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Abstract. We report on our experiments in factoring integers from 50 to
200 bit with the NF'S postsieving stage or class group structure computa-
tions as potential applications. We implemented, with careful parameter
selections, several general-purpose factoring algorithms suited for these
smaller numbers, from Shanks’s square form factorization method to the
self-initializing quadratic sieve, and revisited the continued fraction algo-
rithm in light of recent advances in smoothness detection batch methods.
We provide detailed timings for our implementations to better assess
their relative range of practical use on current commodity hardware.

1 Introduction

It is almost cliché to recall that integer factorization is a challenging algorithmic
problem, be it from a purely theoretical or from a more pragmatic standpoint.
On the utilitarian side, the main interest in integer factorization certainly stems
from cryptography given the ubiquity of the RSA cryptosystem [4], based on the
premise that factoring large integers is computationally impracticable. Moreover,
factorization is one of the main ingredients in a lot of number theoretical algo-
rithms — for instance, computing the maximal order of a number field requires
to factor the discriminants.

In this paper, we focus on factorizations of small to medium sized composites
such as those arising in most sieving methods, be it in the context of record
factorizations with the Number Field Sieve [8], discrete logarithms [16], or class
group structure computations [6,11,3]. These numbers are consequently known to
have no small factors and selected to be the product of very few primes (typically
2), usually of roughly comparable sizes. We reviewed general-purpose factoring
methods most suitable to this task and implemented and fine-tuned Shanks’s
SQUFOF algorithm, McKee’s enhanced Fermat described in [13], ECM, and the
subexponential CFRAC and SIQS improved with Bernstein’s batch method [2]
to identify the smooth residues.

The next section briefly describes the implemented algorithms. We then give
a detailed account of our timing measurements and discuss the implication of
these results from a down-to-earth perspective.



2 Implemented algorithms

In this section, we identify and briefly describe the main phases of the imple-
mented algorithms, with the aim of understanding the results presented in the
third section. For a more detailled theoretical background, see the referenced
literature.

2.1 Shanks’s SQuare Form Factorization (SQUFOF)

SQUFOF [9], proposed in the mid-seventies by Shanks as an alternative to the
continued fraction method, factors a number N in O(N'/*). A nice feature is
that most of the computations involve numbers less than 2v/N which makes it
particularly suited to factor (at most) double precision numbers.

SQUFOF is based on the theory of quadratic forms F(z,y) = ax? + bry +
cy? = (a,b,c), more precisely, on the underlying structure of cycles of reduced
forms (a;, b;, ¢;) = p'(ao, bo, co) where p is the standard reduction operator. Find-
ing a point of symmetry in such a cycle leads to a simple relation potentially
giving a factor of V. The theory of quadratic forms is tightly linked to continued
fractions and the reduction operator can be expressed in a similar formalism.
Given a number to factor N, we recall the following relations arising from the
development of v/N in continued fractions:

P,
o=[N] P = VOC; J for i > 0 (1)
PO == 0 y Pl = qO (2)
Py =¢qi—1Qi—1 — Pi_y fori>1 (3)
Q=1 , Qi=N-g (4)
Qi=Qi—2 —qi—1(Pi_1 — P;) for i > 1 (5)
Moreover we have the pivotal equality:
N = P72n + Qm—lQm (6)

The principal cycle of reduced forms is given by the set of forms p'(Fy) =
(=1)=DQ;_1, 2P, (—1)!Q;) with the principal form Fy = (1,2q, ¢ — N).
We will now recall the main steps of the algorithm.

[1 - forward: find square form)]
Move forward through the cycle starting with the principal form Fj until we
identify a square form F,, = p"(Fp) = (—Q,2P, S5?).

