. They are all clipped outside the domain [−1, 1]3 (rep-
resented by a cube in the last image).

Kondratieva et al. [5] and Sigg et al. [4] exclusively use points (GL_POINTS)
as the rasterized primitive that triggers the fragment shader. Kondratieva et al.
make use of ellipsoid-GPU primitives for diffusion tensor field visualization. Sigg
et al. proposed a more general quadratic surfaces approach but their examples
were restricted to molecule visualization with spheres and cylinders.

Loop and Blinn [8] broke through the second-order barrier and introduced
the first GPU primitives up to fourth order. Based on Bézier tetrahedron, they
succeeded in rendering cubics and quartics. However, the approach adopted by
Loop and Blinn have some drawbacks in speed-up and quality. The performance
limitation are a result of several conditions: (i) exhaustive per-fragment compu-
tation to solve all roots; (ii) excessive waste of fragments that are rasterized but
not rendered (for example, the tetrahedron does not tidily fit the torus); (iii)
complex per-vertex computation to transform Bézier vertices; and (iv) view-
dependent CPU computation per tetrahedron. From the quality point of view,
Loop and Blinn solution has a lack of precision near silhouette edges and self in-
tersections. This is a result of numerical noise that can be aggravated depending
on the choice of near and far clipping planes, because of computations that are
not done on local coordinate space. A positive aspect of their implementation is
the possibility of rendering piecewise algebraic surfaces, decomposed in several
tetrahedrons.

3 Cubics

We extended the idea of GPU primitives for cubic implicit surfaces. It is possible
to form interesting surfaces (see Figure 2) by using cubic equations, but these
shapes are not as popular as the classical quadrics (e.g., sphere, cylinders, cones).
Comparing to quadrics, the computation is much more intense.

The difficult in implementing the cubic primitive is the intersection searching
process. It includes a root find problem of third degree. There are many poly-
nomial root finders known in the literature [11] that could work in the cubic
case. We choose to use a binary search based on the Sturm theorem. The binary

4 Rodrigo de Toledo1, Bruno Levy2, and Jean-Claude Paul3

search is a good solution in our case, since we have a restricted domain (we use
a bounding box with local coordinates in [−1, 1]3).
Sturm Theorem The theorem is based on a set of functions, known as Sturm
functions, which are derivate from the base function f(x):

f0(x) = f(x), f1(x) = f ′(x)

fn(x) = −
{

fn−2(x)− fn−1(x)
[
fn−2(x)
fn−1(x)

]}
, n ≥ 2

So, for a cubic function, there are four Sturm functions we need to generate
(the last one, f3, is a constant). With them, it is possible to find the number of
real roots of an algebraic equation over an interval. After evaluating the set of
functions for the two points defining the interval, the difference in the number
of sign changes between them gives the number of roots in the interval.
Algorithm Based on Sturm theorem, we can do a binary search to find the first
positive intersection between the ray R : (x, y, z) = o+ tv and the cubic surface.
The initial interval is between t1 = 0 and t2 = λ, where the point P2 = o + λv
is the point where the ray leaves the domain [−1, 1]3. At each iteration, the
interval is divided into two, tm = t1+t2

2 . Remark that, since we search only for
the first intersection, we can use the number of sign changes (n1) of the origin
point (t = 0) in all iterations. So, we just recompute the function values and the
number of sign changes for the searching point (tm).
Results Sturm algorithm, although fast, is not as high performance as quadric
ray casting. We achieved 300 fps in a GeForce 7900 graphics card. The quality of
the results is very good (see Figure 2). However, in some special situations (close
to singular points), the computation exceeds the precision of the GPU and some
errors may appear, which are evident after zooming. A positive point of Sturm
approach is the discard that is done before loop. If the fragment is not discarded
at this moment, it means that there is at least one intersection. Another inter-
esting consequence of using binary search is the possibility of adaptive quality.
We can adjust the number of iterations according to the surface distance to the
camera (Level Of Detail), improving speed when the surface is viewed from afar.

4 Quartics and Tori

We use Sturm technique, described on previous section, for generic quartics.
It demands one more function evaluation than for cubics. In this section, we
have given special attention to the GPU torus because, among all cubics and
quartics, it is the most common primitive found in massive CAD environments
(for example, a quarter of torus is typically used for pipe junctions).

For the torus GPU primitive we use a well fitted bounding box to trigger the
fragments running our shader. A torus can be described by a quartic implicit
function. Equation 1 defines a zero centered torus with main direction in z. This
canonical position is the one used by our fragment shader to ray cast the torus,
including one more definition: biggest and smallest radii sum is 1 (R + r = 1).

