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Abstract. Some implementations of stage 2 of the P–1 method of fac-
torization use convolutions. We describe a space-efficient implementa-
tion, allowing convolution lengths around 223 and stage 2 limit around
1016 while attempting to factor 230-digit numbers on modern PC’s. We
use the discrete cosine transform to multiply reciprocal polynomials. We
present adjustments for the P+1 algorithm. We list some new findings.
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1 Introduction

John Pollard introduced the P–1 algorithm for factoring an odd composite in-
teger N in 1974 [?, section 4]. It hopes that some prime factor p of N has
smooth p − 1. It picks b0 coprime to N and outputs b1 = be

0 mod N for some
positive exponent e. This exponent might be divisible by all prime powers below
a bound B1. Stage 1 succeeds if (p − 1) | e, in which case b1 ≡ 1 (mod p) by
Fermat’s little theorem. The algorithm recovers p by computing gcd(b1 − 1, N)
(except in rare cases where this GCD is composite). When this GCD is 1, we
hope that p − 1 = qn where n divides e and q is not too large. Then

bq
1 ≡ (be

0)
q

= beq
0 = (bnq

0 )
e/n

=
(

bp−1
0

)e/n

≡ 1e/n = 1 (mod p), (1)

so p divides gcd(bq
1 − 1, N). Stage 2 of P–1 tries to find p when q > 1 but q is

not too large. The search bound for q is called B2.
Pollard [?] tries each prime q in [B1, B2] individually. If q1 and q2 are suc-

cessive primes, then look up bq2−q1

1 mod N in a small table. Given bq1

1 mod N ,
form bq2

1 mod N and test gcd(bq2

1 − 1, N). He observes that one can combine the
GCD tests: if either p | gcd(x, N) or p | gcd(y, N), then p | gcd(xy mod N, N).
His stage 2 cost is two modular multiplications per q, one GCD with N at the
end, and a few multiplications to build the table.

Montgomery [?] uses two sets S1 and S2, such that each prime q in [B1, B2]
divides a nonzero difference s1−s2 where s1 ∈ S1 and s2 ∈ S2. He forms bs1

1 −bs2

1

using two table look-ups, saving one modular multiplication per q. Sometimes one



s1 − s2 works for multiple q. Montgomery adapts his scheme to Hugh Williams’s
P+1 method and Hendrik Lenstra’s elliptic curve method (ECM).

These changes lower the constant of proportionality, but stage 2 still uses
O(π(B2)−π(B1)) (number of primes between B1 and B2) operations modulo N .

The end of [?] suggests an FFT continuation to P–1. Silverman [?, p. 844]
implements it, using a circular convolution to evaluate a polynomial along a geo-
metric progression. Montgomery’s dissertation [?] describes an FFT continuation
to ECM. He takes the GCD of two polynomials. Zimmermann [?] implements an-
other FFT continuation to ECM, based on evaluating a polynomial at arbitrary
points. Zimmermann adapts his implementation to P ± 1 methods.

Like [?], we evaluate a polynomial along geometric progressions. We exploit
patterns in its roots to generate its coefficients quickly. We aim for low memory
overhead, saving it for convolution inputs and outputs (which are elements of
Z/NZ). Using memory efficiently lets us raise the convolution length `. Many in-
termediate results are reciprocal polynomials, which need about half the storage
and can be multiplied using the discrete cosine transform.

Doubling ` costs slightly over twice as much time per convolution, but each
longer convolution extends the search for q (and effective B2) fourfold. Silver-
man’s 1989 implementation used 42 megabytes and allowed 250-digit inputs. It
repeatedly evaluated a polynomial of degree 15360 at 8·17408 points in geometric
progression, using ` = 32768. This enabled him to achieve B2 ≈ 1010.

Today’s (2007) PC memories are 100 times as large as that used in [?].
With this extra memory, we achieve ` = 223, a growth factor of 256. With the
same number of convolutions (individually longer lengths but running on faster
hardware) our B2 advances by a factor of 2562 ≈ 6.6e4.

Section ?? gives some new results, including a 60-digit P+1 factor.

2 P+1 Algorithm

Hugh Williams [?] introduced a P+1 factoring algorithm. It finds a prime factor
p of N when p + 1 (rather than p − 1) is smooth. It is modeled after P–1.

One variant of the P+1 algorithm chooses P0 ∈ Z/NZ and lets the indeter-
minate α0 be a zero of the quadratic α2

0 − P0α0 + 1. We hope this quadratic is
irreducible modulo p. If so, its second root in Fp2 will be αp

0. The product of its

roots is the constant term 1. Hence αp+1
0 ≡ 1 (mod p) when we choose well.

Stage 1 of the P+1 algorithm computes P1 = α1 + α−1
1 where α1 ≡ αe

0

(mod N) for some exponent e. If gcd(P 2
1 − 4, N) > 1, then the algorithm suc-

ceeds. Stage 2 of P+1 hopes that αq
1 ≡ 1 (mod p) for some prime q, not too

large, and some prime p dividing N .

Most techniques herein adapt to P+1, but some computations take place in
an extension ring, raising memory usage if we use the same convolution sizes.



2.1 Chebyshev Polynomials

Although the theory behind P+1 mentions α0 and α1 = αe
0, an implementation

manipulates primarily values of αn
0 + α−n

0 and αn
1 + α−n

1 for various integers n
rather than the corresponding values (in an extension ring) of αn

0 and αn
1 .

