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Abstract—Wikis, a popular tool for sharing knowledge, are
basically collaborative editing systems. However, existing wiki
systems offer limited support for co-operative authoring, and
they do not scale well, because they are based on a centralised
architecture. This paper compares the well-known centralised
MediaWiki system with several peer-to-peer approaches to edit-
ing of wiki pages: an operational transformation approach
(MOT2), a commutativity-oriented approach (WOOTO) and a
conflict resolution approach (ACF). We evaluate and compare
them, according to a number of qualitative and quantitative
metrics.

I. INTRODUCTION

In recent years, the Web has seen an explosive growth of

massive collaboration tools, such as wiki and weblog systems.

By the billions, users may share knowledge and collectively

advance innovation, in various fields of science and art.
Existing tools, such as the MediaWiki system for wikis,

are popular in part because they do not require any specific

skills. However, they are based on a centralised architecture

and hence do not scale well. Moreover, they provide limited

functionality for collaborative authoring of shared documents.
At the same time, peer-to-peer (P2P) techniques have grown

equally explosively. They enable massive sharing of audio,

video, data or any other digital content, without the need for

a central server, and its attendant administration and hardware

costs. P2P systems provide availability and scalability by

replicating data, and by balancing workload among peers.

However, current P2P networks are designed to distribute only

immutable documents.
A natural research direction is to use P2P techniques to

distribute collaborative documents. This raises the issue of

supporting collaborative edits, and of maintaining consistency,

over a massive population of users, shared documents, and

sites. The purpose of this article is to study a number of

alternative P2P, decentralised approaches, applied to collabora-

tive wiki editing, contrasted with current centralised systems.

Specifically, we detail P2P broadcast techniques, and we

compare the existing centralised approach (MediaWiki) with

several distributed, peer-to-peer approaches, namely: an oper-

ational transformation approach (MOT2 [2]), a commutativity-

oriented approach (WOOTO [9], [18]) and a serialisation and

conflict resolution approach (ACF [13]). We evaluate each

approach according to a number of specified qualitative and

quantitative metrics.

The paper is organised as follows. In Section II we present

both the basic concepts of optimistic collaborative editing

and our evaluation metrics. Section III presents our running

example, concurrent editing scenario of a wiki page. Next,

Section IV develops this scenario using MediaWiki. Section V

overviews P2P broadcast mechanisms. The next sections dis-

cuss and evaluate specific P2P concurrency and consistency

techniques, under the same scenario: the MOT2 operational

transformation in Section VI; the WOOTO commutativity-

oriented approach in Section VII; and the ACF reconciliation

approach in Section VIII. A summary is presented in Sec-

tion IX.

II. OPTIMISTIC REPLICATION IN PEER-TO-PEER SYSTEMS

This section presents the main concepts in optimistic repli-

cation [12] and some evaluation criteria for the comparison of

various optimistic replication approaches.

A. Basic Concepts

A peer-to-peer collaborative editing system is composed of

a set of peers (sites) that can dynamically join and leave the

system. Peers host replicas of the shared document. Users

generate operations to modify the shared data. An operation

undergoes the following sequence of events:

1) The user submits it at some site.

2) It is executed against the local replica.

3) It is broadcast through the P2P network to the other

peers.

4) In some systems, it is subjected to conflict detection and

reconciliation with respect to concurrent operations.

5) Peer sites receive it and integrate it, i.e., they execute it

against their own replica.

Operations are kept in a buffer, called a log or history. Peers

synchronise with one another by exchanging and merging logs,

through epidemic propagation (see Section V).



An operation is valid under some precondition. Precondi-

tions can be implicitly built into the replication algorithm, or

can be written explicitly by users.

Additionally, an operation might contain a postcondition

that should be satisfied after its execution. For instance,

consider a document represented as a linear sequence of char-

acters, where each character is uniquely identified. Operation

insert(c, cp, cn) inserts character c between characters cp and

cn. Its precondition is that cp and cn exist and that cp is ordered

before cn. A postcondition is that c is inserted after cp and

before cn.

A common precondition is to maintain some relation with

another operation. For instance, in many systems, the order

of execution of operations is compatible with the “happens-

before” relation [7]. We say that op1 happens-before op2 if

op2 was generated on some site, after op1 executed on the

same site.

Conversely, op1 and op2 are said concurrent if neither op1

happens-before op2 nor op2 happens-before op1. Concurrent

updates of different copies of the same document might gen-

erate conflicting changes. A conflict occurs when an operation

would fail to satisfy its precondition. Detected conflicts can be

resolved automatically by the system or manually by users.

The system should ensure eventual consistency, i.e., if all

clients stop submitting operations, all sites eventually converge

to the same (correct) state.

B. Evaluation Criteria

We will compare different approaches according to a large

spectrum of metrics, some qualitative, some quantitative. Pa-

rameters are: the number of sites m, the number of operations

n, and the size of the edited document l.

a) Communication Complexity: The number of messages

exchanged for all sites to converge to the final state.

b) Time Complexity: This evaluates the time to conver-

gence.

c) Space Complexity: The amount of memory required (per

site).

d) First Site Convergence Latency: The minimal number

of rounds necessary for the first site to reach its final

state. We define a round as a P2P round-trip of com-

munication. Generally, each peer sends out messages to

all other peers, receives all messages sent to it at that

round, and carries out some local computation [8].

e) Convergence Latency: The number of rounds necessary

for all sites to converge to the final state.

f) Semantic Expressiveness: We say a system is semanti-

cally expressive if it can capture a large spectrum of

operation semantics, and of preconditions and postcon-

ditions.

g) Determinism: An approach is said deterministic if the

final document state is determined only by the set of

operations and their preconditions, and does not depend

on order of message delivery.

