
HAL Id: inria-00189515
https://inria.hal.science/inria-00189515v3

Submitted on 9 Jan 2010

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Quantitative comparisons of forward problems in
MEEG.

Emmanuel Olivi, Maureen Clerc, Mariette Yvinec, Théodore Papadopoulo

To cite this version:
Emmanuel Olivi, Maureen Clerc, Mariette Yvinec, Théodore Papadopoulo. Quantitative compar-
isons of forward problems in MEEG.. [Rapport de recherche] RR-6364, INRIA. 2007, pp.32. �inria-
00189515v3�

https://inria.hal.science/inria-00189515v3
https://hal.archives-ouvertes.fr


appor t  


de  r ech er ch e


IS
S

N
02

49
-6

39
9

IS
R

N
IN

R
IA

/R
R

--
63

64
--

FR
+E

N
G

Thème NUM

INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET EN AUTOMATIQUE

Quantitative comparisons of
forward problems in MEEG.

Emmanuel Olivi, Mariette Yvinec, Maureen Clerc and Theodore Papadopoulo

N° 6364

Novembre 2008





Centre de recherche INRIA Sophia Antipolis – Méditerranée
2004, route des Lucioles, BP 93, 06902 Sophia Antipolis Cedex (France)

Téléphone : +33 4 92 38 77 77 — Télécopie : +33 4 92 38 77 65

Quantitative comparisons of
forward problems in MEEG.

Emmanuel Olivi, Mariette Yvinec∗, Maureen Clerc and Theodore
Papadopoulo†

Thème NUM — Systèmes numériques
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Comparaisons quantitatives de résultats de
problèmes directs en MEEG.

Résumé : Ce document fournit des comparaisons de plusieurs méthodes de
résolution du problème direct en MEEG en comparant leur précision sur un
modèle de tête sphérique à trois couches. Les méthodes exposées sont des
éléments finis de trois types : surfaciques (BEM), volumiques tetraèdriques
(FEM), volumiques implicites basés sur des level-sets (implicit FEM).

Mots-clés : MEG, EEG, MEEG, problème direct, CGAL, éléments finis,
éléments finis implicites, maillage, éléments frontière, modèle sphérique
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1 Introduction

MEEG, which stands for Magneto-Electro EncephaloGraphy, is a non-invasive
technique very useful in studying brain functional activity. Its high temporal
resolution is order of magnitude higher than that of the functional MRI. Data
acquisition in EEG and MEG gives respectively the electric potential and one
component of the magnetic field on sensors located around the scalp. From
these acquisitions, one can wish to recover the electrical sources inside the brain
that are responsible of the electromagnetic field measured. This problem is an
inverse problem of localization whose resolution requires the resolution of the
forward problem. Forward problem consists in simulating sources inside the
brain and computing the resulting field at the sensor positions. This resolution
is done by solving Maxwell’s equations in their quasi-static approximation on
a geometry that depends on the patient. Hence, this problem depends on the
subject, meaning that for each patient one needs the definition of the tissues,
i.e. the geometry of the different layers and their conductivities. Most of the
layers of the head can be extracted from anatomical MRI (Magnetic Resonance
Imaging); the skull still present some difficulties to be extracted and is often
guessed by inflating the brain. Conductivities of the layers can be evaluated by
different ways ; one can use reference conductivities that have been measured
in vivo on test subjects, or one can wish to estimate the conductivity for each
subject using Electrical Impedance Tomography [2]. The skull conductivity is
anisotropic, the tangential conductivity can be ten times higher than the radial
one. It has been shown that this anisotropy has an important influence on the
results of the forward (and hence inverse) problem [7]. Several methods for
solving the forward problem have been proposed. Two of them require a mesh
of the geometry of the specific patient’s head in order to do the computations
whereas the other one avoids this time and memory consuming step by doing so
the computation on the grid given by the MRI. This document gives comparisons
between three different methods for solving the forward problem:

� the boundary element method (BEM), which comes from an integral
formulation of Maxwell’s equations, it needs a surfacic mesh of the sur-
faces defining the computational domain. This method cannot take into
account the anisotropy of the skull and can only handle piecewise constant
conductivities.