Let n be an integer. The Chebyshev polynomials Vn and Un satisfy the formal
identities

Vn(X + X−1) = Xn + X−n,

(X − X−1)Un(X + X−1) = Xn − X−n.

The use of these polynomials shortens many formulas, such as

P1 ≡ α1 + α−1
1 ≡ αe

0 + α−e
0 = Ve(α0 + α−1

0 ) = Ve(P0) (mod N).

These polynomials have integer coefficients, so P1 ≡ Ve(P0) (mod N) is in the
base ring Z/NZ even when α0 and α1 are not.

The Chebyshev polynomials satisfy many identities, including

Vmn(X) = Vm(Vn(X)),

Um+n(X) = Um(X) Vn(X) − Um−n(X), (2)

Um+n(X) = Vm(X) Un(X) + Um−n(X),

Vm+n(X) = Vm(X) Vn(X) − Vm−n(X), (3)

Vm+n(X) = (X2 − 4) Um(X) Un(X) + Vm−n(X).

3 Overview of Stage 2 Algorithm

Our algorithm performs multipoint evaluation of polynomials by convolutions.
Its inputs are the output of stage 1 (b1 for P–1 or P1 for P+1), and the desired
stage 2 interval [B1, B2].

It chooses an odd integer P with large P/φ(P ), a convolution length `max
and a factorization φ(P ) = s1s2 so that s1 is even and close to `max/2, perhaps
0.3 ≤ s1/`max ≤ 0.7. We require `max > s1. It will do s2 convolutions of length
`max; each evaluates a polynomial of degree s1 on `max − s1 points.

Using a factorization of (Z/PZ)∗ as described in section ??, it constructs two
sets S1 and S2 of integers such that

(a) |S1| = s1 and |S2| = s2.
(b) S1 is symmetric around 0. If k ∈ S1, then −k ∈ S1 .
(c) If k ∈ Z and gcd(k, P ) = 1, then there exist unique k1 ∈ S1 and k2 ∈ S2

such that k ≡ k1 + k2 (mod P ).

Once S1 and S2 are chosen, it computes the coefficients of

f(X) = X−s1/2
∏

k1∈S1

(X − b2k1

1 ) mod N (4)



by the method in section ??. Since S1 is symmetric around zero, this f(X) is
symmetric in X and 1/X .

For each k2 ∈ S2 it evaluates (the numerators of) all

f(b
2k2+(2m+1)P
1 ) mod N (5)

for `max− s1 consecutive values of m as described in section ??, and checks the
product of these outputs for a nontrivial GCD with N .

For the P+1 method, replace (??) by f(X) = X−s1/2
∏

k1∈S1
(X−α2k1

1 ) mod
N . Similarly, replace b1 by α1 in (??). The polynomial f is still over Z/NZ, but
the multipoint evaluation works in an extension ring. See section ??.

4 Justification

Let p be an unknown prime factor of N . As in (??), assume bq
1 ≡ 1 (mod p)

where q is not too large, and gcd(q, 2P ) = 1.
The selection of S1 and S2 ensures there exist k1 ∈ S1 and k2 ∈ S2 such that

(q − P )/2 ≡ k1 + k2 (mod P ). That is,

q = P + 2k1 + 2k2 + 2mP = 2k1 + 2k2 + (2m + 1)P (6)

for some integer m. We can bound m knowing bounds on q, k1, k2, detailed in
the next section. Both b±2k1

1 are roots of f (mod p). Hence

f(b
2k2+(2m+1)P
1 ) = f(bq−2k1

1 ) ≡ f(b−2k1

1 ) ≡ 0 (mod p). (7)

For the P+1 method, if αq
1 ≡ 1 (mod p), then (??) evaluates f at X =

α
2k2+(2m+1)P
1 = αq−2k1

1 . The factor X−α−2k1

1 of f(X) evaluates to r−2k1 (αq
1−1),

which is zero modulo p even in the extension ring.

5 Selection of S1 and S2

Let “+” of two sets denote the set of sums. By the Chinese Remainder Theorem,

(Z/(mn)Z)∗ = n(Z/mZ)∗ + m(Z/nZ)∗ if gcd(m, n) = 1. (8)

This is independent of the representatives: if S ≡ (Z/mZ)∗ (mod m) and T ≡
(Z/nZ)∗ (mod n), then nS + mT ≡ (Z/(mn)Z)∗ (mod mn). For prime powers,

(Z/pk
Z)∗ = (Z/pZ)∗ +

∑k−1
i=1 pi(Z/pZ).

We choose S1 and S2 so that S1 + S2 ≡ (Z/PZ)∗ (mod P ) which ensures
that all values coprime to P , in particular all primes, in the stage 2 interval
are covered. One way uses a factorization mn = P and (??). Other choices are
available by factoring individual (Z/pZ)∗, p | P , into smaller sets of sums.

Let Rn = {2i−n− 1 : 1 ≤ i ≤ n} be an arithmetic progression centered at 0
of length n and common difference 2. For odd primes p, a set of representatives
of (Z/pZ)∗ is Rp−1. Its cardinality is composite for p 6= 3 and the set can be



factored into arithmetic progressions of prime length by Rnm = Rn + nRm.
If p ≡ 3 (mod 4), alternatively p+1

4 R2 + 1
2R(p−1)/2 can be chosen as a set of

representatives with smaller absolute values.
When evaluating (??) for all m1 ≤ m < m2 and k2 ∈ S2, the highest expo-

nent coprime to P that is not covered at the low end of the stage 2 range will be
2 max(S1 + S2) + (2m1 − 1)P . Similarly, the smallest value at the high end of
the stage 2 range not covered is 2 min(S1 +S2)+ (2m2 +1)P . Hence, for a given
choice of P , S1, S2, m1 and m2, all primes in [(2m1 − 1)P +2 max(S1 +S2) +1,
(2m2 + 1)P + 2 min(S1 + S2) − 1] are covered.