Lecture Notes in Computer Science 5

Given a ray R : (x, y, z) = o + tv, where v = [vx, vy, vz] is a normalized
vector, Equation 2 describes the ray-torus intersection4.

(x2 + y2 + z2 − (r2 + R2))2 − 4R2(r2 − z2) = 0 (1)
T (t) : at4 + bt3 + ct2 + dt + e = 0 (2)

where a = 1, b = 4(o · v)
c = 2((o · o)− (R2 + r2) + 2(o · v)2 + 2R2(vz)2)
d = 4((o · v)((o · o)− (R2 + r2)) + 2R2vzoz)
e = ((o · o)− (R2 + r2))2 − 4R2(r2 − o2

z)

Finding the root of a quartic equation for several pixels in interactive rates
is not a simple task. We have tried four different approaches (described in the
following subsections) to choose an adequate algorithm for our GPU torus.

4.1 Sturm

We have extended the algorithm used in our cubic GPU primitive (see Section 3).
Compared to ray-cubic intersection, ray-torus intersection has an extra compu-
tation since there is one more function to be evaluated in each iteration, totaling
five functions. As a result, Sturm is not so fast for solving the torus-ray intersec-
tion (see Table 1). Another problem with the Sturm approach is the numerical
precision. The complexity of terms on each Sturm function may overflow the
floating-point capacity. This problem is viewing-angle dependent and in some
cases may produce incorrect images (see Figure 4).

4.2 Double Derivative Bisection

This technique is also a binary search, as in Sturm technique. The idea is an
extension of Bisection method. In this method, given two points t0 and t1, where
f(t0) and f(t1) have different signs, we can ensure that there is at least one
root (where f(x) is a continuous function). Using the interval’s midpoint tm =
0.5(t0 + t1) we evaluate the function, f(tm). Based on its sign we reduce the
interval to be between t0 and tm or to be between tm and t1. This is a simple
method that is always successful.

Derivative Bisection We extend the bisection algorithm for working on two
other special situations: both f(t0) and f(t1) have positive signs but with one
and only one local minimum in the interval; and both f(t0) and f(t1) have
negative signs but with one and only one local maximum in the interval. In
these circumstances we can guarantee that, if there is an intersection (actually,
up to two intersections), the Derivative Bisection algorithm can find it (them).

The algorithm does a binary search for the local minimum/maximum sim-
ilarly to simple bisection but verifying the sign of derivatives. If the searching
4 We use a correction of Hanrahan equation [12] suggested by Eric Haines (see:

http://steve.hollasch.net/cgindex/render/raytorus.html).

6 Rodrigo de Toledo1, Bruno Levy2, and Jean-Claude Paul3

T(t)

T’(t) = 0

T(t) = 0

T’’ (t) = 0 T’’’ (t) = 0 ? (1+ 2+ 3)/3

 1 3

 2

Fig. 3. Left: The round points mark the roots, the triangles mark the first derivative
roots and the squares mark the second derivative root. The third derivative root is
actually the average of the first derivative roots (see Equation 4). Its location must
be somewhere around the second first-derivative root (42). Right: All possible plots
for the function T (t) where there is at least one root (or one ray-torus intersection),
except the four roots case.

point (tm) crosses the abscissa (in other words, f(tm) changes the sign), the
algorithm switches for a simple bisection search. If local minimum/maximum is
found and f(tm) did not change the sign, then there were no roots.
Double Derivative Bisection for Torus The ray-torus intersection involves
the solution of an equation of fourth degree (Equation 2), which yields a max-
imum of four possible intersections. One can easily imagine a ray traversing a
torus and crossing its boundary four times. If we plot the evaluation of the torus
intersection function T (t) for this four-times crossing ray, we obtain something
close to the form presented in Figure 3 (left). T has at most two local maximum
and at most one local minimum (see all possible cases for T in Figure 3).

The basic idea in the Double Derivative Bisection is to initially divide the
problem into two, running the single derivative bisection twice, first on the por-
tion before the local minimum (42 in Figure 3) and, if no intersection was found,
on the portion right after. However, finding exactly the local minimum includes
the solution of the derivative equation (Equation 3), which is a third-degree
equation. Instead, we approximate the local minimum location by a much sim-
pler computation. We compute the third-derivative root, which is the average of
the three first-derivative roots (based on Vieta’s Formulas):

T ′(t) : 4at3 + 3bt2 + 2ct + d = 0 (3)

T ′(t) = (t−41)(t−42)(t−43) ⇒ 3b

4
= −(41 +42 +43)

T ′′′(t) = 4t + b , T ′′′(tM) = 0 ⇒ tM = − b

4
=
41 +42 +43

3

The computation to find the root of the third derivative (T ′′′(tM) = 0) is
very simple since it uses only b, whose value is 4(o · v): tM = −(o · v). Although
the third derivative is only an approximation (see Figure 3), it is good enough to
divide the root finding algorithm into two for applying the derivative bisection
(that is why we call our technique: double derivative bisection).

