
HAL Id: inria-00189423
https://inria.hal.science/inria-00189423

Submitted on 12 Dec 2007

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

ZART: A Multifunctional Itemset Mining Algorithm
Laszlo Szathmary, Amedeo Napoli, Sergei O. Kuznetsov

To cite this version:
Laszlo Szathmary, Amedeo Napoli, Sergei O. Kuznetsov. ZART: A Multifunctional Itemset Mining
Algorithm. 5th International Conference on Concept Lattices and Their Applications (CLA ’07), Oct
2007, Montpellier, France. pp.26–37. �inria-00189423�

https://inria.hal.science/inria-00189423
https://hal.archives-ouvertes.fr

ZART: A Multifunctional

Itemset Mining Algorithm

Laszlo Szathmary1, Amedeo Napoli1, and Sergei O. Kuznetsov2

1 LORIA UMR 7503, B.P. 239, 54506 Vandœuvre-lès-Nancy Cedex, France
{szathmar, napoli}@loria.fr

2 Higher School of Economics, Department of Applied Mathematics
Kirpichnaya 33/5, Moscow 105679, Russia

skuznetsov@hse.ru

Abstract. In this paper, we present and detail a multifunctional item-
set mining algorithm called Zart, which is based on the Pascal algorithm.
Zart shows a number of additional features and performs the following,
usually independent, tasks: identify frequent closed itemsets and asso-
ciate generators to their closures. This makes Zart a complete algorithm
for computing classes of itemsets including generators and closed item-
sets. These characteristics allow one to extract minimal non-redundant
association rules, a useful and lossless representation of association rules.
In addition, being based on the Pascal algorithm, Zart has a rather effi-
cient behavior on weakly and strongly correlated data. Accordingly, Zart

is at the heart of the Coron platform, which is a domain independent,
multi-purposed data mining platform, incorporating a rich collection of
data mining algorithms.

1 Introduction

Finding association rules is one of the most important tasks in data mining.
Generating valid association rules from frequent itemsets (FIs) often results in
a huge number of rules, which limits their usefulness in real life applications. To
solve this problem, different concise representations of association rules have been
proposed, e.g. generic basis (GB) [1], informative basis (IB) [1], representative
rules [2], Duquennes-Guigues basis [3], Luxenburger basis [4], proper basis [5],
structural basis [5], etc. A very good comparative study of these bases can be
found in [6], where it is stated that a rule representation should be lossless
(should enable derivation of all valid rules), sound (should forbid derivation of
rules that are not valid), and informative (should allow determination of rules
parameters such as support and confidence).

Kryszkiewicz showed in [6] that minimal non-redundant rules3 (MNR) with
the cover operator, and the transitive reduction of minimal non-redundant rules3

(RMNR) with the cover operator and the confidence transitivity property are
lossless, sound, and informative representations of all valid association rules.

3 Defined in Section 2.

2 Laszlo Szathmary et al.

From the definitions of MNR and RMNR it can be seen that we only need
frequent closed itemsets and their generators to produce these rules. Frequent
itemsets have several condensed representations, e.g. closed itemsets [7–9], gen-
erator representation [10], approximate free-sets [11], disjunction-free sets [12],
disjunction-free generators [10], generalized disjunction-free generators [13], non-
derivable itemsets [14], etc. From these representations, the one which consists
of frequent closed itemsets and frequent generators gives rise to a concise set of
association rules, which is lossless, sound, and informative [6]. This set of rules,
called the set of minimal non-redundant association rules (MNR) [1], is not
minimal in general case, but presents a good compromise between its size and
time needed to generate it [15].

In [16], Bastide et al. presented the Pascal algorithm and claimed that MNR
can be extracted with this algorithm. However, to obtain MNR from the output
of Pascal, one has to do a lot of computing. First, frequent closed itemsets must
also be known. Second, frequent generators must be associated to their closures.
Here we propose an algorithm called Zart, an extension of Pascal, which does this
computing. Thus, Zart allows one to easily construct MNR. Instead of Pascal,
we might have selected another algorithm. The reason for choosing Pascal was
as follows: among levelwise frequent itemset mining algorithms, it may be the
most efficient. This is due to its pattern counting inference mechanism that can
significantly reduce the number of expensive database passes. Furthermore, as
it was argued in [17], the idea introduced in Zart can be generalized, and thus
it can be applied to any frequent itemset mining algorithm.