For choosing a value of P which covers a desired [B1, B2] interval, we can
test candidate P from a table. This table could contain values so that P and
φ(P ) are increasing, and each P is maximal for its φ(P ). We can select those P
which, in order, cover the desired [B1, B2] interval with the user-specified `max,
minimize s2 · ` and maximize (2m2 + 1)P + 2 min(S1 + S2).

For example, to cover the interval [1000, 500000] with `max = 512, we might
choose P = 1155, s1 = 240, s2 = 2, m1 = −1, m2 = 271. With S1 =
231({−1, 1}+{−2, 2})+165({−2, 2}+{−1, 0, 1})+105({−3, 3}+{−2,−1, 0, 1, 2})
and S2 = 385{−1, 1}, we have max(S1 + S2) = −min(S1 + S2) = 2098 and thus
cover all primes in [−3 · 1155 + 4196 + 1, 541 · 1155− 4196− 1] = [732, 620658].

6 Circular Convolutions and Polynomial Multiplication

Let R be a commutative ring with 1 and let ` be a positive integer. A circular

convolution of length ` over R multiplies two polynomials f1(X) and f2(X) of
degree at most ` − 1 in the ring R[X ], returning f1(X)f2(X) mod X` − 1.

When deg(f1) + deg(f2) < `, the convolution gives an exact product.
If R has a primitive `-th root ω of unity, and if ` is not a zero divisor in R,

then one convolution algorithm uses the Discrete Fourier Transform (DFT) [?,
chapter 7]. Fix ω. A forward DFT evaluates all f1(ω

i) for 0 ≤ i ≤ `−1. Another
forward DFT evaluates all ` values of f2(ω

i). Multiply these pointwise. Then an
inverse DFT interpolates to find a polynomial f3 ∈ R[X ] of degree at most `−1
with f3(ω

i) = f1(ω
i)f2(ω

i) for all i. Return f3.
If ` is a power of 2 and we use a Fast Fourier Transform (FFT) algorithm for

the forward and inverse DFTs, then the convolution takes O(` log `) operations
in a suitable ring, compared to O(`2) ring operations for the näıve algorithm.

6.1 Convolutions over Z/NZ

The DFT cannot be used directly when R = Z/NZ, since we don’t know a
suitable ω. As in [?, p. 534], we consider two ways to do the convolutions.

Montgomery [?, section 4] suggests a number theoretic transform (NTT).
He treats the input polynomial coefficients as integers in [0, N − 1] and multi-
plies the polynomials over Z. The product polynomial, reduced modulo X ` − 1,
has coefficients in [0, `(N − 1)2]. Select some 63-bit NTT primes pj such that
∏

j pj > `(N−1)2. Require each pj ≡ 1 (mod `), so a primitive `-th root of unity



ωj modulo pj exists. Do the convolution modulo each pj and use the Chinese
Remainder Theorem (CRT) to determine the product over Z modulo X `−1. Re-
duce this product modulo N . Montgomery’s dissertation [?, chapter 8] describes
these computations in detail.

The convolution code should supply functions to (1) zero a DFT buffer (or a
DCT buffer – see section ??), (2) add one residue modulo N to a DFT buffer at
a time, i.e. reduce it modulo the NTT primes, (3) perform a forward DFT on a
buffer, (4) compute a point-wise product of the DFT transforms in two buffers,
overwriting an input, and performing the inverse DFT on the product, and (5)
extracting residues modulo N from the convolution product by performing the
CRT computation and reduction modulo N .

Another method for computing convolutions uses fast integer multiplication.
See section ??.

6.2 Reciprocal Laurent Polynomials and Discrete Cosine Transform

Define a reciprocal Laurent polynomial (RLP) in X to be an expansion a0 +
∑d

j=1 ajVj(X + X−1) = a0 +
∑d

j=1 aj · (Xj + X−j) for scalars aj in a ring. It
is monic if ad = 1. It is said to have degree 2d if ad 6= 0. The degree is always
even.

A monic RLP of degree 2d fits in d coefficients (excluding the leading 1).

While manipulating RLPs of degree at most 2d, the standard basis is {1} ∪
{Xj + X−j : 1 ≤ j ≤ d} = {1} ∪ {Vj(Y ) : 1 ≤ j ≤ d} where Y = X + X−1.

Let ` be a positive integer. Let R be a ring in which 2` is not a zero divisor
Assume R has a primitive 4`-th root ω` of unity for which ω2`

` = −1. Set γ` =
ω`+ω−1

` . Then V`(γ`) = 0. We omit the subscript ` when it is clear from context.

Let Q(X) = q0 +
∑`−1

j=1 qj(X
j +X−j) = q0 +

∑`−1
j=1 qjVj(X +1/X) be a RLP

of degree at most 2` − 2. Define its discrete cosine transform of length ` to be
Q̃ = [q̃1, q̃3, . . . , q̃2`−1] where q̃k = Q(Vk(γ`)). This is also called a DCT–II.