III. CONCURRENT EDITING SCENARIO OF A WIKI PAGE

In this section we present an example of users concurrently

editing a wiki page. We will use this example throughout this

paper to illustrate various optimistic replication approaches for

maintaining consistency.

Consider three users collaboratively writing a wiki page

about optimistic replication. Suppose the three users concur-

rently edit the section “Detection and resolution of conflicts”,

of the wiki page whose initial state is illustrated in Figure 1.

Fig. 1. Initial state of the section “Detection and resolution of conflicts”

Further suppose the three users perform the operations :

User 1 inserts a new line as the 10th line, User 2 updates the

9th line, User 3 deletes the lines 8 to 10. The modifications

of each user are shown in the same figure, Figure 2.

Fig. 2. Overview of changes performed by users.

Afterwards, all three users try to publish their versions of

the document by exchanging their modifications. Eventually

all replicas should converge.

To ensure this property, a simple technique is the “Thomas

Write Rule” approach [16], also called “Last-Writer Wins” in

replicated file systems. The successive versions of a file are

timestamped or numbered; the version with the highest number

is retained, and other versions are thrown away. The drawback

of course is that concurrent updates are lost.

Instead, the literature on computer-supported co-operative

work says that “user intention” should be preserved. Unfortu-

nately, it is difficult to characterise user intention formally.

The systems we review here differ, in particular, in how

they capture this concept. Operational Transformation specifies

transformations between pairs of concurrent operations, in

order to combine their effects. The commutativity-oriented

approach defines operations that commute, in order to reach

the same result even if operations execute in different or-

ders. The action-constraint framework maintains an explicit

representation of semantic relations between operations, e.g.,

conflicts, in order to combine them optimally.



Step Actions of User 1 Actions of User 2 Actions of User 3
1 inserts a new line as the 10th line updates the 9th line deletes the lines 8–10
2 SAVE SAVE SAVE

3 → save is aborted → save is aborted → save succeeded
→ conflict is detected → conflict is detected → new version is published
(changes of User 1 and User 3 conflict) (changes of User 2 and User 3 conflict)
→ both versions are presented → both versions are presented

4 reinserts his content reinserts his content
5 SAVE SAVE

6 → save is aborted → save succeeded
→ conflict is detected → new version is published
(changes of User 1 and User 2 conflict)
→ both versions are presented

7 manually merges both changes
8 SAVE

9 → save succeeded
→ new version is published

10 RELOAD RELOAD

TABLE I
SUMMARY OF SCENARIO WITH MEDIAWIKI

IV. THE CO-OPERATIVE EDITING SCENARIO IN MEDIAWIKI

In this section we run through the scenario of Sec-

tion III when using Mediawiki, the system currently used in

Wikipedia. We evaluate Mediawiki according to the criteria

presented in Section II-B.

A. Revisiting Motivating Example

When users concurrently try to save their changes, the save

of only one user succeeds and the other saves fail. The changes

of the user whose save succeeds are published. The other users

will be presented with two versions of the wiki page: the one

that the user tried to publish and the last published version.

Conflicts have to be manually resolved by users by re-typing

or copying and pasting the changes they performed in the

last version that was published. In Table I we illustrated a

scenario where User 3, User 2 and User 1 succeed to save their

changes in this order. Users solve conflicts by maintaining their

modifications in the version to be published and possibly by

canceling other concurrent changes. The final result obtained

combines the changes of User 1 and User 2, but ignores the

modifications performed by User 3.

B. Evaluation

a) Communication Complexity: Generally if we consider

m sites and we suppose that when changes are performed in

parallel by several users they all try to commit their changes,

the total number of messages exchanged is m(m + 1). At the

beginning all m sites try to save their changes and therefore

m messages are sent. One site will receive an accept message,

while m−1 sites will receive an abort message. Therefore, in

this step 2m messages are exchanged. In the next step the m−
1 sites still have to publish their changes. After merging their

changes these m−1 sites try to save their document versions.

One site will succeed the save, while the other m − 2 will

fail. In this step 2(m− 1) messages are exchanged. The same

process continues until the last site saves its version. The total

number of messages is m(m+1). After the last save succeeds,

the other m − 1 sites have to reload the latest version. As a

reload action requires 2 messages to be exchanged between

client and repository, the total number of messages required

to ensure convergence of all copies is m2 + 3m − 2. In the

scenario of Table I 16 messages are exchanged.

b) Time Complexity: In Mediawiki systems no merging

is performed as users manually combine the parallel modifi-

cations. However, differences between document versions are

computed to help users in the merging process.

c) Space complexity: Each time a user saves his changes

in the repository, the system creates a new version of the

document by storing the full content of the updated document

version. Therefore the space complexity can be evaluated as

the sum of the sizes of all document versions. For instance, in

our example there are stored four versions of the document:

the base version and three versions created by the three users.

d) First Site Convergence Latency: In the general case

where m sites perform concurrent changes and all try to

commit at the same time, 2m − 1 rounds are needed before

one of the sites converges to the final document state. During

the round 1 all m sites try to save their changes. One site

will receive an accept message, while m−1 sites will receive

an abort message. Therefore, in round 2, m − 1 sites have to

perform manual merging. In round 3, these m− 1 sites try to

save their versions. One site will succeed the save, while the

other m − 2 will fail. The same process continues until the

last site succeeds to save its version. In our scenario, 5 rounds

are needed in order that first user obtains the final state.

e) Convergence Latency: In MediaWiki systems, once a

site publishes the final document version, only one additional

round is needed in order that all sites receive this version

by reloading the new version from the server. Therefore the

convergence latency is 2m rounds. In our example, 6 rounds

are needed before all sites obtain the final document version.

f) Semantic Expressiveness: Since users manually per-

form merging, changes are not represented by means of

operations and therefore no issues concerning semantic expres-



siveness of operations are present. Since a user is in charge

of the merging process, the published document version can

always be considered as coherent.

g) Determinism: The approach is not deterministic since

merging is performed manually and its result is not predictable

as it depends on the two versions presented to the user. One

of these two versions results from a previous manual merge.