[2 - invsqrt: inverse square root|
Set F~1/2 = (=S,2P, SQ) and compute the reduction Gy = (—S_1, 2Ry, Sp)
where S_1 =S, Rp = P+ SL(qO - P)/SJ and Sp = (N — R%)/S

[3 - reverse: find symmetry point]
Using (1) to (5), reverse cycle through the quadratic forms G; = p*(Gg) =
(=1)0=DS; 1, 2R;, (—1)'S;) to find a symmetry point, e.g. a pair of forms



G, G + 1 with R, = R,,41 (this happens for m ~ n/2). Using (3), (5)
write Ry, = t,,Sm /2 and since N = R% +5,,,_15,,, we obtain a factorization
of N: N =S, - (Sn_1 + Smt?,/4).

As in other factoring methods, one can use a multiplier k, leading to factor
kN instead of N hoping to achieve some speed up. We refer the reader to [9]
for a full theoretical background on SQUFOF. Finally, note that in step 3, we
have a rough estimate of the number of forms to explore. Thus by using form
compositions, one can jump in the cycle to get quickly in the vicinity of the
point of symmetry, a strategy dubbed “fast return” by Shanks [19].

2.2 McKee’s speedup of Fermat’s algorithm

J. McKee proposed in [13] an improvement to Fermat’s venerable algorithm.
Heuristically running in O(N'/4) (instead of O(N'/2)), it is described as a pos-
sibly faster alternative to SQUFOF.

Assuming that N has no factor less than 2N/# (which is perfectly acceptable

for the applications we target), define b = [\/]V—‘ and Q(z,y) = (z+by)? — Ny

As in Fermat’s algorithm, we seek z and y such that Q(z,y) is a square so that
ged(x 4+ by — /Q(z,y), N) is potentially a proper factor of N. The “greedy”
variant proceeds as follows:

[1. Compute modular square root]
Choose a prime p > 2N'/* and set 2y and z; as the solutions to Q(z,1) = 0
(mod p?).

[2. Find square]
For z; € [zg,21]: Set © = x; and y = 1. While Q(z,y) is not a square, set
r = [p?/x], v = xr — p? and y = r. Abort the loop when y exceeds a given
threshold ¥z in the order of N1/4,
If no factor is found, go back to step 1 and choose a different prime p. Abort
the algorithm when p reaches a chosen bound.

2.3 The Elliptic Curve Method (ECM)

ECM was proposed by H'W. Lenstra in 1985 [10] and saw numerous subsequent
improvements, most notably by P. Montgomery [141] and R. Brent [5]. ECM’s
running time essentially depends on the size of the factor to be found, like
Pollard’s rho or p — 1 methods. Given a number N having p as its smallest
factor, ECM’s asymptotic complexity is given by L,(1/2,v/2) - M(N) where
Ly(a,¢) = exp((c + o(1)) - (logp)® - (loglogp)!=®) and M(N) is the cost of
multiplication modulo N.

ECM is actually very similar to the p — 1 algorithm but works on a group
defined by an elliptic curve, which makes it possible to switch to another group
(i.e. curve) if one try fails. We sketch here the main idea of the method using
the so-called “standard continuation”.



[input]
The number to factor N and two bounds B; and Bs.

[1 - ccurve: choose an elliptic curve]
Choose an elliptic curve FE and Py a non-torsion point on the curve. All op-
erations on the curve are performed modulo N.

[2 - phase_1: first phase]

Let k = IT,, - g, (pM 8PP/ 18]y “Compute P = [k]Py. Check if P = O (the
point at infinity). Since this involves an inversion modulo N (and hence the
computation of a ged modulo N), this will give a factor of N if P = O.

[3 - phase_2: second phase (standard continuation)]

For each prime p; € [By, Ba], compute [p;]P. If [p;]P = O, we have found
a factor of N. If this second phase fails, retry with another curve and / or
other bounds.

The original version of ECM did not include a second phase. In that case,
ECM will split N if the order of the group on the curve has all of its prime
factors smaller than B;. Using a second phase makes it possible to split IV if all
but one of the prime factors of the order are less than B; and if the larger one
is less than Bs.