The paper is organized as follows. In the next section, we overview the basic
concepts and essential definitions. This is followed by the description of the three
main features of the Zart algorithm. We then present Zart and give a running
example. Then, the generation of minimal non-redundant association rules is
presented. Next, we provide experimental results for comparing the efficiency of
Zart to Pascal and Apriori. Finally, we draw conclusions in the last section.

2 Main Definitions

Frequent Itemsets. We consider a set of objects O = {o1, o2, . . . , om}, a set of
attributes A = {a1, a2, . . . , an}, and a binary relation R ⊆ O ×A, where R(o, a)
means that the object o has the attribute a. In formal concept analysis the triple
(O, A, R) is called a formal context [18]. The Galois connection for (O, A, R) is
defined along the lines of [18] in the following way (here B ⊆ O, D ⊆ A):

B′ = {a ∈ A | R(o, a) for all o ∈ B}, D′ = {o ∈ O | R(o, a) for all a ∈ D}.

In data mining applications, an element of A is called an item and a subset of
A is called an itemset. Further on, we shall keep to these terms. An itemset of
size i is called an i-itemset.4 We say that an itemset P ⊆ A belongs to an object

4 For instance, {a,b,e} is a 3-itemset. Further on we use separator-free set notations,
i.e. abe stands for {a,b,e}.

ZART: A Multifunctional Itemset Mining Algorithm 3

o ∈ O, if (o, p) ∈ R for all p ∈ P , or P ⊆ o′. The support of an itemset P ⊆ A
indicates the number of objects to which the itemset belongs: supp(P) = |P ′|.
An itemset is frequent if its support is not less than a given minimum support
(denoted by min supp). An itemset P is closed if there exists no proper superset
with the same support. The closure of an itemset P (denoted by P ′′) is the
largest superset of P with the same support. Naturally, if P = P ′′, then P is
a closed itemset. The task of frequent itemset mining consists of generating all
(closed) itemsets (with their supports) with supports greater than or equal to a
specified min supp.

Two itemsets P, Q ⊆ A are said to be equivalent (P ∼= Q) iff they belong to
the same set of objects (i.e. P ′ = Q′). The set of itemsets that are equivalent to
an itemset P (P ’s equivalence class) is denoted by [P] = {Q ⊆ A | P ∼= Q}. An
itemset P ∈ [P] is called a generator5, if P has no proper subset in [P], i.e. it
has no proper subset with the same support. A frequent generator is a generator
whose support is not less than a given minimum support.

Pattern Counting Inference. The following properties of support and gen-
erators were observed in [16] and are usually referred to as properties of counting
inference.

Property 1. Let P and Q be two itemsets.
(i) P ∼= Q ⇒ supp(P) = supp(Q)
(ii) P ⊆ Q and (supp(P) = supp(Q)) ⇒ P ∼= Q

Property 2. All subsets of a frequent generator are frequent generators.

Property 3. An itemset P is a generator iff supp(P) 6= minp∈P (supp(P \ {p})).

The last property says that in order to decide whether a candidate set P is a
generator, one needs to compare its support to its subsets of size |P | − 1. By
definition, generators do not admit proper subsets of the same support.

Frequent Association Rules. An association rule is an expression of the
form I1 → I2, where I1 and I2 are arbitrary itemsets (I1, I2 ⊆ A), I1 ∩ I2 = ∅
and I2 6= ∅. The left side, I1 is called antecedent, the right side, I2 is called
consequent. The support of an association rule6 r is defined as: supp(r) =
supp(I1 ∪ I2). The confidence of an association rule r: I1 → I2 is defined as the
conditional probability that an object has itemset I2, given that it has itemset I1:
conf(r) = supp(I1 ∪ I2)/supp(I1). An association rule r with conf(r) = 100%
is an exact association rule (or implication [18]), otherwise it is an approxi-
mate association rule. An association rule is valid if supp(r) ≥ min supp and
conf(r) ≥ min conf . The set of valid association rules is denoted by AR.