� the tetrahedral finite element method (tFEM), which arises from
a variational formulation of our problem, needs a volumic mesh (made of
tetrahedra) of all the computational domain. It can handle anisotropy.

� the implicit finite element method (iFEM), which also comes from
the variational formulation but uses implicit elements given by the voxels
of the MRI. It can also handle anisotropy.

In order to compare the precision of these methods, we have used the very pop-
ular spherical model for which an analytical solution exists.

INRIA
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We first present the mesh generation using the Computational Geometry Algo-
rithms Library (CGAL), then we explain the differences between the methods
used to solve the forward problem, and we finally show the comparisons made.

RR n° 6364
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2 The mesh generation

CGAL1 is a library developed by an European consortium in which GEOMET-
RICA team takes part. CGAL provides an automatic mesh generation of either
volumic or surfacic objects. These objects can be defined through gray-level
images or equations to be satisfied.

2.1 The three-layer spherical model

The common three-layer spherical model is an idealized description of the head
made of three concentric spheres with radii 0.87, 0.92, 1 that represent the
cortex, the skull and the scalp of a human head (see Fig.1).

Figure 1: Surfaces describing the spherical model.

2.1.1 Volumic meshes using Head mesher

The Head mesher code developed from CGAL takes gray-level images and gives
a volumic mesh in agreement of one or more surfaces defined by a gray level. The
first step is a Delaunay refinement which adds vertices following criteria of size
and shape on the mesh elements but also takes into account the distance to the
surfaces to be discretized. Then, a review of all tetrahedra is performed in order
to modified the slivers, which are badly shaped tetrahedra, assigning a weight
to some vertices. This step is called an exudation stage. The final quantity of
vertices is controlled by the choice of the maximum number of edges. This code
gave us meshes with 9 000 to 600 000 vertices (see Fig.2).

1Computational Geometry Algorithms Library, http://www.cgal.org

INRIA



Comparisons of forward problems in MEEG 7

Figure 2: Volumic meshes of the sphere.

Figure 3: Dihedral angles histogram from 0 to 90°.

Figure 3 shows the histogram of the dihedral angles of the mesh generated
with 310 000 vertices. This overview on the dihedral angle reflects the quality of
the mesh in regards to the FEM that will be used later. We see that although
minimal angles are closed to 4.7°, a high proportion of angles are enclosed be-
tween 10°and 70°.

RR n° 6364
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2.1.2 Surfacic meshes using Surface mesher

In order to run the BEM code, one needs to deal with surfacic meshes. Surfacic
meshes extracted from the volumic meshes given by Head mesher were to big
to be used by the BEM. We decided to use another possibility of CGAL which
is to deliver a surfacic mesh given an implicit function of the sphere:
x2 + y2 + z2 = r2, with r ∈ {0.87, 0.92, 1}. In order not to favorize the BEM
whose accuracy errors may be reduced for homothetic meshes [12] we generated
a different mesh for each sphere.

Figure 4: Surfacic mesh from an implicit function.

INRIA



Comparisons of forward problems in MEEG 9

2.2 Realistic model

2.2.1 Volumic meshes using Head mesher

Number of vertices 57 000 320 000 584 000
Total Time 6.62 205.34 615.46
Refining Time 0.71 7.08 17.32
Exudation Time 4.94 183.28 544.20
Validation Time 0.20 1.25 2.31
Writing Time 0.75 13.57 51.34

Table 1: Meshing steps time in minute.