2.4 The Continued FRACtion algorithm (CFRAC)

Introduced in 1975 by Morrison and Brillhart in [15], CFRAC is a subexponential
algorithm running in Ly (1/2,v/2). It belongs to the “congruence of squares”
family of algorithms, so-called because they look for relations of the form X2 =
Y? (mod N) to factor a composite N. However, they do not attempt to find
directly such (X,Y’) pairs, focusing instead on the easier task to find several
congruences ¢; of the form 27 = y; (mod N) at the expense of finding afterwards
a sub-collection {c;} such that [] ;¥ 1s a square. Finding such a sub-collection
is achieved by factoring the y; on a factor base B = {p1,...,p;} and solving a
linear algebra system over F5. The smoothness condition on the y; is usually
relaxed to allow them to be the product of a B-smooth number by one or more
primes greater than p;. These are the so-called large prime variations.

CFRAC presents the advantage to generate residues y; less than 2v/N. Con-
gruences are found by computing the partial quotients ¢; of the continued frac-
tion expansion of v/N as given in (1) to (5) and the numerator of the i-th
convergent given by:

AO =1, Al = qo , A; = ini,1 + A;_o fori>1 (7)
The congruences {¢;} are then given by the relation:
(=1)'Qi = A7 (mod N) (®)

where Q; is given in (4), (5). The factor base B is obtained by keeping only the
primes p; such that N (or kN if a multiplier is used) is a quadratic residue mod
p;. The multiplier k, if any, is chosen so that the factor base contains as many
small primes as possible. The main steps of CFRAC (without large primes) can
be summarized as follows:



[1 - genrel: generate relations]
Expand VAN as continued fractions to generate congruences ¢; as in (8).

[2 - selrel: select relations]
If y; is B-smooth, keep the relation c; and factor y; = Hé‘:1 p;ij on the base.
This gives a new row in a binary matrix M whose coeflicients are given by
the e;; mod 2. Go back to step 1 to generate new relations until we have at
least [ + ¢ relations.

[3 - linalg: solve linear system]
Find the kernel of the matrix M. This yields é sub-collections of relations
{c;} for which [[, y; is a square.

[4 - dedfac: deduce factors]
For each sub-collection found, compute Y;> = [] ;¥ij and X = 11 ;T A
possible factor of N is given by ged(X — Y, N).

The large prime variations only alter step 2 of the algorithm. We refer to [15]
for a description of the single large prime variation which is the only one we
implemented, albeit in the context of batched smooth number detection (cf 2.6).

2.5 The Self-Initializing Quadratic Sieve (SIQS)

SIQS is the last sibling of the quadratic sieve (QS) methods. It basically differs
from CFRAC in the way the relations ¢; are generated. Compared to CFRAC, its
chief advantage lies in the introduction of a sieving process which, by discarding
most of the non-smooth y;, lowers its complexity to Ly (1/2,3//8).

In the QS methods, the residues y; are taken as the values of quadratic
polynomials g;(z). These polynomials are constructed so that if a prime p in the
factor base divides g;(z¢) then p also divides g;(zo + jp), 7 € Z. This allows to
use a sieve, tagging values of = for which g(z) is likely to be smooth. The main
steps of the vanilla QS are recalled below:

[1 - polyinit: initialize polynomial]
Take as polynomial g(x) = (z + [N])? — N and “initialize” it, i.e. compute
{zo;} and {z1;} such that g(z¢;) =0 (mod p;) and g(z1;) =0 (mod p;).

[2 - fill: fill sieve]
A sieve is used to tag x values for which g(x) is divisible by each p; of the
base (for example, initialize the sieve with zeroes and add [logp;] at the
positions xo; + jp; and zy; + jp;, j € Z).