Now recall the following definitions of bases of association rules:

5 In the literature these itemsets have various names: key itemsets, minimal generators,
free-itemsets, key generators, etc. Further on we will refer to them as “generators”.

6 In this paper we use absolute values, but the support of an association rule r is also
often defined as supp(r) = supp(I1 ∪ I2)/|O|.

4 Laszlo Szathmary et al.

Definition 1. Let FCI be the set of frequent closed itemsets. For each frequent
closed itemset f , let FGf denote the set of frequent generators in the equivalence
class of f . The generic basis for exact association rules (implications):

GB = {r : g ⇒ (f\g) | f ∈ FCI ∧ g ∈ FGf ∧ g 6= f}.

Definition 2. Let FCI be the set of frequent closed itemsets and let FG be the set
of frequent generators. The informative basis for approximate association rules:

IB = {r : g → (f\g) | f ∈ FCI ∧ g ∈ FG ∧ g′′ ⊂ f}.

Definition 3. Let IB denote the informative basis for approximate association
rules as defined above, and let FCI be the set of frequent closed itemsets. The
transitive reduction of IB:

RIB = {r : g → (f\g) ∈ IB | g′′ is a maximal proper subset of f in FCI}.

Definition 4. The set of minimal non-redundant rules (MNR) is defined as:
MNR = GB ∪ IB. The transitive reduction of minimal non-redundant rules
(RMNR) is defined as: RMNR = GB ∪ RIB.

3 Main Features of Zart

Zart has three main features, namely (1) pattern counting inference,
(2) identifying frequent closed itemsets, and (3) identifying generators of fre-
quent closed itemsets.

3.1 Pattern Counting Inference in Pascal and Zart

The first part of Zart is based on Pascal, which employs properties of the count-
ing inference. In levelwise traversal of frequent itemsets, first the smallest ele-
ments of an equivalence class are discovered, and these itemsets are exactly the
generators. Later, when finding a larger itemset, it is tested if it belongs to an
already discovered equivalence class. If it does, the database does not have to
be accessed to determine the support of the itemset. This way the expensive
database passes and support counts can be constrained to the case of generators
only. From some level on, all generators can be found, thus all remaining fre-
quent itemsets and their supports can be inferred without any further database
pass.

In Figure 1 (left) we show the output of Pascal when executed on dataset D
(Table 4): it finds frequent itemsets and marks frequent generators. Recalling the
definitions of MNR and RMNR, we see that this output is not enough. From
our running example, the output of Zart is shown in Figure 1 (right). Here one
can see the equivalence classes of database D. Only the maximal (frequent closed
itemset) and minimal elements (frequent generators) of each equivalence class
are indicated. Support values are shown in the top right-hand corner of classes.
As can be seen, the output of Zart is necessary and sufficient for generating GB,
IB, RIB, MNR, and RMNR.

ZART: A Multifunctional Itemset Mining Algorithm 5

a

c

be

b
 e

ac

abce

abc
 ace

ab
 ae

abe
 bce

bc
 ce

2

2
 2

3

3

3
 3

3

3
 3

4

4

4
 4

4

frequent (non-generator) itemset (FI)

frequent generator (FG)

c

ac

a

abce

abc
 ace

bce

bc
 ce
abe

ab
 ae

be

b
 e

2

3

3

3

4

4

4

equivalence class

frequent generator

frequent closed itemset

(direct) neighbors

transitive relation

a

c

ac

Fig. 1. Result of Pascal (left) and Zart (right) on D with min supp = 2 (40%)

3.2 Identifying Closed Itemsets among Frequent Itemsets in Zart

The second part of Zart consists in the identification of FCIs among FIs, adapting
this idea from Apriori-Close [5]. By definition, a closed itemset has no proper
superset with the same support. At the ith step all i-itemsets are marked as
“closed”. At the (i + 1)th iteration for each (i + 1)-itemset we test if it contains
an i-itemset with the same support. If so, then the i-itemset is not a closed
itemset since it has a proper superset with the same support, thus it is marked
as “not closed”. When the algorithm terminates with the enumeration of all FIs,
itemsets still marked “closed” are the FCIs of the dataset.