V. P2P COMMUNICATION: GOSSIP PROTOCOLS

Various mechanisms for the propagation of operations

among sites can be used. Epidemic propagation is one suitable

mechanism for disseminating messages to the whole system.

Epidemic or gossip protocols are simple and extremely robust.

They can be used to reliably disseminate data in large-

scale systems [3]. By analogy with the spread of rumors or

epidemics among people, they rely on a continuous exchange

of information between peers. They have been applied to

a large number of applications. In this paper, we focus on

reliable data dissemination to propagate updates among a set

of replicas.

A. Properties of Gossip Dissemination

Gossip protocols have been introduced to reliably pass

information among a large set of interconnected nodes and

turn out to be extremely robust in highly dynamic settings. The

gossip protocols robustness relies on the use of randomization

to provide probabilistic guarantees and cope with dynamism.

Gossip protocols trade strong deterministic guarantees

against probabilistic ones. When applied to gossip-based

group communication, we assume that ensuring a reliable

dissemination with a high probability is reasonable as long

as this probability can be accurately defined. Probabilistic

dissemination was first introduced in Pbcast [1] as a back-

up mechanism to recover messages lost using IP multicast. It

has been shown that if a peer gossips to k other peers chosen

uniformly at random among all other peers, the probability

that a given peer gets the message is 1− e−πk and is actually

independent of the system size.

In a later work [6], it has been shown that the probability of

achieving an atomic broadcast (i.e., all nodes get a message)

is ee−c

if each node gossips a message once to k = log n + c

other peers chosen uniformly at random, n being the size of the

system and c a parameter of the system. This property holds

if k is on average O(log n) regardless of the distribution.

These theoretical results can be used to parameterize a dis-

semination gossip protocol. As pointed out, gossip protocols

rely on some form of randomization and redundancy to ensure

a reliable dissemination of messages in a large set of nodes in

peer to peer systems.

B. Random peer sampling

Peer to peer systems rely on a symmetric communication

model where each peer may act both as a client and a server

and has a limited knowledge of the system. Therefore, it is

unreasonable to consider that each node knows every other

node in the system. However, gossip protocols assume that

each peer is able to choose uniformly at random a set of f

peers to forward a message to. A protocol providing each peer

with a random sample of the network is then required.

Although several approaches can be considered, that we can

not survey for obvious space reason, to sample a large network,

we present here an overview of the peer sampling service [5],

a generic substrate to provide each peer with a uniform

sample of the network. In this framework, a gossip protocol

is executed as follows: Periodically each peer picks a random

target from its local view v of the system, exchanges some

information with it and processes the received information. If

the information exchanged is about the nodes themselves, this

protocol builds an unstructured overlay network. The gossip

protocol is characterized by the three following parameters:

• Peer selection: each peer chooses periodically a gossip

target from its current set of neighbors vi.

• State exchanged: the state exchanged between peers is

membership information and consists of a list of peers.

• State processing: upon receipt of the list, the receiving

peer merges the list of peers received with its own list to

compose a new list of neighbors.

These parameters can actually be tuned so that the resulting

graph exhibits properties which are extremely close to those

of a random graph and therefore provides each peer with a

uniform random sample of the network that can be used by

the dissemination protocol.

VI. MERGE BASED ON OPERATIONAL TRANSFORMATION

A. Presentation of the MOT2 Approach

Operational Transformation (OT) [4] is a well accepted

method for consistency maintenance in group editors. It allows

each site to execute local operations immediately. Concurrent

and non-commutative remote operations, received in arbitrary

order, are transformed before execution in order to achieve

convergence. MOT2 [2] is an asynchronous merge algorithm

using OT that enables divergent replicas to be reconciled pair-

wise, at any time, regardless of the pair, while achieving

convergence of all replicas. An epidemic membership service

can be used for maintaining the group of sites that host

replicas. MOT2 is fully symmetric and decentralised, and

does not require any external ordering mechanism (such as

timestamps or vector clocks). Therefore, the size of the group

is not fixed, the peers being able to join and leave the

network at any time. The MOT2 algorithm is based on the

ability, provided by the use of OT function, called forward

transposition [14], to insert a remote operation op inside the

history of a site (see Figure 3) without having to undo and redo

some operations. For this purpose two conditions are required:

• op is defined from the state resulting from the execution

of operations (op1 to opt−1) located before the insert

position t in the history;

• all operations located after the insert position t (sequence

seq) are concurrent to op.

Insertion is achieved by a procedure called

Integration(HS , t, 〈Sop , op〉, opseq ) initially proposed in



Fig. 3. Integration of an operation in MOT2.

[17]. This procedure receives as an input the history HS , the

insert position t, the operation op to insert and its generator

site Sop . It delivers as a result the operation noted opseq .

Along integration, the operation op is forward transposed

with each operation of seq; the resulting operation opseq will

be executed on the current state of the replica. During the

calculation of opseq , each operation of seq is also transposed

to take the insertion of op into HS into account.
MOT2 assumes that an ordering relation is defined among

replicas. This ordering relation is used by MOT2 to serial-

ize concurrent operations according to their generator sites.