The Q̃ vector has values of Q(X) when X is an odd power of ω`. Those are the
roots of V`. In the ring of RLPs, we have Q3(X) ≡ Q1(X)Q2(X) (mod X`+X−`)
precisely when the Q̃3 vector is the pointwise product of the Q̃1 and Q̃2 vectors.

This leads to a polynomial multiplication algorithm. Given RLPs Q1 and Q2

with deg(Q1) ≤ 2(d1 − 1) and deg(Q2) ≤ 2(d2 − 1), choose ` ≥ d1 + d2 − 1. Take
length-` DCTs of Q1 and Q2. Find an RLP Q3 of degree at most 2(`−1) such that
Q̃3 is the pointwise product of Q̃1 and Q̃2. The error Q0(X) := Q1(X)Q2(X)−
Q3(X) has degree at most max(2d1 + 2d2 − 4, 2` − 2) < 2`. But Q0(X) is a
multiple of X` + X−` so Q0(X) = 0.

We need to transition between Q and Q̃. Steidl and Tasche [?, section 3]
do this when the length ` is a power of 2, say deg(Q) < ` = 2r, as well as for
` = 3 · 2r. If n1 and n2 are nonnegative integers, let n1 ⊕n2 denote their bitwise
exclusive OR. If n is an (up to) r-bit binary integer, let bitrevr(n) denote its bit
reversal. For an odd integer a, define aloc(a) = bitrevr(ba/4c⊕ba/2c). Figure ??
sketches how to get Q̃ from Q.



Input: Array with 2r ring elements.
Q(X) starts at index 0, standard basis.

Outputs:
Evaluations Q(Va(γ)) = Q(X) mod (X − Va(γ)) at index aloc(a) for odd a.

for s from 1 to r do
n := 2r−s;

// Now array has the remainders Q(X) mod (V2n(X) − V2an(γ))
// at index aloc(a) for odd a with 1 ≤ a < 2s.

for a from 1 to 2s − 1 by 2 do
b := a; c := 2s+1

− a;
k := aloc(a);
Retrieve ta := Q(X) mod (V2n(X) − V2an(γ)), which starts at index k.
tb := ta mod (Vn(X) − Vbn(γ));
tc := ta mod (Vn(X) − Vcn(γ));
Store tb and tc, each length n, at indices k and k + n, respectively.

end for
end for

Fig. 1. Forward DCT–II (without final permutation) of length 2r

Within the tb and tc computations, we observe

Vbn(γ) + Vcn(γ) = V(bn+cn)/2(γ)V(bn−cn)/2(γ) = V2r (γ)V(bn−cn)/2(γ) = 0.

The product of the polynomial moduli is (Vn(X)− Vbn(γ)) (Vn(X)− Vcn(γ)) =
Vn(X)2 − Van(γ)2 = V2n(X) − V2an(γ), which is the modulus used for ta.

We can compute Van(γ) for successive a with one ring multiply each since

a ranges over an arithmetic progression. Replacing c0 +
∑2n−1

m=1 cmVm(X) by its

two remainders (c0 ± cnVan(γ)) · 1 +
∑n−1

m=1 (cm − c2n−m ± cn+mVan(γ)) Vm(X)
takes n multiplications per a and can be done in-place. Each s needs about
2s−1(1 + n) = 2s−1 + 2r−1 multiplies. Many optimizations to the standard FFT
apply, such as avoiding multiplies by ±1.

The pseudocode for an inverse transform can reverse the steps, forming ta

from tb and tc. The formula ta := (tb + tc)/2+(Vn(X)/Van(γ))(tb− tc)/2 divides
by Van(γ). Instead assume

tb = nUbn(γ)(Q(X) mod (Vn(X) − Vbn(γ))),

tc = nUcn(γ)(Q(X) mod (Vn(X) − Vcn(γ))).

When s = r (so n = 1), the code can scale input remainders by Ua(γ) so
this pattern holds when n = 1. Given these, the reverse inner loop computes
ta := Vn(X)(tc− tb)+Vcn(γ)(tb + tc) to preserve the pattern. At the end, during
the backward s = 1 loop, the only case is n = 2r−s and a = 1. The output Q(X)
is scaled by a factor of TBD.

As of November, 2007, the DCT has not been implemented. We plan to have
it working before the February, 2008 ANTS deadline.



6.3 Multiplying General Polynomials by RLPs

In section ?? we will construct an RLP h(X) which will later be multiplied by
various g(X). Normally we use the DCT-II to multiply two RLP’s and the DFT
to multiply two general polynomials.

A DCT-II of length `/2 and a DFT of length ` use different points of eval-
uation, so they cannot be combined for multiplication of a polynomial by an
RLP.

A DCT-I of length `/2 + 1 can mix its outputs with those of a DFT, each
evaluating a polynomial at `-th roots of unity. We achieve this by computing
a full DFT of the RLP (after using X` = 1 to avoid negative exponents). To
conserve memory, we store only the ` + 1 distinct DFT output coefficients. This
exploits h(ω) = h(ω−1) for all `-th roots of unity ω.

In the scrambled output of a decimation-in-time FTT of length ` = 2r, the
distinct DFT coefficients h(ωi) for 0 ≤ i ≤ `/2 are at even indices and index
1. We store only these. For 0 < 2i < `/2, coefficients at index 2i and index
mi − 2i, where mi = 2blog2(i)c+3 − 2blog2(i)c+1 − 1, correspond to h(ωbitrevr(2i))
and h(ω`−bitrev−r(2i)) and thus are equal. For the pointwise product, we can
multiply the FFT coefficients of g at index 2i and mi − 2i by the coefficient of
h that was at index 2i.