3.3 Associating the Generators to their Closures in Zart

Because of the levelwise itemset search, when an FCI is found, all its frequent
subsets are already known. This means that its generators are already computed,
they only have to be identified. We show that the search space for generators
can be narrowed to not closed ones. This is justified by the following properties:

Property 4. A closed itemset cannot be a generator of a larger itemset.

Property 5. The closure of a frequent not closed generator g is the smallest
proper superset of g in the set of frequent closed itemsets.

By using these two properties, the algorithm for efficiently finding generators
is the following: generators are stored in a list l. At the ith iteration, frequent
closed i-itemsets are filtered. For each frequent closed i-itemset z, the following

6 Laszlo Szathmary et al.

steps are executed: find the subsets of z in list l, register them as generators
of z, and delete them from l. Before passing to the (i+1)th iteration, add the
i-itemsets that are not closed generators to list l. Properties 4 and 5 guarantee
that whenever the subsets of a frequent closed itemset are looked for in list l,
only its generators are returned. The returned subsets have the same support as
the frequent closed itemset, it does not even have to be tested. Since only the
generators are stored in the list, it means that we need to test far fewer elements
than the whole set of FIs. Since at step i the size of the largest itemset in list
l can be maximum (i − 1), we do not find the generators that are identical to
their closures. If an FCI has no generator registered, it simply means that its
generator is itself. As for the implementation, instead of using a “normal” list
for storing generators, the trie data structure is suggested, since it allows a very
quick lookup of subsets.

4 The Zart Algorithm

4.1 Pseudo Code

Due to lack of space, we can only give a short overview of the algorithm here.
The detailed description of Zart can be found in [19]. The main block of the
algorithm is given in Table 2. Zart uses three different kinds of tables, their
descriptions are provided in Table 1. We assume that an itemset is an ordered
list of attributes, since we will rely on this in the Zart-Gen function.

Table 1. Tables and table fields used in Zart

Ci potentially frequent candidate i-itemsets
fields: (1) itemset, (2) pred supp, (3) key, (4) support

Fi frequent i-itemsets
fields: (1) itemset, (2) key, (3) support, (4) closed

Zi frequent closed i-itemsets
fields: (1) itemset, (2) support, (3) gen

itemset – an arbitrary itemset
pred supp – the minimum of the supports

of all (i− 1)-long frequent subsets
key – is the itemset a generator?
closed – is the itemset a closed itemset?
gen – generators of a closed itemset

Zart-Gen function. As input, it gets an Fi table that has a set of frequent
itemsets. As output, it returns the Ci+1 table. The method is the following. It
fills the Ci+1 table with the one-size larger supersets of the itemsets in Fi. The
pred supp values in Ci+1 are set to the minimum of the supports of all one-size
smaller subsets. If a subset is not a generator, then the current itemset is not a
generator either, and thus its support is equal to its pred supp value.

Find-Generators procedure. As input it gets a Zi table. The method is the fol-
lowing. For each frequent closed itemset z in Zi, find its proper subsets in the
global FG list, register them as generators of z, delete them from FG, and add
not closed generators from Fi to FG.

ZART: A Multifunctional Itemset Mining Algorithm 7

Table 2. Main block of Zart

1) FG← { }; // global list of frequent generators
2) fill C1 with 1-itemsets and count their supports;
3) copy frequent itemsets from C1 to F1;
4) mark itemsets in F1 as “closed”;
5) mark itemsets in F1 as “key” if their support < |O|;

//where |O| is the number of objects in the input dataset

6) if there is a full column in the input dataset, then FG← {∅};
7) i← 1;
8) loop
9) {

10) Ci+1 ← Zart-Gen(Fi);
11) if Ci+1 is empty then break from loop;
12) count the support of “key” itemsets in Ci+1;
13) if Ci+1 has an itemset whose support = pred supp,

then mark it as “not key”;
14) copy frequent itemsets to Fi+1;
15) if an itemset in Fi+1 has a subset in Fi with the same

support, then mark the subset as “not closed”;
16) copy “closed” itemsets from Fi to Zi;
17) Find-Generators(Zi);
18) i← i + 1;
19) }
20) copy itemsets from Fi to Zi;
21) Find-Generators(Zi);