A unique global order between the operations can thus be

dynamically built without requiring a centralizing or ordering

mechanism. As a result, histories produced by MOT2 are such

that the sequences of operations common to various histories

appear in the same order. Consequently the histories which

have integrated the same operations are identical.

procedure MOT2(Si , Hj );
// Find the prefix HC common to Hi and Hj and the index kS of its last operation
k := kS + 1;
while (k ≤ sizeofHi) and (k ≤ sizeofHj ) loop
〈Sopi

, opi〉 := Hi(k);
〈Sopj

, opj〉 := Hj(k);

case Sopi
? Sopj

of

Sopj
= Sopi

: // operation is already present in Hi and Hj

Sopj
< Sopi

: // opj has to be integrated into Hi and executed

Integration(Hi, k, 〈Sopj
, opj〉, op

seq
j

);

execute(op
seq
j

, Ri);

Sopi
< Sopj

: // opi has to be integrated into Hj

Integration(Hj , k, 〈Sopi
, opi〉, op

seq
i

);
endcase;
k := k + 1;

endloop; // the end of Hi or Hj has been reached
while k ≤ sizeofHj loop // end of Hi:
〈Sopj

, opj〉 := Hj(k);

append(Hi, 〈Sopj
, opj〉); // append the remainder of Hj to Hi

execute(opj , Ri);

k := k + 1;
endloop;
end MOT2

In order to get reconciled, two sites need to transmit their

history to each other and then each one has to independently

execute MOT2. So MOT2 may be executed by any site Si.

It accepts any history Hj as input, and reconciles its replica

Ri with Rj by merging histories Hi and Hj . To simplify

we assume that the whole history Hj is available to Si. The

possibility of transmitting to Si only the part of Hj following

the prefix common to Hi and Hj is not presented here.
In MOT2, two operations are considered concurrent when

they immediately follow the prefix common to both histories.

MOT2 determines first the common prefix. Then, the generator

sites of operations that follow the common prefix in Hi and

Hj are compared. If the compared operations opi and opj

have the same generator site (Sopi
= Sopj

), they are identical,

meaning that the operation is common to both histories Hi

and Hj . When the compared operations opi and opj satisfy

Sopj
< Sopi

, that means operation opj is missing in Hi; so it

has to be integrated into Hi and executed on the current state

of the replica Ri after having been forward transposed with

operations following it in Hi. When the compared operations

opi and opj satisfy Sopi
< Sopj

, that means operation opi

is missing in Hj . It has to be integrated into Hj in order

that operations following it in Hj are transposed. Finally the

common prefix is augmented by one operation and the process

is repeated until the end of one of the histories. The remaining

operations of Hj are then appended to Hi.

B. Revisiting Motivating Example

The actions performed by the users are expressed by the

operations: insert(10), update(9) and delete(8 − 10). Oper-

ations insert(10) and update(9) commute. Non-commutative

operations are transformed as follows:

TransposeForward(delete(8 − 10), insert(10)) = null ,
TransposeForward(insert(10), delete(8 − 10)) = delete(8 − 11),
TransposeForward(delete(8 − 10), update(9)) = null ,
TransposeForward(update(9), delete(8 − 10)) = delete(8 − 10).

An operation (insert or update) concurrent with the delete

operation is ignored. Another choice could have been done in

order to obtain other effects such as in the WOOT approach

described in Section VII. Three reconciliations are needed to

obtain convergence of the replicas. The ordering relation is

assumed to be: S3 < S2 < S1.
After users perform the concurrent changes, a reconciliation

between sites S1 and S2 is achieved. The resulting histories

are: H1 = H2 =update(9);insert(10). During reconcili-

ation S1 executes operation update(9) while S2 executes

insert(10). Then, S2 and S3 decide to get reconciled. During

reconciliation S2 has to execute operation delete(8 − 11)
(i.e., delete(8 − 10) forward transposed with the sequence

update(9);insert(10)). The resulting histories are: H2 =
H3 =delete(8− 10);null ;null . Indeed, the transformations of

update(9) and insert(10) with respect to delete(8−10) return

the null operation. Finally, a reconciliation is achieved either

between S1 and S2 or between S1 and S3. Then S1 has to ex-

ecute operation delete(8−11) and the final history for all sites

is: delete(8− 10);null ;null . The final history depends on the

ordering relation among sites. With the site order S1 < S2 <

S3, the final history is: insert(10);update(9);delete(8 − 11).
Note that the final replica state is independent of the ordering

relation.



C. Evaluation

a) Communication Complexity: The number of messages

exchanged between m sites depends on the number of rec-

onciliations. A reconciliation between two sites requires two

messages for exchanging their histories. The minimal number

of reconciliations required in order that the two first sites con-

verge to the final state is (m−1). Then, (m−2) reconciliations

are required to make all other sites converge. So, the total

number of reconciliations will be (m−1)+(m−2) = (2m−3).
Therefore, the total number of messages required to ensure

convergence of all replicas is 2(2m − 3).
b) Time Complexity: Let us consider two histories to

be merged : Hi = HC .seq i and Hk = HC .seqk. Assuming

that the sequences seq i and seqk respectively contain ni and

nk operations, the number of operations to be integrated by

MOT2 is about (ni + nk). Besides, integrating an operation

opi (resp. opk) belonging to seq i (resp. seqk) into the history

Hk (resp. Hi) results in executing the Integration procedure.