The human head and its complex geometry, due to circonvolutions of the
gray matter and to the closed surfaces, reveals to be a challenge for a mesher.
The head model that has been used is made of four surfaces representing:

� The gray Matter (gm)

� The inner skull

� The outer skull

� The scalp

These surfaces can be very close to each other as we can see fig.6. We have
succeeded to get meshes from 57 000 vertices in 6 minutes to 584 000 vertices in
10 hours. Table 1 shows that the main time consumption is due to the exudation
of the slivers2. This time could be reduced by changing the stopping criterion
in the exudation step.

2Computations done on a 4 processors Xeon 3.20 GHz computer with 2 MB Cache and
8GB RAM

RR n° 6364



10Emmanuel Olivi, Mariette Yvinec, Maureen Clerc and Theodore Papadopoulo

Figure 5: Describing surfaces of a realistic model.

Figure 6: Volumic mesh with 584 000 vertices.

INRIA
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2.2.2 Surfacic meshes extracted from the volumic meshes

Surfacic mesh representing the gray matter extracted from the previous volumic
mesh. This mesh contains 12 666 points.

Figure 7: Surfacic mesh of the cortex.

RR n° 6364
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3 Different ways of solving the forward problem
in MEEG

Neuronal activity inside the cortex creates an electromagnetic field outside the
head that can be measured using sensors as electrodes for the electric potential
or SQUIDS (superconducting quantum magnetic sensors) for the magnetic field.
From the Maxwell equations, one can obtain formulas that give the potential
and the magnetic field due the parameters of a source f . In our study, we have
modeled the primary current source as a current dipole Jp which has a discrete
position r0 and a moment q so that Jp = q δ(r0). The so called forward problem,
computes the resulting field on the scalp for a known source within the brain.
One can derive from the quasi-static approximation of Maxwell’s equations the
equation for the electric potential: ∇ · (Σ∇V ) = f = ∇ · Jp in Ω

(Σ ∇V ) · n = 0 on Γ,
(1)

where Ω represents the conductive domain of the head and Γ its boundary. And
the Biot-Savart law for the magnetic field:

B(r) = B0(r)− µ0

4π

∫
Ω

Σ∇V ×∇
(

1
‖r− r′‖

)
dr′ (2)

B0(r) =
µ0

4π

∫
Ω

Jp ×∇
(

1
‖r− r′‖

)
dr′

In this document, we will present three methods to solve the forward EEG and
two for the MEG forward problem.

3.1 The symmetric Boundary Element Method

3.1.1 sBEM for EEG

The boundary element method only works with piecewise constant conductivi-
ties i.e. constant conductivity in each volume Ωi as shown figure 8. Let us add
that the symmetric BEM can also handle non-nested volumes [6] but for sake
of simplicity we will deal with the nested volume formulation. The equation 1
now becomes:

σi∆V = f in Ωi, for all i = 1, . . . , N (3)
∆V = 0 in ΩN+1[

V
]
j

=
[
σ∂nV

]
j

= 0 on Sj , for all j = 1, . . . , N

The boundary element method is based on an integral formulation of the
previous equations. The classical integral formulation has been derived by
Geselowitz [3] and is a double-layer potential approach. This classical formu-
lation suffers from numerical errors when applied to the E/MEG problem. A

INRIA
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Figure 8: Nested regions with constant conductivities.

dual formulation using single-layer potential has been developed for the E/MEG
problem and finally, a combination of the single and the double-layer potentials
has yielded a new formulation which is symmetric and turns out to be numeri-
cally more accurate than the two others [4]. The boundary element method has
the great advantage that it only requires computations on the surfaces and so
does not need the entire volume to be meshed but only its describing surfaces.
This reduction of dimensionality is due to the representation theorem [1, 8].
Given the Green function G solution of the following Laplace equation:

G(r) =
1

4π‖r‖
satisfying −∆G = δ0 , (4)

and given a regular surface as boundary (∂Ω), we write down the following
integral operators that will be useful to define the solution:(

Df
)
(r) =

∫
∂Ω

∂n′G(r− r′)f(r′) ds(r′) ,

(
Sf
)
(r) =

∫
∂Ω

G(r− r′)f(r′) ds(r′) ,

(
Nf
)
(r) =

∫
∂Ω

∂2
n,n′G(r− r′)f(r′) ds(r′) ,

(
D∗f

)
(r) =

∫
∂Ω

∂nG(r− r′)f(r′) ds(r′) .