7 Computing Coefficients of f

Assume the P+1 algorithm. The monic RLP f(X) in (??), with roots α2k
1 where

k ∈ S1, can be constructed using the decomposition of S1. The coefficients of f
will always be in the base ring since P1 ∈ Z/NZ.

For the P–1 algorithm, set α1 = b1 and P1 = b1 + b−1
1 . The rest of the

construction of f for P–1 is identical to that for P+1.
Assume S1 and S2 are built as in section ??, say S1 = T1 + T2 + · · · + Tm

where each Tj has an arithmetic progression of prime length, centered at zero.
At least one of these has even cardinality since s1 = |S1| =

∏

j |Tj | is even.
Renumber the Tj so |T1| = 2 and |T2| ≥ |T3| ≥ · · · ≥ |Tm|.

If T1 = {−k1, k1}, then initialize F1(X) = X + X−1 − α2k1

1 − α−2k1

1 =
X + X−1 − V2k1

(P1), a monic RLP in X of degree 2.
Suppose 1 ≤ j < m. Given the coefficients of the monic RLP Fj(X) with

roots α2k1

1 for k1 ∈ T1 + · · · + Tj , we want to construct

Fj+1(X) =
∏

k2∈Tj+1

Fj(α
2k2

1 X). (9)

The set Tj+1 is assumed to be an arithmetic progression of prime length
t = |Tj+1| centered at zero with even common difference 2k, say Tj+1 = {(−1−
t + 2i)k : 1 ≤ i ≤ t}. On the right of (??), group pairs ±k2 when k2 6= 0. We
need the coefficients of

Fj+1(X) =

{

Fj(α
−2k
1 X) Fj(α

2k
1 X), if t = 2;

Fj(X)
∏(t−1)/2

i=1

(

Fj(α
4ki
1 X) Fj(α

−4ki
1 X)

)

, if t is odd.



Let d = deg(Fj), an even number. The monic input Fj has d/2 coefficients
in Z/NZ (not counting the leading 1). The output Fj+1 will have td/2 =
deg(Fj+1)/2 such coefficients.

Products such as Fj(α
4ki
1 X) Fj(α

−4ki
1 X) can be formed by the method in

section ??, using d coefficients to store each product. The interface can pass
α4ki

1 + α−4ki
1 = V4ki(P1) ∈ Z/NZ as a parameter instead of α±4ki

1 .

For odd t, the algorithm in section ?? forms (t − 1)/2 such monic products
each with d output coefficients. We still need to multiply by the input Fj . Overall
we store (d/2) + t−1

2 d = td/2 coefficients. Later these (t + 1)/2 monic RLPs can
be multiplied in pairs, with products overwriting the inputs, until Fj+1 (with
td/2 coefficients plus the leading 1) is ready.

All polynomial products needed for (??), including those in section ??, have
output degree at most t deg(Fj) = deg(Fj+1), which divides the final deg(Fm) =
s1. If we use multiplications modulo X` − 1, for some ` > deg(Fj+1), then the
products will be exact. Since `max > s1 ≥ deg(Fj+1) and `max is a tolerable
convolution length, we can always use ` = `max, but a smaller ` might be better
for a particular product.

7.1 Scaling by a Power and its Inverse.

Let F (X) be a monic RLP of even degree d, say F (X) = c0+
∑d/2

i=1 ci(X
i+X−i),

where each ci ∈ Z/NZ and cd/2 = 1. Given Q ∈ Z/NZ, where Q = γ + γ−1

for some unknown γ, we want the d coefficients (excluding the leading 1) of
F (γX) F (γ−1X) mod N in place of the d/2 such coefficients of F . We are allowed
a few scalar temporaries and any storage internal to the polynomial multiplier.

Denote Y = X + X−1. Rewrite, while pretending to know γ,

F (γX) = c0 +

d/2
∑

i=1

ci(γ
iX i + γ−iX−i)

= c0 +

d/2
∑

i=1

ci

2

(

(γi + γ−i)(X i + X−i) + (γi − γ−i)(X i − X−i)

)

= c0 +

d/2
∑

i=1

ci

2

(

Vi(Q)Vi(Y ) + (γ − γ−1)Ui(Q)(X − X−1)Ui(Y )

)

.

Replace γ by γ−1 and multiply to get

F (γX) F (γ−1X) = G2 − (γ − γ−1)2(X − X−1)2 H2

= G2 − (Q2 − 4)(X − X−1)2 H2, (10)

where

G = c0 +

d/2
∑

i=1

ci
Vi(Q)

2
Vi(Y ), H =

d/2
∑

i=1

ci
Ui(Q)

2
Ui(Y ).



This G is a (not necessarily monic) RLP of degree at most d in the standard
basis, with coefficients in Z/NZ. This H is another RLP, of degree at most
d− 2, but using the basis {Ui(Y ) : 1 ≤ i ≤ d/2}. Starting with the coefficient of
Ud/2(Y ), we can repeatedly use Uj+1(Y ) = Vj(Y )U1(Y ) + Uj−1(Y ) = Vj(Y ) +
Uj−1(Y ) for j > 0, along with U1(Y ) = 1 and U0(Y ) = 0, to convert H to
standard basis. This conversion costs O(d) additions in Z/NZ.