This procedure has a complexity of 2nk (resp. 2ni) due to a

double scan of the sequence seqk (resp. seq i), first to shift

the sequence, then to forward transpose the operations. It

results that the MOT2 algorithm executed on each site has

a complexity of O(nink). The total time complexity to obtain

the first site convergence, in the worst case, is O(n2), where

n =
∑

i ni (with i = 1 . . . m) is the total number of concurrent

operations to be reconciled. The time complexity to propagate

this final state is O(mn).
c) Space complexity: Each site Si manages one replica

Ri and the history Hi of operations executed on Ri. Therefore,

the space complexity is O(n).
d) First Site Convergence Latency: As previously seen

the minimal number of reconciliations required in order that

two sites converge towards the final state is (m − 1).
e) Convergence Latency: The minimal number of recon-

ciliations required in order that the m sites performing con-

current changes converge towards the final state is (2m − 3).
f) Semantic Expressiveness: The MOT2 algorithm is

independent of the considered operations. Another set of op-

erations could have been chosen with more or less semantics.

So, insert, update and delete (concerning several lines) are

semantically richer than insert and delete operations used in

WOOT approach described in Section VII. The constraints be-

tween operations appear when specifying the forward transpo-

sition functions. To guarantee replica convergence, the forward

transposition functions have to meet condition TP1 [11] which

is summed up by state equality: ∀state Ri, Ri · op1 · op′
2 =

Ri · op2 · op
′
1 with TransposeForward(op2, op1) = op′

1 and

TransposeForward(op1, op2) = op′
2.

g) Determinism: The MOT2 approach is deterministic.

Indeed, the final state of replicas is determined by only con-

sidering concurrent operations and the forward transposition

functions defined for the application. In particular, the final

state of replicas is independent of the order in which sites are

reconciled; it is also independent of the ordering relation used

among the (generator) sites. However, the final history that is

the same on all sites depends on this ordering relation.

VII. WOOTO APPROACH

In this section we present and evaluate the WOOTO frame-

work [18], an optimised version of the WOOT approach [9],

and show how it is applied on the scenario described in

Section III.

A. Model

A wiki system based on the WOOTO approach is composed

of a set of servers hosting replicated wiki pages. A wiki server

is a WOOT site with a unique identifier. All WOOT site

identifiers are totally ordered. A wiki page is identified by

a unique identifier pageid assigned when the page is created.

A wiki page is composed of a sequence of lines modeled as

four-tuples 〈idl , content , degree, visibility〉:

• idl is the unique identifier of the line represented as the

pair (siteid , clock), where siteid is the identifier of the

site that created the line and clock is the Lamport clock

[7] of the site at the generation time of the line;

• content represents the content of the wiki line;

• the degree of a line is an integer computed by the

WOOTO algorithm when the line is generated. Its com-

putation will be explained later on in this section;

• the visibility of a line is represented as a boolean. In the

WOOT approach lines are not physically deleted, they

are just marked as invisible.

Editing wiki pages is achieved by means of two operations:

• insert(pageid , line, lP , lN ) inserts a new line line =
〈idl , content , degree, visibility〉 in a page identified by

pageid between the lines identified by lP and lN .

• delete(pageid , idl) sets the visibility of the line identified

by idl to false in the wiki page identified by pageid .

Optionally, the content of the deleted line can be garbage

collected.

When a new page is created, the page is initial-

ized as a sequence of two sentinel lines LB and LE

indicating the begin and the end of a page, respec-

tively. When site x generates an insert operation on page

p, between lineA and lineB , it generates the operation

insert(p, 〈(x,++clockx), content , d, true〉, idl(lineA),
idl(lineB)) where d = max (degree(lineA), degree(lineB))+
1. By definition, LB and LE have a degree of 0.

B. Algorithm

Every generated operation is disseminated by using epi-

demic propagation (see section V) to all sites. Sites can

dynamically join and leave the group during the collaboration

as WOOT approach does not make any assumption on the

size and topology of the group. Each generated operation

must be integrated on every site including its generation site.

The WOOT algorithm is able to integrate operations and

to compute the same result independently of the integration

order of operations. This independency relies on the fact that

the pairs of operations (insert , delete) and (delete, delete)
are commutative. The pair (insert , insert) does not commute



naturally, but the WOOTO data structure enables them to com-

mute. When an insert operation insert(pageid , line, lP , lN ) is

received at a site, lines might be present between the lines

lP and lN . If no line exists between the lines lP and lN , it

means that the context of execution of an operation has not

changed since its generation. So the new line can be safely

inserted between lP and lN . In the case that some lines are

present between lP and lN , the exact insertion position has to

be determined. Sorting lines according to their identifiers is

not an adequate solution, since the order of already-inserted

lines cannot be changed. It is worthwhile to point out that

these already inserted lines might not be ordered according to

their identifiers [9].

However, if two lines are concurrently inserted between two

given lines, the order between the concurrently inserted lines

can be arbitrary determined according to the line identifiers.

The solution we adopted was to take into account the causal

order of insertion of lines and to consider an arbitrary order for

lines inserted concurrently such as the order of line identifiers.

The degree of lines expresses information about the causal

order of line insertions. When a line has to be inserted

between two other lines lP and lN , the lines with the minimum

degree between lP and lN are considered first. The position

of insertion of the new line is determined according to the

ascending order of line identifiers. This represents the position

of insertion in the range of lines with the same degree. Lines

with other degrees have to be considered as well and therefore

the procedure is recursively called for the insertion of the line

between the determined position and the right next position.

The IntegrateIns procedure for determining the position of

insertion of a line is presented below. The line to be inserted

as well as the line identifiers between which insertion has to

be performed are provided as arguments of the procedure. S

denotes the sequence of lines composing the page where the

new line has to be inserted.

IntegrateIns (l, lP , lN ) :−
let S′ := subseq(S, lP , lN );
if S′ := ∅ then

insert(S, l, position(lN ));
else

let i := 0, dmin := min(degree, S′);
let F := filter(S′, λli. degree(li) = dmin);
while (i < |F | − 1) and (F |i| <id l) do i := i + 1;
IntegrateIns (l, F [i − 1], F [i]);

endif;

C. Revisiting Motivating Example

In what follows we describe how WOOTO algorithm can

be applied on the motivating example presented in section III.

