Skip to Main content Skip to Navigation
Reports

Optimal Policies Search for Sensor Management : Application to the AESA Radar

Thomas Bréhard 1 Pierre-Arnaud Coquelin 1 Emmanuel Duflos 1, *
* Corresponding author
1 SEQUEL - Sequential Learning
LIFL - Laboratoire d'Informatique Fondamentale de Lille, LAGIS - Laboratoire d'Automatique, Génie Informatique et Signal, Inria Lille - Nord Europe
Abstract : This report introduces a new approach to solve sensor management problems. Classically sensor management problems are formalized as Partially-Observed Markov Decision Process (POMPD). Our original approach consists in deriving the optimal parameterized policy based on stochastic gradient estimation. Two differents techniques nammed Infinitesimal Approximation (IPA) and Likelihood Ratio (LR) can be used to adress such a problem. This report discusses how these methods can be used for gradient estimation in the context of sensor management . The effectiveness of this general framework is illustrated by the managing of an Active Electronically Scanned Array Radar (AESA Radar).
Complete list of metadatas

https://hal.inria.fr/inria-00188292
Contributor : Rapport de Recherche Inria <>
Submitted on : Monday, November 19, 2007 - 10:52:43 AM
Last modification on : Thursday, February 21, 2019 - 10:52:49 AM
Document(s) archivé(s) le : Tuesday, September 21, 2010 - 2:38:02 PM

Files

RR-6361.pdf
Files produced by the author(s)

Identifiers

  • HAL Id : inria-00188292, version 2

Collections

Citation

Thomas Bréhard, Pierre-Arnaud Coquelin, Emmanuel Duflos. Optimal Policies Search for Sensor Management : Application to the AESA Radar. [Research Report] RR-6361, INRIA. 2007, pp.21. ⟨inria-00188292v2⟩

Share

Metrics

Record views

366

Files downloads

473