Double derivative bisection is slower than the Sturm technique (see Table 1).
However, we have got results without the numerical problems found with Sturm,
guaranteeing an error ε(r) ≤ 0.0014 relative to the minor radius r.

Lecture Notes in Computer Science 7

Sturm Sphere tracing

Fig. 4. Sturm Due to floating-point imprecision, Sturm method results in visual defects
(which are more evident in the viewing-angle shown in this picture). Sphere tracing
Example of critical situation for ray-torus intersection. The ray almost touches the
torus reducing the step size. Therefore, more iterations are necessary.

4.3 Sphere Tracing

The sphere tracing was proposed by Hart in 1996 [13]. The idea is to find the ray-
intersection by stepping closer and closer through the ray. Given the Euclidean
distance function d(x) to a surface, we can march along the ray from point x the
distance d(x) without penetrating the surface. For our canonical torus described
in Equation 1, the distance function is d(x) = ||(||(x, y)|| −R, z)|| − r.

Compared to other methods, sphere tracing for ray-torus intersection needs
less computation in each iteration. However, there are some critical situations
whose approximation is very slow, increasing the iterations (see Figure 4).

To overcome these critical points, we have tested two sphere tracing for each
ray with different starting points. The first one starts on the entering point in
the torus bounding box, the second one starts on tM (see Section 4.2). If after
some iterations with the first sphere tracing di(x) becomes greater than di−1(x)
then we proceed with the second sphere tracing.

With our two-rays implementation, we achieved better performance than the
single-ray (see Table 1). However, the convergence of this algorithm is still slow.
In the next subsection we present the implementation that resulted in the best
performance among the four ones we have tried.

4.4 Newton-Raphson

The Newton-Raphson method (a.k.a. Newton’s method) also uses the derivative
evaluation in each iteration (as in Sturm and in double derivative bisection).
The Newton’s formula derives from the Taylor series, which is:

f(x + δ) ≈ f(x) + f ′(x)δ +
f ′′(x)

2
δ2 + · · · (4)

If δ is small enough, we can ignore the high-order terms so, for each iteration,
we can move a δ step with:

δ = − f(x)
f ′(x)

. (5)

Newton-Raphson algorithm converges quadratically. This means that near a
root, the algorithm doubles the significant digits after each step [11]. However, far

8 Rodrigo de Toledo1, Bruno Levy2, and Jean-Claude Paul3

from the root, it may have a bad behavior. For example, if the current position
is too close to a local extreme, the derivative is almost zero and δ vanishes
to infinite. For this reason we took some extra cares in our GPU ray-torus
intersection implementation.
Implementation. We use a well fit bounding box around the torus from where
the ray-casting starts. Therefore, the starting point is not so far from the root,
but we can still push it forward. Before applying the Newton iterations, we
start by executing a simple ray-sphere intersection (the sphere radius is the
sum of the torus radii). If there is no intersection, we can discard the fragment;
if the intersection is negative (before the starting point), we ignore it; and if
the intersection is positive, then we move the starting point to this position.
However, it is still possible to have a local extreme between the starting and
the intersection points. To avoid a vanishing situation, we use some bounds to
guarantee that the step is not bigger than λ. Empirically, we found that λ = 0.15
(relative to our canonical torus) efficiently avoids the vanishing cases without
loosing performance. The Newton-Raphson algorithm gave the best performance
for our GPU-Torus. We use a threshold to stop the iterations that assures an
error smaller than 0.1% of the minor radius r (ε(r) ≤ 0.001). We have also tested
with ε(r) ≤ 0.00003. The results are shown in Table 1.