In the WOOTO algorithm, wiki pages and lines are uniquely

identified. We suppose that lines 8, 9, 10 were respectively

inserted by the 8th to 10th operations generated by site 1 on

page 0. Their identifiers are therefore (1,8), (1,9) and (1,10)

respectively. We suppose also that lines were inserted in their

order of occurrence in the page, and therefore the degree of

line is the line number, e.g. degree of line 8 is 8. Consequently,

the operation generated at site 1 is represented as: op1 =
insert(0, 〈(1, 15), “Usually [...]”, 11, true〉, (1, 9), (1, 10))

We supposed that the identifier of the new line inserted by

op1 is (1, 15). As this line was inserted between the two lines

with degree 9 and 10, the degree of the new line is computed

as max(9, 10) + 1 = 11.
Update operations are not directly represented in WOOT. An

update of a line is interpreted as a delete of the line followed

by an insert of the modified line. Thus, the operation generated

at site 2 is represented as: op21 = delete(0, (1, 9)); op22 =
insert(0, 〈(2, 7), “[...] Coda [...]”, 11, true〉, (1, 9), (1, 10)).

Deletion of multiple lines is not directly represented in

WOOT. An operation of deletion of multiple lines is simu-

lated as a sequence of deletions of each line. The operation

generated at site 3 is decomposed as the following sequence of

operations: op31 = delete(0, (1, 8)); op32 = delete(0, (1, 9));
op33 = delete(0, (1, 10)).

Applying in any order the set of operations op1, op21, op22,

op31, op32 and op33 leads to the following result at all sites:

〈(1, 8), “With no coordination [...]”, 8, false〉
〈(1, 9), “Conflicts happen when operations fail [...]”, 9, false〉
〈(2, 7), “[...] Coda [...]”, 11, true〉
〈(1, 15), “Usually [...]”, 11, true〉
〈(1, 10), “Resolution of conflicts [...]”, 10, false〉

The effects of all operations have been integrated. All lines

deleted by site 3 are marked invisible. The new line “Usually,

detection of conflicts is done by using the happens-before

relationship in order to flag conflicts.” created by site 1 is

included in the final page. The line modified by site 2 is

updated with its new content.

D. Evaluation

a) Communication Complexity: We consider that m sites

execute in parallel a set of operations and the operations

executed by each site are grouped and sent as a single

message. If the diffusion protocol is based on multicast, the

communication complexity equals to m messages. If unicast

mechanisms are used for diffusion, the total number of mes-

sages is m(m−1). In the example presented in Section III, if

multicast mechanisms are used, the total number of messages

exchanged is 3 (one message per site). If unicast mechanisms

are used, the number of messages exchanged is 6.
b) Time Complexity: In the worst case, the time com-

plexity for integrating an operation in WOOTO is O(l2) [18]

where l is the number of lines ever inserted in the wiki page.

Therefore, the time complexity for integrating n operations is

O(nl2).
c) Space complexity: Lines are not physically deleted in

WOOT approach, but just marked as invisible. Therefore, the

space complexity of the approach is proportional to the number

of lines ever inserted in the document.
d) First Site Convergence Latency: As the convergence

state does not depend on the order of arrival of operations,

one round of communication when sites send and receive all

messages is sufficient for the first site to obtain convergence.
e) Convergence Latency: One round of communication

between sites is sufficient for all sites to obtain the convergence

state. Therefore, in WOOT, Convergence Latency is the same

as First Site Convergence Latency.



f) Semantic Expressiveness: In the WOOT approach, a

shared document is modeled as a linear structure, e.g., a

wiki page is represented as a sequence of lines. Only basic

operations of insertion and deletion of lines are used to manage

the linear structure. Therefore, semantically rich operations are

simulated by means of these two basic operations.

The insertion of a line li is specified to be performed be-

tween two lines lP and lN . The precondition to its execution is

that these two lines exist. As a postcondition, WOOT approach

ensures that the partial orders between lines (lP < li < lN ) are

maintained as well as previously established orders between

other lines.

The deletion of a line li marks this line as invisible. The

precondition to its execution is that the line exists without

taking into account its current visibility status. As a postcon-

dition, WOOT approach ensures that the line is marked as

invisible and the previously established orders between lines

are maintained.

g) Determinism: WOOT approach is deterministic as the

result of convergence does not depend on the order of arrival

of operations.

VIII. ACTION-CONSTRAINT FRAMEWORK

The Action-Constraint Framework (ACF) is a set of tools to

reason about consistency in a distributed system [13]. In this

section, we focus on the design of a collaborative text editor

with ACF, and its evaluation in the context of the generic

reconciliation algorithm.

A. Modeling collaborative text editing with ACF

The key concept in ACF is the multilog. A multilog is

a record of operations submitted by users (actions) and of

semantic relations between actions (constraints). A multilog is

a tuple M = (K,→, ⊳, /), representing three graphs, where

K is a common set of vertices representing actions, and →,

⊳ and / (pronounced NotAfter, Enables and NonCommuting

respectively) are the respective edge sets, called constraints.

We will explain the semantics of constraints shortly.

ACF is independent of a particular application. Each ap-

plication defines its own action types, and parameterises the

system with constraints between them. For the wiki applica-

tion, we model the document as a totally ordered set of lines:

D = (L,<D), and each line in L is uniquely identified. Users

update D using the following actions:

• create(c, k, l): create a line with content c between lines

k and l; return its unique identifier.

• delete(l): hide line l.

• update(l, c): replace the contents of line l with c.