Use (??) and (??) to evaluate Vi(Q)/2 and Ui(Q)/2 for consecutive i as you
evaluate the d/2 + 1 coefficients of G and the d/2 coefficients of H . Using the
memory model in section ??, write the standard-basis coefficients of G to one
DCT buffer and those of H to the other. Take two forward DCTs, square both,
and take the inverse DCTs. Retrieve the d − 1 coefficients of H2 and the d + 1
coefficients of G2 as you finish the (??) computation. Discard the leading 1.

8 Multipoint Polynomial Evaluation

We have constructed f = Fm in (??). The monic RLP f(X) has degree s1, say

f(X) = f0 +
∑s1/2

j=1 fj · (Xj + X−j) =
∑s1/2

j=−s1/2 fjX
j where fj = f−j ∈ Z/NZ.

Assuming the P–1 method (otherwise see section ??), compute r = bP
1 ∈

Z/NZ. Set ` = `max and M = ` − 1 − s1/2.

Equation (??) needs gcd(f(X), N) where X = b
2k2+(2m+1)P
1 , for several

consecutive m, say m1 ≤ m < m2. By setting x0 = b
2k2+(2m1+1)P
1 , the arguments

to f become x0b
2mP
1 = x0r

2m for 0 ≤ m < m2 − m1. The points of evaluation
form a geometric progression with ratio r2. We can evaluate these for 0 ≤ m <
`−1− s1 with one convolution of length ` and O(`) setup cost [?, exercise 8.27].

To be precise, set hj = r−j2

fj for −s1/2 ≤ j ≤ s1/2. Then hj = h−j . Set

h(X) =
∑s1/2

j=−s1/2 hjX
j , an RLP. The construction of h does not reference x0

— we reuse h as x0 varies.
Let gi = xM−i

0 r(M−i)2 for 0 ≤ i ≤ ` − 1 and g(X) =
∑`−1

i=0 giX
i.

All nonzero coefficients in g(X)h(X) have exponents from 0 − s1/2 to (` −
1)+s1/2. Suppose 0 ≤ m ≤ `−1−s1. Then M−m−` = −1−s1/2−m < −s1/2
whereas M −m+ ` = (`−1+ s1/2)+(`− s1−m) > `−1+ s1/2. The coefficient
of XM−m in g(X)h(X), reduced modulo X` − 1, is

∑

0≤i≤`−1
−s1/2≤j≤s1/2

i+j≡M−m (mod `)

gihj =
∑

0≤i≤`−1
−s1/2≤j≤s1/2

i+j=M−m

gihj =

s1/2
∑

j=−s1/2

gM−m−jhj

=

s1/2
∑

j=−s1/2

xm+j
0 r(m+j)2r−j2

fj =

s1/2
∑

j=−s1/2

xm
0 rm2 (

x0r
2m

)j
fj = xm

0 rm2

f(x0r
2m).

Since we want only gcd(f(x0 r2m), N), the xm
0 rm2

factors are harmless.
We can compute successive g`−i with two ring multiplications each since the

ratios g`−1−i/g`−i = x0 r2i−s1−1 form a geometric progression.



8.1 Adaptation for P+1 Algorithm

If we replace b1 with α1, then r becomes αP
1 , which satisfies r + r−1 = VP (P1).

The above algebra evaluates f at powers of α1. However α1, r, hj , x0, and gi lie
in an extension ring.

Arithmetic in the extension ring can use a basis {1,
√

∆} where ∆ = P 2
1 − 4.

The element α1 maps to (P1 +
√

∆)/2. A product (c0 + c1

√
∆)(d0 + d1

√
∆)

where c0, c1, d0, d1 ∈ Z/NZ can be done using four base-ring multiplications:
c0d0, c1d1, (c0 + c1)(d0 + d1), c1d1∆, plus five base-ring additions.

We define linear transformations E1, E2 on (Z/NZ)[
√

∆] so that E1(c0 +
c1

√
∆) = c0 and E2(c0 + c1

√
∆) = c1 for all c0, c1 ∈ Z/NZ. Extend E1 and E2

to polynomials by applying them to each coefficient.
To compute rn2

for successive n, we use recurrences. We observe

rn2

= r(n−1)2+2 · V2n−3(r + r−1) − r(n−2)2+2,

rn2+2 = r(n−1)2+2 · V2n−1(r + r−1) − r(n−2)2 .

After initializing the variables r1[i] := ri2 , r2[i] := ri2+2, v[i] := V2i+1(r + r−1)

for two consecutive i, we can compute r1[i] = ri2 for larger i in sequence by

r1[i] := r2[i − 1] · v[i − 2] − r2[i − 2], (11)

r2[i] := r2[i − 1] · v[i − 1] − r1[i − 2],

v[i] := v[i− 1] · V2(r + 1/r) − v[i− 2] .

Since we won’t use v[i− 2] and r2[i− 2] again, we can overwrite them with v[i]

and r2[i]. For the computation of r−n2

where r has norm 1, we can use r−1 as
input, by taking the conjugate.

All v[i] are in the base ring but r1[i] and r2[i] are in the extension ring.
Each application of (??) takes five base-ring multiplications (compared to two

multiplications per rn2

in the P–1 algorithm).