4.5 Normal Computation

One possible way to compute the normal vector for a point lying in the torus
surface is by taking the three partial derivatives of the torus function at this
point, which is quite expensive. Actually, we have implemented a geometric
solution. Considering the canonical torus (Equation 1), the normalized normal
n at the point P lying on torus surface is:

ntorus =
P − C

r
, where C =

{
Cxy = ‖ Pxy ‖
Cz = 0 (6)

5 GPU Torus Results

5.1 Rendering One Torus

We have done several tests measuring the performance of each one of the four
GPU Torus methods: Sturm, Bisection, SphereTracing and Newton. We have
considered two different implementations for SphereTracing (one-ray and two-
rays) and two implementations for Newton (varying the threshold). The results
are presented in Table 1, which also contains the performance of traditional
polygonal rasterization method. We have measured the frame rate from different
angles for each different method, averaging them on the last column of Table
1. Among all GPU Primitive methods, Newton 0.001 have presented the best
performance. As presented in next subsection, the performance of our GPU
torus becomes interesting for multiple tori. However, we can see that even for
individual torus, we can obtain competitive numbers. For an error ε(R + r) ≈
0.000350, the polygonal version is slightly better. On the other hand, for an error
ε(R + r) ≈ 0.000015, the GPU Torus is much faster.

Lecture Notes in Computer Science 9

· · · · · ·

Fig. 5. Left: Several viewing-angles used for testing torus rendering performance (see
Table 1). In the first row the bounding-box used for our GPU primitive, in the second
row the torus itself. Right: Rendering multiple tori for the results in Figure 6.

F
P

S

0

50

100

150

200

250

300

350

400

0 500 1000 1500 2000 2500 3000 3500 4000

Newton 0.001

Newton 0.00003

Polygon 32*32

Polygon 64*64

Polygon 128*128

number of tori

Fig. 6. Performance of different techniques for multiple tori rendered on the screen.

5.2 Rendering Multiple Tori

One advantage of our GPU torus is that the bottleneck is no longer on the
vertex stage, but on pixel stage. It means that the performance will not be
reduced as much as using the polygonal torus version when increasing the number
of tori. In Figure 6 we compare the GPU Newton technique in two different
thresholds with three different resolutions of polygonal torus. We can verify that
Newton 0.001 is the fastest for more than 700 tori. Comparing Newton 0.001 and
polygonal 128*128 (which have equivalent error) the Newton method is always
faster. For more than 16000 tori, Newton 0.001 is the only one that keeps an
interactive frame rate (50 fps).

6 Conclusion and Future Work

The iterative methods presented in this paper are faster than analytical solutions
for ray-casting, mainly because they compute only one root (the one responsi-
ble for the first ray-surface intersection). The tests presented in Table 1 were
recorded in a 1024 × 1024 viewport, if we reduce to 640 × 480 the GPU torus

10 Rodrigo de Toledo1, Bruno Levy2, and Jean-Claude Paul3

with Newton 0.001 method renders at 1300 fps in comparison to 500 fps obtained
by analytical approach [8].

In future work, it is possible to extend the GPU iterative methods to higher
order surfaces. However, some numerical precision problems may appear. A pos-
sible future application for our GPU tori could be their use for CAD models
visualization. For instance, in a industrial environment, tori (and slices of torus)
are easily found in tubular structures, chains and CAD patterns. In this kind
of application, the tori must be used in combination with triangle meshes and
with other extended GPU primitives, such as cylinders and cones. The frame
rate obtained for multiple tori corroborates for the use of GPU primitives for
massive CAD models visualization.

References

1. Hormann, K., Tarini, M.: A quadrilateral rendering primitive. In: HWWS ’04:
Proceedings of the ACM SIGGRAPH/EUROGRAPHICS conference on Graphics
hardware, New York, NY, USA, ACM Press (2004) 7–14

2. Floater, M.S.: Mean value coordinates. Comput. Aided Geom. Des. 20 (2003)
19–27

3. Bajaj, C., Djeu, P., Siddavanahalli, V., Thane, A.: Texmol: Interactive visual
exploration of large flexible multi-component molecular complexes. In: VIS ’04:
Proceedings of the conference on Visualization ’04, Washington, DC, USA, IEEE
Computer Society (2004) 243–250

4. Christian Sigg, Tim Weyrich, M.B., Gross, M.: Gpu-based ray-casting of quadratic
surfaces. In: Symposium on Point-Based Graphics, ACM Siggraph (2006) 59–65

5. Kondratieva, P., Krüger, J., Westermann, R.: The application of gpu particle
tracing to diffusion tensor field visualization. In: Proceedings IEEE Visualization
2005. (2005)

6. Nourse, B., Hakala, D.G., Hillyard, R., Malraison, P.: Natural quadrics in mechan-
ical design. Autofact West 1 (1980) 363–378

7. Requicha, A.A.G., Voelcker, H.B.: Solid modeling: a historical summary and con-
temporary assessment. IEEE Computer Graphics and Applications 2 (1982) 9–22

8. Loop, C., Blinn, J.: Real-time gpu rendering of piecewise algebraic surfaces. In:
SIGGRAPH ’06: ACM SIGGRAPH 2006 Papers, New York, NY, USA, ACM Press
(2006) 664–670

9. Toledo, R., Levy, B.: Extending the graphic pipeline with new gpu-accelerated
primitives. In: International gOcad Meeting, Nancy, France. (2004) also presented
in Visgraf Seminar 2004, IMPA, Rio de Janeiro, Brazil.