[3 - scan: scan sieve and select relations]
Values of x for which g(x) is smooth have a sieve value nearly equal to
log g(x). In practice a small correction term is applied to account for round-
ing errors, and the fact that we do not sieve with prime powers. For each
x; fulfilling this criteria, compute g(x;) and check if it is B-smooth. Each
smooth g(x;) gives a new line in an (I + ) x | matrix like in the CFRAC
method. Go back to step 2 while the matrix is not filled.

[4 - linalg & 5 - dedfac]
These last two steps are generic to “congruence of squares” methods and are
thus similar to CFRAC’s.



QS’s main drawback is that the generated {y;} are no longer bounded above
by 2v/N as in CFRAC, but grow linearly, which lowers the probability to find
smooth residues. A variant known as MPQS (Multiple Polynomial QS) sieves
with several polynomials g.(z) = (ax + b)?> — N, discarding one g,;, when
the residues get too large, which leads to sieve on a smaller, fixed interval
[— M, +M]. However switching polynomials requires recomputing the solutions
t0 gap = 0 (mod p;), which can become costly.

SIQS (basically a variant of MPQS) bypasses this problem by judiciously
choosing a family {gqs,} such that a new polynomial gu,,, can (to a certain
extent) be quickly initialized from gop,. We voluntarily put aside the details and
refer the reader to [7] for a full description of SIQS.

[1 - polyinit: initialize polynomial]

[1.1. Full polynomial initialization]
Choose a as explained in [7]. The first polynomial g.p, must be fully
initialized as in MPQS.

[1.2. “Fast” polynomial initialization]
If the current polynomial is gqp, with ¢ < 2° (with s being the number
of prime factors of a), a new polynomial g.p,,, can be quickly initialized
from g, otherwise, goto step 1.1.

[2 - fill: fill sieve]
This is similar to the ‘fill’ stage in QS, with the exception that we only sieve
on a fixed interval [—M,+M]. If this interval has already been completely
sieved, go back to step 1 to switch to a different polynomial.

[3 - scan & 4 - linalg & 5 - dedfac]
These last step are performed in the same way as in the basic QS.

i1

2.6 Identifying smooth residues

Testing the smoothness of a lot of residues is a major bottleneck of the “congru-
ence of squares” methods. While sieving methods greatly mitigate its extent, it
remains by far the most time-consuming stage of the CFRAC algorithm.

Identifying the smooth residues has traditionally been achieved by trial-
division. The early abort variation can significantly reduce the cost of this phase
by beginning to trial-divide with only a fraction of the primes in the base and
discarding the partially factored residues if they exceed a given bound.

In [2], D. Bernstein introduced a simple but efficient batch algorithm to
find the B-smooth parts of a large set of integers {z;}. His method runs in
O(b-log®(b) - log(log(b))) where b is the total number of bits in B and {z;}. We
reproduce below almost verbatim the algorithm described in [2] (which we will
dub “smoothness batch”) as a convenience for the reader.

[Input] A factor base B = {p1,...,p} and a set of integers S = {x1,...,Zm}.
[Output] The set of integers S’ = {z}|z} is the B-smooth parts of z;}.



[0 - precomp: precompute primes product]

Precompute z = p; X - - - X p; using a product tree (this step is performed
only once).

[1 - prodtree: compute the {z,;} product]
Compute X = 1 X - -+ X &, using a product tree.

[2 - remtree: product modulo the {z;}]
Compute Z' = {z}|z] = z mod z;} using a remainder tree and the previously
computed product tree.

[3 - powm: compute modular powers]
Compute Y = {y;|y; = 222 mod z; } where e > 0 is the smallest integer such
that 22° > T;.

[4 - gcd: compute smooth parts]
S = {z}|z; = ged(z;,y:)}. Note that if y; = 0 then z; is B-smooth, otherwise
the cofactor x;/x; may be prime and hence considered as a large prime.

This algorithm does not give the factorization of the x; on the base but only
identifies smooth numbers. However for our applications, this phase (referred to
as “factres” in the plots of section 3) is generally negligible and can be carried
out via simple trial division without much impact on the total running time.