We can compute successive gi = xM−i
0 r(M−i)2 similarly. One solution to (??)

is r1[i] = gi, r2[i] = r2gi, v[i] = x0r
2M−2i−1 + x−1

0 r1+2i−2M . Again each v[i] is
in the base ring, so (??) needs only five base-ring multiplications.

If we try to follow this approach for the multipoint evaluation, we need twice
as much space for an element of (Z/NZ)[

√
∆] as one of Z/NZ. We also need a

convolution routine for the extension ring.
If p divides the coefficient of XM−m in g(X)h(X), then p divides both coor-

dinates thereof. The coefficients of g(X)h(X) occasionally lie in the base ring,
making E2(g(X)h(X)) a poor choice for the gcd with N . Instead we compute

E1(g(X)h(X)) = E1(g(X))E1(h(X)) + ∆E2(g(X))E2(h(X)) .

The RLPs E1(h(X)) and E2(∆h(X)) can be computed once and their DCT
transforms (convolution length `max) saved in the two DCT buffers. To compute
E2(∆h(X)), multiply E2(r1[i]) and E2(r2[i]) by ∆ after initializing for two
consecutive i, before applying (??).



Later, as each gi is computed we insert E2(gi) into a DFT input buffer while
saving E1(gi) for later use. After forming E2(g(X))E1(h(X)), retrieve and save
coefficients of XM−m for 0 ≤ m ≤ ` − 1 − s1. Insert saved E1(gi) into the (now
fresh) DFT input buffer. Form the E1(g(X))E2(∆h(X)) product and the sum.

Or we can compute one coordinate of gi at a time, at the cost of computing
each v[i] twice, by applying E1 (or E2) to each line in (??).

9 Memory Allocation Model

We aim to fit our major data into the following:

(MZNZ) An array with s1/2 elements of Z/NZ, for convolution inputs and outputs.
This is used during polynomial construction.
This is not needed during P–1 evaluation. During P+1 evaluation, it grows to
`max elements of Z/NZ (if we compute both coordinate of each gi together,
saving one of them), or `max − s1 elements (if we compute the coordinates
individually).

(MDCT1),
(MDCT2) Two buffers, each holding `max/2 + 1 outputs from a DCT (convolution

length `max). Each can instead hold a pointwise product. These are work
areas during forward and inverse DCTs.
After the construction of h from f in section ??, the length-`max DFT of
h (or of E1(h) and E2(∆h)) is computed once and stored here (using only
(MDCT1) for P–1 but both buffers for P+1). Then f and h are discarded.
The DFT of h evaluates h(ω) for all `max-th roots of unity, but needs only
b`max/2c + 1 locations due to h(X) = h(1/X).

(MDFT) A buffer holding `max outputs from a DFT (convolution length `max). This
can also hold a pointwise product. It is a work area during forward and
inverse DFTs. This is used during polynomial evaluation, both P ± 1.

During the construction of Fj+1 from Fj , if we need to multiply pairs of
monic RLPs occupying adjacent locations within (MZNZ) (without the leading
1’s), then we can write one DCT input to each DCT buffer. After two forward
DCTs, a pointwise product, and an inverse DCT, retrieve all wanted coefficients
of the product, overwriting the inputs within (MZNZ).

During polynomial evaluation for P–1, we need only (MDCT1) and (MDFT).
Send each gi coefficient to (MDFT) as gi is computed. When (MDFT) fills (with
`max entries), do a length-`max forward DFT on (MDFT), pointwise multiply
by the saved DCT output from h in (MDCT1), and do an inverse DFT in
(MDFT). Retrieve each polynomial, compute their product, and take a GCD
with N .

9.1 Potentially Large B2

Nowadays (2007) a typical PC memory is 4 gigabytes. The median size of com-
posite cofactors N in the Cunningham project http://homes.cerias.purdue.



Table 1. Estimated memory usage (quadwords) while factoring 230-digit number.

Array Construct f . Evaluate f . Evaluate f .
name Both P ± 1 P–1 P+1

(MZNZ) 12s1/2 0 12`max
(or 12(`max − s1))

(MDCT1) 25(1 + `max/2) 25(1 + `max/2) 25(1 + `max/2)

(MDCT2) 25(1 + `max/2) 0 25(1 + `max/2)

(MDFT) 0 25`max 25`max

Totals, if 28`max + O(1) 37.5`max + O(1) 62`max + O(1)
s1 = `max/2 (or 56`max + O(1))

edu/~ssw/cun/index.html is about 230 decimal digits, which fits in twelve
64-bit words (called quadwords). Table ?? estimates the memory requirements
during stage 2, when factoring a 230-digit number, for both polynomial con-
struction and polynomial evaluation phases, assuming convolutions use the NTT
approach in section ??. The product of our NTT prime moduli must be at least
`max(N − 1)2. If N is below 0.99 · (263)25 ≈ 10474, then it will suffice to have 25
NTT primes, each 63 bits.

The P–1 polynomial construction phase uses an estimated 28`max quad-
words, vs. 37.5`max quadwords during polynomial evaluation. Four gigabytes is
537 million quadwords. A possible value is `max = 223, which needs 315 million
quadwords. When transform length 3·2k is supported, we could use `max = 3·222

which needs 472 million quadwords.
We might use P = 3 · 5 · 7 · 11 · 13 · 17 · 19 · 23 = 111546435, for which

φ(P ) = 36495360 = 213 · 34 · 5 · 11. We choose s2 | φ(P ) so that s2 is close to
φ(P )/(`max/2) ≈ 8.7, i.e. s2 = 9 and s1 = 4055040, giving s1/`max ≈ 0.48.

