Voltage-stepping schemes for the simulation of spiking neural networks

Gang Zheng 1, * Arnaud Tonnelier 1 Dominique Martinez 2
* Auteur correspondant
1 BIPOP - Modelling, Simulation, Control and Optimization of Non-Smooth Dynamical Systems
Inria Grenoble - Rhône-Alpes, LJK - Laboratoire Jean Kuntzmann, INPG - Institut National Polytechnique de Grenoble
2 CORTEX - Neuromimetic intelligence
INRIA Lorraine, LORIA - Laboratoire Lorrain de Recherche en Informatique et ses Applications
Abstract : The numerical simulation of spiking neural networks requires particular attention. On the one hand, time-stepping methods are generic but theyhardly reproduce accurately the short-time scale uctuations of spiking neurons and need specific treatments to avoid the errors associated with the dis-continuities of ntegrate-and-fire models. On the other hand, event-driven methods are exact but restricted to a limited class of models. We present here a oltage-stepping scheme that combines the advantages of these two approaches and consists of a discretization of the voltage state-space. The numerical simulation is reduced to a local event-driven method that induces an implicit activity-dependent time-stepping scheme: long time-steps are used when the neuron is slowly varying whereas small time-steps are used in periods of intense activity. Our method accurately approximates the neuronal dynamics and we show analytically that such a scheme leads to an high-order algorithm. We illustrate the voltage-stepping method on nonlinear integrate-and-fire models. In this situation, our method consists of an approximation of the original model by a voltage-dependent integrate-and-fire. We compare our method with time-stepping schemes of Runge-Kutta type.
Type de document :
Article dans une revue
Journal of Computational Neuroscience, Springer Verlag, 2009, 26 (3), pp.409-423. 〈10.1007/s10827-008-0119-1〉
Liste complète des métadonnées

Littérature citée [38 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/inria-00189386
Contributeur : Gang Zheng <>
Soumis le : jeudi 11 juin 2009 - 12:40:58
Dernière modification le : mercredi 11 avril 2018 - 01:59:46
Document(s) archivé(s) le : vendredi 24 septembre 2010 - 11:19:19

Fichier

JCNS.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Citation

Gang Zheng, Arnaud Tonnelier, Dominique Martinez. Voltage-stepping schemes for the simulation of spiking neural networks. Journal of Computational Neuroscience, Springer Verlag, 2009, 26 (3), pp.409-423. 〈10.1007/s10827-008-0119-1〉. 〈inria-00189386v4〉

Partager

Métriques

Consultations de la notice

366

Téléchargements de fichiers

194