3 Implementation and results

Our programs were developed and benchmarked on a 64-bit AMD Opteron 250
workstation with 2GB of RAM running under the GNU/Linux operating sys-
tem. They are single-threaded and aimed to be run on a single core/processor.
Multi-precision computations were performed using the GMP library version 4.2
patched with Pierrick Gaudry’s assembly routines for Opteron processors. The
programs, written exclusively in C99 for portability reasons, were compiled with
the gcc compiler version 4.1 using the optimization flags ¢ -march=opteron -03’.

Most composites used in our experiments are taken as products of two ran-
dom primes of similar sizes. While restrictive, such a choice represents the bulk
of the composites in our targeted applications.

3.1 Linear algebra

For the size of the numbers we are interested in, the linear algebra phase does
not significantly impact the total running time. We thus settled for Gaussian
elimination following the algorithm given in [17].

3.2 SQUFOF

Our implementation follows closely the continued fraction description given in
[9]. In order to use mostly single precision computations, our program is re-
strained to factor numbers fitting in two machine words.

Factorization is first attempted without using a multiplier. If this first at-
tempt fails (which happens about 5% to 10% of the time) we perform a se-
quential race using the 15 square free multipliers suggested in [9], which, for all



intent and purpose, is guaranteed to succeed as we observed no failure during
our experiments.

To carry out the “fast return”, we adapted the “large step” algorithm de-
scribed by Williams and Wunderlich in [21] in the context of the parallel gener-
ation of residues for CFRAC. To our knowledge, this is the first time the “fast
return” was implemented in such a way.

Fig. 1 a) shows the mean timings for SQUFOF in a range from 45 to 80 bits.
1000 composites were factored for each size shown. The ‘reverse’ step of our
program only performed the “fast return” variation if the estimated number of
forms to scan was greater than a given bound n g, to take into account the slower
multi-precision computations involved and the fact that the form cycle should
then be scanned in both directions. Our implementation uses npr = 4096 which
has been determined experimentally. It should be noted that the improvement
obtained by using a “fast return” is almost negligible for composites under 60
bit.
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Fig. 1: Left: SQUFOF timings from 45 to 80 bits (1000 composites per size) with and
without fast return. Right: Relative impact of the ‘forward’ and ‘reverse’ steps for
SQUFOF with fast return.

Our SQUFOF implementation was then compared to the PARI' computer
algebra system (SVN version early december 2009) and YAFU? (version 1.10),
an optimized fork of Msieve®. Fig. 2 shows very similar performances. While
our version is the only one including a “fast-return” variant, its benefit is only
visible for larger composites which cannot be factored with PARI’s and YAFU’s
versions as they are limited to single precision composites.

3.3 McKee’s Fermat variation

We implemented the “greedy” variant of McKee’s algorithm following the same
set-up as described in [13]. Our program uses single precision functions whenever

! http://pari.math.u-bordeaux.fr/
% http://sites.google.com/site/bbuhrow/home
3 http://sourceforge.net/projects/msieve/
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Fig. 2: Comparison of SQUFOF with PARI’s and YAFU’s implementations.

possible and is restricted to double precision integers at most. In Fig. 3, we
provide timings for a race with the multiplier lists {1,3} and {1, 3, 5, 7, 11} for
tiny 45 to 60 bit composites. We did not observe any failure in that size range.

Our measurements are in disagreement with McKee’s in that SQUFOF ap-
pears to be systematically faster. Two reasons could account for such a discrep-
ancy. First, timings given in [13] are restricted to a tiny sample of composites
which may not be statistically significant. Second, [13] uses Maple’s SQUFOF as
a reference, but this implementation is actually very poor (several times slower
than ours).

2
m 5:%FMcKee[l,3]
T [~ McKeell,3,5,711]
S 20 [~ —=— SQUFOF
v [
S15} a
E I //
w10 F
ETF A
- [
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Size of N (bits)

Fig. 3: McKee’s “greedy” Fermat timings using the multipliers {1, 3} and {1, 3, 5, 7,
11} averaged over 100 composites per size, compared to SQUFOF’s.