We can do 9 convolutions, one for each k2 ∈ S2. We will be able to find p | N
if bq

1 ≡ 1 (mod p) where q satisfies (??) with m < `max − s1 = 4333568. As
described in section ??, the effective value of B2 will be about 9.66 · 1014.

10 Opportunities for Parallelization

Modern PC’s are multi-core, typically with 2–4 CPUs (cores) and a shared mem-
ory. When running on such systems, it is desirable to utilize multiple cores.

While building h(X) and g(X) in section ??, each core can process a con-

tiguous block of subscripts. Use the explicit formulas to compute r−j2

or gi for
the first two elements of a block, and the recurrences elsewhere.

If convolutions use NTT’s and the number of processors divides the num-
ber of primes, then allocate the primes evenly across the processors. The DCT
and DFT buffers in section ?? can have separate subbuffers for each prime.
On NUMA architectures, the memory for each subbuffer should be allocated
locally to the processor that will process it. Accesses to remote memory occur



only when converting the hj and gi to residues modulo small primes, and when
reconstructing the coefficients of g(x)h(x) with the CRT.

11 Our Implementation

Our implementation is based on GMP-ECM, an implementation of P–1, P+1 and
the Elliptic Curve Method for integer factorization. It uses the GMP library for
arbitrary precision arithmetic. The code for stage 1 of P–1 and P+1 is unchanged;
the code for the new stage 2 has been written from scratch and will replace
the previous implementation [?] which used product trees of cost O

(

n(log n)2
)

modular multiplications for building polynomials of degree n and a variant of
Montgomery’s POLYEVAL [?] algorithm for multipoint evaluation which has
cost O

(

n(log n)2
)

modular multiplications and O(n log n) memory. The practical
limit for B2 was about 1014 – 1015.

GMP-ECM includes modular arithmetic routines, using e.g. Montgomery’s
REDC [?] or fast reduction modulo number of the form 2n ± 1. It also includes
routines for polynomial arithmetic, in particular convolution products. One al-
gorithm available for this purpose is a small prime NTT/CRT (but without the
DCT variant). Its current implementation allows only for power-of-two transform
lengths. Another is Kronecker-Schönhage’s segmentation method [?], which is
faster than the NTT if the modulus is large and the convolution length is com-
paratively small, and it works for any convolution length. Its main disadvantage
is significantly higher memory use, reducing the possible convolution length.

On a 2.4 GHz Opteron with 8GB memory, P–1 stage 2 on a 250-digit com-
posite number with B2 = 1.2 · 1015, using the NTT for the convolution, can use
P = 64579515, `max = 224, s1 = 7434240, s2 = 3 and takes 46 minutes.

On the same machine, P+1 stage 2 on a 243-digit number with B2 = 1015

can use P = 111546435, l = 223, s1 = 3649536, s2 = 10 and takes 86 minutes.

12 Some Results

We ran at least one of P ± 1 on over 1500 composite cofactors, including

(a) Richard Brent’s tables with bn ± 1 factorizations for 13 ≤ b ≤ 99;
(b) Fibonacci and Lucas numbers Fn and Ln with n < 2000, or n < 10000 and

cofactor size < 10300;
(c) Cunningham cofactors of 12n ± 1 with n < 300.

The B1 and B2 values varied, with 1011 and 1015 being typical. Table ?? has
new large prime factors p and the largest factors of the corresponding p ± 1.

The 52-digit factor of 47146 + 1 and the 60-digit factor of L2366 each set a
new record for the P+1 factoring algorithm upon their discovery. The previous
record was a 48-digit factor of L1849, found by the second author in March 2003.

The 49-digit factor of 75128 + 1 has q = 3288338823576187, a 16-digit prime.
To our knowledge, this is the largest prime in the group order associated with
any factor found by the P–1, P+1 or Elliptic Curve methods of factorization.



Table 2. Large P ± 1 factors found

Input Factor p found Size
Method Largest factors of p ± 1

68118 + 1 7506686348037740621097710183200476580505073749325089∗ c151
P–1 22807 · 480587 · 14334767 · 89294369 · 4649376803 · 5380282339 p52

73109
− 1 76227040047863715568322367158695720006439518152299 c191

P–1 12491 · 37987 · 156059 · 2244509 · 462832247372839 p50

75128 + 1 2180637877078565656090569549812536273194443435521 c183
P–1 37489 · 19791649 · 162960727 · 3288338823576187 p49

47146 + 1 7986478866035822988220162978874631335274957495008401 c235
P+1 20540953 · 56417663 · 1231471331 · 1632221953 · 843497917739 p52

L2366 725516237739635905037132916171116034279215026146021770250523 c290
P+1 932677 · 62754121 · 1988258341 · 751245344783 · 483576618980159 p60

∗ = Found during stage 1

The largest q reported in Table 2 of [?] is q = 6496749983 (10 digits), for a
19-digit factor p of 2895+1. That table includes a 34-digit factor of the Fibonacci
number F575, which was the P–1 record in 1989.

The largest P–1 factor reported in [?, pp. 538–539] is a 58-digit factor of
22098 + 1 with q = 9909876848747 (13 digits). Site http://www.loria.fr/
~zimmerma/records/Pminus1.html has other records, including a 66-digit fac-
tor of 960119 − 1 found by P–1 for which q = 2110402817 (only ten digits).
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