4.2 Running Example

The execution of Zart on dataset D (Table 4, left) is illustrated in Table 3.
The algorithm first performs one database scan to count the support values of 1-
itemsets. The itemset d is pruned because it is not frequent. At the next iteration,
all candidate 2-itemsets are created and their support values are counted. In C2

there is one itemset with the same support as one of its subsets, thus be is not a
generator. Using F2, the itemsets b and e in F1 are not closed because they have
a proper superset with the same support. The remaining closed itemsets a and c
are copied to Z1 and their generators are determined. In the global list of frequent
generators (FG), which is still empty, they have no subsets, which means that
both a and c are generators themselves. Not closed generators of F1 (b and e)
are added to the FG list. In C3, abe and bce turn out to be not generators. Their
support values are equal to the support of be (Property 3). By F3, the itemsets
ab, ae, bc, and ce turn out to be not closed. The remaining closed itemsets ac
and be are copied to Z2. The generator of ac is itself, and the generators of be
are b and e. These two generators are deleted from FG and ab, ae, bc, and ce
are added to FG. The candidate abce is not a generator either, and as there are
no more candidate generators in C4, from this step on no more database scan
is needed. In the fifth iteration no new candidate is found and the algorithm
breaks out from the main loop. The generators of abce are read from FG. When

8 Laszlo Szathmary et al.

Table 3. Execution of Zart on dataset D with min supp = 2 (40%)

DB
scan1

→ C1 pred supp key supp

a 4
b 4
c 4
d 1
e 4

F1 key supp closed

a yes 4 yes
b yes 4 yes
c yes 4 yes
e yes 4 yes

Z1 supp gen

a 4
c 4

FGbefore = {}
FGafter = {b, e}

DB
scan2

→ C2 pred supp key supp

ab 4 yes 3
ac 4 yes 3
ae 4 yes 3
bc 4 yes 3
be 4 yes 4
ce 4 yes 3

F2 key supp closed

ab yes 3 yes
ac yes 3 yes
ae yes 3 yes
bc yes 3 yes
be no 4 yes
ce yes 3 yes

Z2 supp gen

ac 3
be 4 {b, e}
FGbefore = {b, e}
FGafter = {ab, ae, bc, ce}

DB
scan3

→ C3 pred supp key supp

abc 3 yes 2
abe 3 yes 3
ace 3 yes 2
bce 3 yes 3

F3 key supp closed

abc yes 2 yes
abe no 3 yes
ace yes 2 yes
bce no 3 yes

Z3 supp gen

abe 3 {ab, ae}
bce 3 {bc, ce}
FGbefore = {ab, ae, bc, ce}
FGafter = {abc, ace}

C4 pred supp key supp

abce 2 yes 2

F4 key supp closed

abce no 2 yes

Z4 supp gen

abce 2 {abc, ace}
FGbefore = {abc, ace}
FGafter = {}

C5 pred supp key supp

∅

the algorithm stops, all FIs and all FCIs with their generators are determined,
as shown in Table 4 (right). In the table the “+” sign means that the frequent
itemset is closed. The support values are indicated in parentheses. If Zart leaves
the generators of a closed itemset empty, it means that the generator is identical
to the closed itemset (as this is the case for a, c, and ac in the example).