We identify the state of a document with a schedule. A

schedule S is a sequence of distinct actions, ordered by <S ,

and executed from the common initial state INIT. In the

motivating example, INIT is the state in Figure 1, before users

start editing the document. As a simplification, we identify line

creation actions by the identifier of the created line. Thus, we

note l8 = create(“With no ...”,−,−) the action that created

line 8; similarly l9 = create(“Conflict happen ...”,−,−) for

line 9, and l10 = create(“Resolution ...”,−,−) for line 10.

Constraints represent scheduling relations between actions.

Basically, α → β (NotAfter) means that any correct schedule

that executes both actions α and β executes α before β.

Similarly, if α ⊳ β (Enables) then any correct schedule that

executes α executes β as-well. The following safety condition

defines formally the semantics of NotAfter and Enables in

relation to schedules. Schedule S = (A, <S), where <S is

a strict total order over A, is sound with respect to multilog

M = (K,→, ⊳, /) iff:
8

>

>

>

<

>

>

>

:

INIT ∈ A
A ⊆ K
α ∈ A ∧ α 6= INIT ⇒ INIT <S α
(α → β) ∈ M ∧ α, β ∈ A ⇒ α <S β
(α ⊳ β) ∈ M ⇒ (β ∈ A ⇒ α ∈ A)

In the example, assuming that User 3 wants to atomically

delete lines 8 to 10, his change is modeled as:

• A set of three actions: d1 = delete(l8), d2 = delete(l9),
d3 = delete(l10).

• An ⊳-cycle: d1 ⊳ d2 ⊳ d3 ⊳ d1. Therefore all three

delete operations execute, or none of them does.

In our approach, each site i holds its own multilog Mi and

its own schedule Si. Mi monotonically grows over time, by ad-

dition of new actions and constraints, either submitted locally,

or received epidemically from remote sites (see Section V).

Si represents the current state of the document at site i.

Action u1 = update(“Conflict happens ... and Coda ...”,)

is User 2’s update. Notice that actions u1 and d1 conflict.

Depending on the desired effect, the application may declare

them, either to be non-commuting: u1 / d1, or antagonistic:

u1
←
→ d1 (shortcut for u1 → d1 ∧ d1 → u1). In what follows,

we declare them to be antagonistic.

The system has the obligation to eventually resolve conflicts.

In the case of non-commuting actions, it must either order

them (by adding a NotAfter constraint), or abort one or the

other or both. In the case of an antagonism, it can only abort.

We explain later how sites agree on a final common state.

Designing an application in ACF is invariant-driven. Let us

consider the following (informal) set of invariants:

1) Any two collaborators eventually observe any two visi-

ble lines in the same order.

2) If line l is created, eventually all collaborators see l, or

none of them.

3) Given a line l, l has eventually the same content for all

collaborators.

Tables II and III specify constraints that satisfy these

invariants. (k ≤D k′ △
= k <D k′∨k = k′, o′ ≺ o means that o

happens-before o′, o′ ‖ o means that o and o′ are concurrent:

o′ 6≺ o ∧ o 6≺ o′, and l = o′ means that the identifier of l (a

line) and that of o′ (an action of creation) are equal.)

B. Agreeing when collaborating

The system propagates the contents of multilogs, using

background epidemic communication. Eventually, users be-



❍
❍

❍
❍

o
o’

create(c′, k′, l′) delete(l′) update(c′, l′)

create(c, k, l)
o′ → o

k = o′

∨ l = o′

ff

⇒ o′ ⊳ o
Ø Ø

delete(l) l = o′ ⇒ o′ ⊳

→
o Ø Ø

update(c, l) l = o′ ⇒ o′ ⊳

→
o Ø

(l = o′)
⇒ o′ → o

TABLE II
COLLABORATIVE EDITING CONSTRAINTS FOR o′ ≺ o

❍
❍

❍
❍

o
o’

create(c′, k′, l′) delete(l′) update(c′, l′)

create(c, k, l)
k ≤D k′ <D l

∨ k′ <D k <D l′

ff

⇒ o / o′ Ø Ø

delete(l) Ø Ø
l = l′

⇒ l ←

→
l′

update(c, l) Ø
l = l′

⇒ l ←

→
l′

(l = l′)
⇒ o′ / o

TABLE III
COLLABORATIVE EDITING CONSTRAINTS FOR o′ ‖ o

come aware of the actions of their collaborators, and the possi-

ble conflicts. Thus every user eventually receives the insertion:

l11 = create(“Usually, the detection... ”, l9, l10) from User 1,

the update: u1 from User 2, and the actions d1, d2, d3 with

the parcel constraint from User 3. According to Table III,

every site eventually includes the following information in

its multilog: the set of actions {l11, u1, d1, d2, d3}, the parcel

constraint: d1 ⊳ d2 ⊳ d3 ⊳ d1, and the conflict: u1
←
→ d2.

However, until operations commit, different users may view

different states of the document. For instance if User 1

ignores User 3, his current view could be the following sound

schedule: S1 = INIT.l11.u1. Similarly User 3 might observe

his own actions only: S3 = INIT.d1.d2.d3.

Eventually, sites have to agree. We propose a voting proto-

col, whereby each site makes a proposal reflecting its tentative

state and/or the user’s preference [15].

Back to the example. Actions u1 and d1 are antagonistic

(linked by a NotAfter cycle), and actions d1, d2 and d3 are

atomic (linked by an Enables cycle). Say User 1 and User 2

both vote to commit l11 and u1; consistency obligates them

to vote to abort d1, d2 and d3. Note this proposal P , and

note Q the proposal of User 3 to commit his own actions and

to abort both l11 and u1. Our protocol distributes proposals

epidemically. Eventually all sites are aware of P and Q.