3.4 ECM

We implemented ECM using the commonly used Montgomery’s point represen-
tation and chose curves given by Suyama’s parameterization [14]. The imple-
mentation of the first phase uses the Montgomery ladder algorithm. Our second
phase follows the so-called “improved” standard continuation to speed up point
multiplication by storing precomputed points in a similar fashion as in [12].



The bounds B; and By were adjusted specifically to composites with factors
of comparable size. Fig. 4 shows timings obtained for ECM together with a com-
parison with SQUFOF. It should be mentioned that our ECM implementation
is generic, and thus multi-precision, while most of SQUFOF is single-precision
which is definitely an advantage when factoring tiny composites.

n
o
S

% [ —— ECM(@P) @ [ —— ECM (2P failures ~ 1%)

2 [ = ECM(3P) 2 12 f — SQUFOF (2P)

S 15 - 8 [ —=— ECM (3P / failures < 0.1%)

8 f g1oF SQUFOF (3P)

= =P

Ewf E°F
L o 6

.g L E W F

c 5 c T

3 [ _...-!"'—....‘ é 2 vl

50 pequpupupunepuest”© Y= =5 e wrwrrn WU P R O
40 50 60 70 80 56 58 6‘O 62 64. 66 68 70

Size of N (bits) Size of N (bits)

Fig.4: Left: ECM timings averaged over 100 composites and 100 executions per size
for composites with 2 prime factors (2P) and 3 prime factors (3P) of similar sizes and
a failure rate from 0.5 to 2%. Right: Comparison with SQUFOF-.

3.5 CFRAC

Our implementation of CFRAC is adapted from the description given in [15]
and uses the single large prime variation.

We chose a multiplier £ < 100 to have kN =1 (mod 8) and to maximize the
number of small primes for which kN is a quadratic residue using Silverman’s
modified Knuth-Schroeppel function [20].

Selection of the smooth residues is achieved either via trial-division (with or
without early abort) or using the aforementioned “smoothness batch” algorithm
followed by a trial-division step. Batches are performed with 128 residues at a
time.

Early abort is programmed as suggested by Pomerance in [18]. If py is the
greatest prime in the base, we first begin to trial-divide with primes less than
/Pk and discard any partially factored residues over a given bound. Pomerance’s
asymptotic analysis gives N'~¢ with ¢ = 1/7, as the optimal bound. However
we found this theoretical value to be of little practical use. After experimenting
with some multiples of ¢’s “optimal” value, we settled for ¢ = 4/7, which works
best for us.

Our timings obtained for CFRAC are presented in Fig. 5. The sizes of bases
given in Table 1 were determined for each strategy independently. As expected,
using batches allows to use much larger bases, hence the gain in performance.

Fig. 6 a) shows the relative impact of the different steps involved in CFRAC.
Despite the use of smoothness batches, the relation selection still dominates the
running time by a fair margin. Note that the actual factorization of the residues
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CFRAC tdiv (+ ea)

Size of N (bits) | Size factor base
80 128
95 160
105 192
110 256
130 384
140 448
145 512

CFRAC batch

Size of N (bits) | Size factor bases
60 128
92 256
110 512
125 1024
145 2048
172 4096

Table 1: Left: Sizes of the factor bases used for CFRAC with trial division (with or
without early abort). Right: Sizes of the bases used for CFRAC with batches.
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Fig. 6: Left: Timings for the first two steps of the CFRAC algorithm with batches
(generate relations and select relations) compared to the total running times. Right:
Timings for the different steps of the smoothness batches.



is negligible just like the linear algebra phase even though Gaussian elimination
is used. Fig. 6 b) shows the contribution by each step of the smoothness batches.
The real bottleneck comes from the computations of the remainder trees and, to
a much lesser extent, the modular powers at each node.