10. Romeiro, F., de Figueiredo, L.H., Velho, L.: Hardware-assisted rendering of csg
models. In: Proceedings of SIBGRAPI 2006 - XIX Brazilian Symposium on Com-
puter Graphics and Image Processing, Manaus, SBC - Sociedade Brasileira de
Computacao, IEEE Press (2006) –

11. Press, W.H., Teukolsky, S.A., Vetterling, W.T., Flannery, B.P.: Numerical Recipes
in C: The Art of Scientific Computing (2nd ed.). Cambridge University Press,
Cambridge (1992) ISBN 0-521-43108-5.

12. Hanrahan, P.: A Survey of Ray - Surface Intersection Algorithms. In: An intro-
duction to ray tracing. Academic Press Ltd. (1989) 33–77

13. Hart, J.C.: Sphere tracing: A geometric method for the antialiased ray tracing of
implicit surfaces. The Visual Computer 12 (1996) 527–545

Lecture Notes in Computer Science 11

Projection Angle Avg

0◦ 18◦ 36◦ 54◦ 72◦ 90◦

Bbox pixels 524 k 516 k 495 k 430 k 324 k 209 k 416 k

Torus pixels 312 k 305 k 285 k 256 k 203 k 146 k 251 k

Fragment waste 40.4% 40.9% 42.2% 40.5% 37.3% 29.8% 38.5% Error (10−6)

FPS ε(r) ε(R + r)

Sturm 68 68 71 82 108 163 93 25 11

D.D. Bisection 15 15 16 19 25 46 23 1400 600

Sphere Tracing 16 16 16 20 27 46 24 1000 429

2-rays S. Tracing 66 66 65 80 100 153 88 1000 429

Newton 0.00003 246 254 261 302 380 537 330 30 13

Newton 0.001 267 283 291 324 410 590 361 1000 429

Polygon 32*32 2653 2649 2668 2704 2730 2744 2691 11236 4815

Polygon 64*64 1238 1238 1238 1238 1238 1238 1238 2811 1205

Polygon 128*128 369 369 369 369 369 369 369 703 301

Polygon 256*256 96 96 96 96 96 96 96 176 75

Polygon 512*512 24 24 24 24 24 24 24 44 19

Megapixels/second StdDev StdDev
Average

Sturm 35.64 35.16 35.15 35.32 35.06 34.07 35.07 0.485 1.38%

Bisection 7.86 7.75 7.92 8.18 8.12 9.61 8.24 0.631 7.65%

Sphere Tracing 8.39 8.27 7.92 8.61 8.76 9.61 8.60 0.527 6.14%

2-rays S. Tracing 34.60 34.12 32.18 34.46 32.46 31.98 33.30 1.111 3.34%

Newton 0,00003 128.95 131.31 129.22 130.08 123.36 112.23 125.86 6.587 5.23%

Newton 0,001 139.95 146.31 144.07 139.56 133.10 123.31 137.72 7.654 5.56%

Table 1. Comparison between several torus rendering techniques. The tests were done
in a 1024×1024 viewport with a torus filling the window, with a GeForce 7900 graphics
card. Projection Angle: The number of pixels of the ray-casting area projection is
determinant for the final frame rate and it varies according to the torus angle. For this
reason we have done tests with 6 different viewing-angles (including top and perpendic-
ular viewing), see Figure 5. Fragment waste: Number of fragments discarded divided
by total fragments. Polygon N ∗ N : Polygonal version of torus with N rings and N
sides. Error : Our GPU torus techniques use an error threshold measured relative to
the smaller radius: ε(r). We computed the error of the polygonal tori relative to their
total radius: ε(R + r) = 1 − cos

(
π
N

)
. We can extract from one error the other one

by using the radii proportion of our testing torus (r = 0.3 and R = 0.7). Megapix-
els/second: It is the corresponding multiplication of FPS and bounding-box pixels.
This number indicates how many times the ray-casting algorithm was executed (in
millions) per second. StdDev: Some of our ray-casting techniques suffer different per-
pixel performance depending on the viewing-angle. To identify this fact we computed
the standard deviation of each technique. Bisection and SphereTracing techniques had
the most view-dependent performance.