Our algorithm decomposes a proposal into semantically-

meaningful units, called candidates. An election runs locally

between competing candidates. A candidate C receives a

number of votes, equal to the sum of the weights of the sites

that voted for some proposal containing C. (If a single site

has a weight of 100%, our algorithm degenerates to a primary

approach.) Suppose that weights are uniformly distributed

among three sites. Then candidate C = “commit u1” extracted

from P has a weight of 2
3 , and candidate C ′ = “abort u1”

extracted from Q has a weight of 1
3 .

A candidate cannot be just any subset of a proposal. It must

also be consistent with existing constraints. For instance “abort

d1” is not a well-formed candidate, because of the atomicity

constraint, but “abort d1 and d2 and d3” is well-formed.

During an election a candidate competes against comparable

candidates. Two candidates are comparable if they contain the

same set of actions. For instance candidates C and C ′ are

comparable. A candidate wins when it receives a majority or

a plurality. In our example, eventually every site aborts d1, d2

and d3, and commits l11 and u1.

C. Evaluation

a) Communication Complexity: We consider that m sites

execute an action concurrently. Sites exchange their proposals

and their multilogs epidemically. In the best case, the commu-

nication cost is 4(m − 1):

• Every site sends its actions to site i: m − 1 messages.

• Site i computes the constraints, and sends its multilog M

to all other sites: m − 1 messages.

• When a site receives M , it computes a proposal and

returns the result to i: m − 1 messages.

• Site i receives all proposals, and sends them to other sites:

m − 1 messages.

• Each site decides locally.

This reduces to 2(m − 1) if a single site holds 100% weight.
b) Time Complexity: Computing an optimal proposal

is equivalent to the feedback vertex set problem, which is

NP-hard. However, the IceCube system proposed heuristic

algorithm, which computes an excellent approximation of the

optimal with O(n) average complexity, where n is the number

of actions in the multilog [10]. However, the complexity of the

election algorithm is O(m3n2) in the worst case [15], which

dominates the cost of computing a proposal.
c) Space complexity: In ACF a site stores all the non-

stable actions, be they either local or remote. However, stable

actions and their constraints are eventually garbage-collected,

and replaced by snapshots. A snapshot contains the state of

the document, its size is proportional to l. If we assume that

GC keeps a small and constant number of snapshots at each

site, the space complexity is O(lm).
The size of a proposal is eventually O(n). As each site keeps

tracks of all proposals, the space requirement for proposals is

O(nm). (Proposals are also eventually garbage-collected, but

we ignore this effect in this evaluation.)
d) First Site Convergence Latency: In the best case exe-

cution (the one depicted above), the number of asynchronous

rounds to converge is 3. It reduces to 1 if a primary site holds

all the weight.
e) Convergence Latency: Once a site has elected a can-

didate locally, a single additional round ensures other sites are

informed.
f) Semantic Expressiveness: ACF supports arbitrary op-

eration types. The ACF logic is parameterised by application

semantics; see for instance Tables II and III. A different

application differs only by a different set of constraints.

Conflict is an important concept in collaborative applica-

tions, and ACF supports it. ACF recognises two variants of

conflict, non-commutativity and antagonism. ACF also allows



Comparison criteria MediaWiki MOT2 WOOTO ACF
Merging concurrent changes Manual Automatic Automatic Automatic

Communication topology Centralised Decentralised (Pair-wise synchro.) Decentralised Decentralised
Dynamic membership N/A Yes Yes No

Communication complexity m2 + 3m − 2 2(2m − 3) m 4(m − 1)
Time complexity N/A O(n2 + mn) O(nl2) O(m3n2)

Space complexity per site O(L) O(n) O(l) O(l + mn)
First site convergence latency 2m − 1 rounds m − 1 rounds 1 round 3 rounds

Convergence latency 2m rounds 2m − 3 rounds 1 round 4 rounds
Semantic expressiveness N/A Any operation Insert, Delete Any operation + constraints

Deterministic No Yes Yes No / Yes (given votes)

Key: m = number of sites, n = number of operations, L = number of lines in the doc., l = number of lines ever appeared in the doc.

TABLE IV
COMPARISON OVERVIEW

users to group operations atomically. This is particularly useful

in our example. For instance, if a user inserted a line between

lines 8 and 9, it probably would not make sense to keep

the inserted line without the lines around it. In our system,

this will be flagged as an antagonism, and either the insert

or the delete would fail (or both). In contrast, the WOOTO

approach is limited to commutative operations, and MOT2 to

ones that can be transformed to commute. These systems do

not support conflict nor atomicity. In fact, these techniques

are complementary. MOT2 or WOOTO should be used to

make commutative as many operation pairs as possible; then

the ACF reconciliation techniques can be used to resolve any

remaining conflicts.

g) Determinism: By design, our approach is not deter-

ministic, since the outcome depends on the collaborators’

votes. However, for a given set of votes, the system is

deterministic.

IX. CONCLUSION

In this paper we presented four approaches to collaborative

editing of wiki pages: the current centralised approach, and

three decentralised, peer-to-peer approaches. One is based on

operational transformation, one on commutative operations,

and one on reconciliation. We discussed and evaluated each

one in detail, according to a complete set of metrics. Table IV

summarises the evaluation.

None of the three proposed approaches is better than the

others. In terms of expressiveness ACF is better than MOT2

which at its turn is more general than the specific solution

proposed by WOOT. Regarding convergence speed in terms

of rounds and message traffic required, WOOT and ACF are

the most efficient approaches. Finally, MOT2 and WOOT are

adapted for dynamic membership required in any P2P network,

while ACF requires a static membership
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