5 Finding Minimal Non-Redundant Association Rules

with Zart

Generating all valid association rules from FIs produces too many rules of which
many are redundant. For instance, in dataset D with min supp = 2 (40%)
and min conf = 50% no less than 50 rules can be extracted. Considering the
small size of the dataset, 5 × 5, this quantity is huge. How could we find the
most interesting rules? How could we avoid redundancy and reduce the number
of rules? Minimal non-redundant association rules (MNR) can help us. By
Definition 4, an MNR has the following form: the antecedent is an FG, the

ZART: A Multifunctional Itemset Mining Algorithm 9

Table 4. A sample dataset D for the examples (left) and the output of Zart (right)

a b c d e

1 x x x x

2 x x

3 x x x x

4 x x x

5 x x x x

All frequent All frequent closed itemsets
itemsets (

S

i
Fi) with their generators (

S

i
Zi)

a (4) + be (4) + a (4); [a]
b (4) ce (3) c (4); [c]
c (4) + abc (2) ac (3); [ac]
e (4) abe (3) + be (4); [b, e]
ab (3) ace (2) abe (3); [ab, ae]
ac (3) + bce (3) + bce (3); [bc, ce]
ae (3) abce (2) + abce (2); [abc, ace]
bc (3)

Table 5. Comparing sizes of different sets of association rules

dataset AR GB IB RIB MNR RMNR
(min supp) min conf (all valid rules) (GB ∪ IB) (GB ∪RIB)

D (40%) 50% 50 8 17 13 25 21

90% 752,715 721,716 91,422 721,948 91,654
T20I6D100K 70% 986,058 232 951,340 98,097 951,572 98,329

(0.5%) 50% 1,076,555 1,039,343 101,360 1,039,575 101,592
30% 1,107,258 1,068,371 102,980 1,068,603 103,212

90% 140,651 8,254 2,784 9,221 3,751
C20D10K 70% 248,105 967 18,899 3,682 19,866 4,649

(30%) 50% 297,741 24,558 3,789 25,525 4,756
30% 386,252 30,808 4,073 31,775 5,040

95% 1,606,726 30,840 5,674 32,208 7,042
C73D10K 90% 2,053,936 1,368 42,234 5,711 43,602 7,079

(90%) 85% 2,053,936 42,234 5,711 43,602 7,079
80% 2,053,936 42,234 5,711 43,602 7,079

90% 20,453 952 682 1,496 1,226
Mushrooms 70% 45,147 544 2,961 1,221 3,505 1,765

(30%) 50% 64,179 4,682 1,481 5,226 2,025
30% 78,888 6,571 1,578 7,115 2,122

union of the antecedent and consequent is an FCI, and the antecedent is a
proper subset of this FCI. For the generation of such rules, the FCIs and their
associated generators are needed. Since Zart can find both, the output of Zart
(Table 4, right) can be used directly to generate these rules. For a very quick
lookup of frequent closed proper supersets of generators we suggest storing FCIs
in a trie.

The algorithm for finding MNR is the following: for each FG P1 find its
proper supersets P2 in the set of FCIs. Then add the rule r : P1 → P2 \ P1 to
the set of MNR. For instance, using the generator e in Figure 1 (right), three
rules can be determined. Rules within an equivalence class form the generic ba-
sis (GB), which consists of exact association rules (e ⇒ b), while rules between
equivalence classes are approximate association rules (e → bc and e → abc). For
extracting RMNR, the search space for finding frequent closed proper super-
sets of generators is reduced to equivalence classes that are direct neighbors, i.e.
transitive relations are eliminated. Thus, for instance, in the previous example

10 Laszlo Szathmary et al.

only the first two rules are generated: e ⇒ b and e → bc. A comparative ta-
ble of the different sets of association rules, that can be extracted easily using
the output of Zart, is shown in Table 5.7 In sparse datasets, like T20I6D100K,
the number of MNR is not much less than the number of AR. However, in
dense, highly correlated datasets, like C20D10K or Mushrooms, the difference
is significant. RMNR always represents much less rules than AR, in sparse and
dense datasets too.

6 Experimental Results

We evaluated Zart against Apriori and Pascal. We have implemented these al-
gorithms in Java using the same data structures, and they are all part of the
Coron data mining platform [20]. The experiments were carried out on an In-
tel Pentium IV 2.4 GHz machine running Debian GNU/Linux operating system
with 512 MB RAM. All times reported are real, wall clock times as obtained
from the Unix time command between input and output. For the experiments
we have used the following datasets: T20I6D100K, C20D10K, and Mushrooms.
The T20I6D100K8 is a sparse dataset, constructed according to the properties
of market basket data that are typical weakly correlated data. The C20D10K is
a census dataset from the PUMS sample file, while the Mushrooms9 describes
mushrooms characteristics. The last two are highly correlated datasets. It has
been shown that weakly correlated data, such as synthetic data, constitute easy
cases for the algorithms that extract frequent itemsets, since few itemsets are
frequent. For such data, all algorithms give similar response times. On the con-
trary, dense and highly-correlated data constitute far more difficult cases for the
extraction due to large differences between the number of frequent and frequent
closed itemsets. Such data represent a huge part of real-life datasets. Response
times for the datasets are presented numerically in Table 6.