3.6 SIQS

Our main references for SIQS are [20,7]. Factor bases are chosen as in CFRAC.

SIQS polynomial selection follows the Carrier-Wagstaff method [1]. Special
care was taken to tune it properly to give good results even for tiny numbers
(e.g. 60 bits or so). Most of the leading coefficients obtained are within a few
percent of the ideal target values.

Note that we took the unusual approach to use batches to select relations
for SIQS, even though the use of a sieve theoretically makes it redundant. The
basic idea is to relax the sieving criteria to collect more residues hoping a) to
find more relations via the large prime variation and b) to cut the time needed
to fill the sieve.

Conceptually, residues are computed from the values of the sieve S such that
S[z] > 7. Optimal values of 7 where determined experimentally instead of using
the usual approximation log(M+/M).

Fig. 7 shows the running time of SIQS for the empirical selection of pa-
rameters given in Table 2. Details of the relative timings for each steps of the
algorithm are given in Fig. 8. Sieve filling and polynomial initialization account
for the major part of the relation collection, typically between 50% and 80% of
the relation collection (“collect”) time.

SIQS implementations are compared in Fig. 9. Our version is quite compet-
itive even if YAFU is about 20% faster for 200 bits composites. That said, our
SIQS nicely scales down to the smaller numbers while our concurrents revert to
the standard QS or MPQS variant.

10 T T 40 T T
[ —o— SIQS F —o— SIQS
= F [
8 -
g°r gef
. &
@6, [0] [
o [ Eaof
£ 4 c [
=] . © k-
§ 2 oL
3 LL =10
iN: »«o/ﬁ// :
obdiadindindin ot 1y, Py e sl PP PPN PSP IS BN
60 80 100 120 140 160 180 200 50 60 70 80 90 100 110 120
Size of N (bits) Size of N (bits)

Fig.7: SIQS timings over the 50-200 bit range. Each data point is obtained from an
average over 20 to 100 composites.
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Fig. 8: Timings for each step of SIQS. The left figure shows the most time-consuming
stages. The right figure breaks down the contributions to the relation collection phase.

S1QS
Size of N (bits) | Size of base M T
60 60 10000 30
80 110 14000 31
100 200 30000 36
120 400 30000 43
140 700 49152 48
160 1300 65536 56
180 2100 65536 62
200 4600 196608 71

Table 2: Parameters used for SIQS for a selected set of composite sizes. Note that the
best 7 values are much lower than in the traditional cases where trial division is used

to complete the sieving.
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(particularly fast on Opteron). The dip in YAFU’s curve at 160 bits is due to the
switch from QS/MPQS to SIQS.



3.7 Overall comparison

Fig. 10 gives an overall comparison of the implemented algorithms in our range
of interest. SQUFOF is found to remain competitive up to 60 bits but we should
mention that our ECM implementation, unlike SQUFOF’s, is generic which ob-
viously has an impact on performances. For larger composites, SIQS is clearly
the better choice, besting CFRAC across the whole size range.
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Fig. 10: Comparison of the implemented algorithms over the 45-200 bit range.

4 Concluding remarks

We experimentally assessed the current practicality of factoring methods with
an emphasis on small to medium-sized composites with no small factors. From
our work, it transpires that :

— SQUFOF is still a viable alternative to ECM, but for tiny composites only
for which the “fast-return” variant benefit is then completely negligible.
McKee’s improved Fermat method performs very poorly and is certainly not
a viable alternative to SQUFOF.

— While the use of smoothness batches does speed-up CFRAC, it remains not
viable compared to sieving methods, even for smaller numbers.

SIQS can indeed be finely tuned to factor smaller composites (say from 60
or 70 bits to 150 bits). Using QS or MPQS to factor these smaller numbers
results in poorer performances.

Finally, our implementations are part of a larger software package available
at http://www.lix.polytechnique.fr/Labo/Jerome.Milan/tifa/tifa.html.
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