6.1 Weakly Correlated Data

The T20I6D100K synthetic dataset mimics market basket data that are typical
sparse, weakly correlated data. In this dataset, the number of FIs is small and
nearly all FIs are generators. Apriori, Pascal, and Zart behave identically. As
we can see in T20I6D100K, above 0.75% minimum support all frequent itemsets
are closed and generators at the same time. It means that each equivalence class
has one element only. Because of this, Zart and Pascal cannot use the advantage
of pattern counting inference and they work exactly like Apriori.

6.2 Strongly Correlated Data

In datasets C20D10K and Mushrooms, the number of FGs is much less than
the total number of FIs. Hence, using pattern counting inference, Zart has to

7 Note that in the case of GB, by definition, minimum confidence is 100%.
8 http://www.almaden.ibm.com/software/quest/Resources/
9 http://kdd.ics.uci.edu/

ZART: A Multifunctional Itemset Mining Algorithm 11

Table 6. Response times of Zart and other statistics (number of FIs, number of FCIs,
number of FGs, proportion of the number of FCIs to the number of FIs, proportion of
the number of FGs to the number of FIs)

min supp execution time (sec.) # FIs # FCIs # FGs #F CIs

#F Is

#F Gs

#F Is

Apriori Pascal Zart

T20I6D100K

2% 72.67 71.15 71.16 378 378 378 100.00% 100.00%
1% 107.63 106.24 107.69 1,534 1,534 1,534 100.00% 100.00%

0.75% 134.49 132.00 133.00 4,710 4,710 4,710 100.00% 100.00%
0.5% 236.10 228.37 230.17 26,836 26,208 26,305 97.66% 98.02%
0.25% 581.11 562.47 577.69 155,163 149,217 149,447 96.17% 96.32%

C20D10K

50% 61.18 16.68 17.94 1,823 456 456 25.01% 25.01%
40% 71.60 19.10 19.22 2,175 544 544 25.01% 25.01%
30% 123.57 26.74 26.88 5,319 951 967 17.88% 18.18%
20% 334.87 53.28 54.13 20,239 2,519 2,671 12.45% 13.20%
10% 844.44 110.78 118.09 89,883 8,777 9,331 9.76% 10.38%

Mushrooms

60% 3.10 2.04 2.05 51 19 21 37.25% 41.18%
50% 6.03 3.13 3.13 163 45 53 27.61% 32.52%
40% 13.93 6.00 6.03 505 124 153 24.55% 30.30%
30% 46.18 12.79 12.84 2,587 425 544 16.43% 21.03%
20% 554.95 30.30 34.88 53,337 1,169 1,704 2.19% 3.19%

perform much fewer support counts than Apriori. We can observe in all cases
that the execution times of Zart and Pascal are almost identical: adding the FCI
derivation and the identification of their generators to the FI discovery does not
induce serious additional computation time. Apriori is very efficient on sparse
datasets, but on strongly correlated data the other two algorithms perform much
better.

7 Conclusion and Future Work

In this paper we presented a multifunctional itemset mining algorithm called
Zart, which is a refinement of Pascal. As an addition, it can identify frequent
closed itemsets, and it can associate generators to their closure. We showed that
these extra features are essential for the generation of minimal non-redundant
association rules. Experimental results show that Zart gives almost equivalent
response times to Pascal on both weakly and strongly correlated data.

An interesting question is the following: can the idea of Zart be general-
ized and used for any arbitrary frequent itemset mining algorithm, be it either
breadth-first or depth-first? Could we somehow extend these algorithms in a uni-
versal way to produce such results that can be used directly to generate not only
all valid association rules, but minimal non-redundant association rules too? Our
answer is positive [17], but detailed study of this will be subject of a next paper.

12 Laszlo Szathmary et al.

References

1. Bastide, Y., Taouil, R., Pasquier, N., Stumme, G., Lakhal, L.: Mining minimal
non-redundant association rules using frequent closed itemsets. In Lloyd, J.et al..,
ed.: Proc. of CL’00. Volume 1861 of LNAI., Springer (2000) 972–986

2. Kryszkiewicz, M.: Representative association rules. In: Proc. of PAKDD ’98,
London, UK, Springer-Verlag (1998) 198–209

3. Guigues, J.L., Duquenne, V.: Familles minimales d’implications informatives
résultant d’un tableau de données binaires. Math. et Sci. Hum. 95 (1986) 5–18

4. Luxenburger, M.: Implications partielles dans un contexte. Mathématiques, Infor-
matique et Sciences Humaines 113 (1991) 35–55

5. Pasquier, N., Bastide, Y., Taouil, R., Lakhal, L.: Closed set based discovery of
small covers for association rules. In: Proc. of BDA ’99. (1999) 361–381

6. Kryszkiewicz, M.: Concise Representations of Association Rules. In: Proc. of the
ESF Exploratory Workshop on Pattern Detection and Discovery. (2002) 92–109

7. Pasquier, N., Bastide, Y., Taouil, R., Lakhal, L.: Efficient mining of association
rules using closed itemset lattices. Inf. Syst. 24(1) (1999) 25–46

8. Pasquier, N., Bastide, Y., Taouil, R., Lakhal, L.: Discovering frequent closed item-
sets for association rules. LNCS 1540 (1999) 398–416

9. Zaki, M.J., Hsiao, C.J.: CHARM: An Efficient Algorithm for Closed Itemset Min-
ing. In: Proc. of SDM ’02. (2002) 33–43

10. Kryszkiewicz, M.: Concise representation of frequent patterns based on disjunction-
free generators. In: Proc. of ICDM ’01, Washington, DC, USA, IEEE Computer
Society (2001) 305–312

11. Boulicaut, J.F., Bykowski, A., Rigotti, C.: Approximation of frequency queries
by means of free-sets. In: Proc. of PKDD ’00, Lyon, France, Springer Berlin /
Heidelberg (2000) 75–85

12. Bykowski, A., Rigotti, C.: A condensed representation to find frequent patterns.
In: Proc. of PODS ’01, ACM Press (2001) 267–273

13. Kryszkiewicz, M., Gajek, M.: Why to apply generalized disjunction-free genera-
tors representation of frequent patterns? In: Proc. of ISMIS 2002, Lyon, France,
Springer-Verlag Berlin / Heidelberg (2002) 383–392

14. Calders, T., Goethals, B.: Mining all non-derivable frequent itemsets. In: Proc. of
PKDD ’02, London, UK, Springer-Verlag (2002) 74–85

15. Pasquier, N.: Mining association rules using formal concept analysis. In: Proc. of
ICCS ’00, Shaker-Verlag (2000) 259–264

16. Bastide, Y., Taouil, R., Pasquier, N., Stumme, G., Lakhal, L.: Mining frequent
patterns with counting inference. SIGKDD Explor. Newsl. 2(2) (2000) 66–75

17. Szathmary, L.: Symbolic Data Mining Methods with the Coron Platform
(Méthodes symboliques de fouille de données avec la plate-forme Coron). PhD
in Computer Sciences, Univ. Henri Poincaré Nancy 1, France (2006)

18. Ganter, B., Wille, R.: Formal concept analysis: mathematical foundations.
Springer, Berlin/Heidelberg (1999)

19. Szathmary, L., Napoli, A., Kuznetsov, S.O.: ZART : A Multifunctional Itemset
Mining Algorithm. LORIA Research Report 00001271 (2005)

20. Szathmary, L., Napoli, A.: CORON: A Framework for Levelwise Itemset Mining
Algorithms. In: Suppl. Proc. of ICFCA ’05, Lens, France. (2005) 110–113