(5)

RR n° 6364
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Then, one can derive from these formulas a symmetric formulation, in a
similar way that Nédélec [8] did. The symmetric approach, uses both the single
and double-layer potentials. In this approach, we consider in each Ω1, . . . ,ΩN

the function:

uΩi
=

{
V − vΩi/σi in Ωi

−vΩi
/σi in R3\Ωi .

Each uΩi
is harmonic in R3\∂Ωi. Considering the nested volume model (Fig.

8), the boundary of Ωi is ∂Ωi = Si−1 ∪ Si. With respect to the orientations of
normals indicated, the jumps of uΩi across Si satisfy the relations:

[uΩi
]i = VSi

, [uΩi
]i−1 = −VSi−1 , (6a)

and the jumps of their derivatives:

[∂nuΩi ]i = (∂nV )−Si
, [∂nuΩi ]i−1 = −(∂nV )+

Si−1
. (6b)

We define pSi = σi[∂nuΩi ]i = σi(∂nV )−Si
. Note that since [σ∂nV ] = 0, we have

pSi
= σi(∂nV )−Si

= σi+1(∂nV )+
Si

at the interface Si.
Applying the representation theorem to the harmonic function uΩi

, we get
the following for i = 1, . . . , N :

σ−1
i+1(vΩi+1)Si

− σ−1
i (vΩi

)Si
=

Di,i−1VSi−1 − 2DiiVSi + Di,i+1VSi+1 − σ−1
i Si,i−1pSi−1

+ (σ−1
i + σ−1

i+1)SiipSi
− σ−1

i+1Si,i+1pSi+1 , (7)

Using the same approach, we evaluate the quantities
(
σi∂nuΩi

)−
Si

=
(
p −

∂nvΩi

)−
Si

and
(
σi+1∂nuΩi+1

)+
Si

=
(
p− ∂nvΩi+1

)+
Si

and subtracting the resulting
expressions yield to:

(∂nvΩi+1)Si − (∂nvΩi)Si =
σiNi,i−1VSi−1 − (σi + σi+1)NiiVSi + σi+1Ni,i+1VSi+1−

D∗i,i−1pSi−1 + 2D∗iipSi −D∗i,i+1pSi+1 , (8)

for i = 1, . . . , N . Here (and in (7)) the terms corresponding to non-existing
surfaces S0, SN+1 are to be set to zero. Terms involving pSN

must also be set
to zero, since σN+1 = 0 implies pSN

= 0.
Observe that, unlike in the previous approaches, each surface only interacts

with its neighbors, at the cost of considering two sets of unknowns, VSi
and pSi

.
Equations (7) and (8) thus lead to a block-diagonal symmetric operator matrix
(see fig.9). Note that the vanishing conductivity σN+1 = 0 is taken into account
by effectively chopping off the last line and column of the matrix.

INRIA
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

σ1,2N11 −2D∗11 −σ2N12 D∗12

−2D11 σ−1
1,2S11 D12 −σ−1

2 S12

−σ2N21 D∗21 σ2,3N22 −2D∗22 . . .
D21 −σ−1

2 S21 −2D22 σ−1
2,3S22 . . .

...
...

. . .
σN−1,NNN−1,N−1 −2D∗N−1,N−1 −σNNN−1,N

−2DN−1,N−1 σ−1
N−1,NSN−1,N−1 DN−1,N

−σNNN,N−1 D∗N,N−1 σNNN,N



·



VS1

pS1

VS2

pS2

VS3

pS3

...
VSN


=



(∂nvΩ1)S1 − (∂nvΩ2)S1

σ−1
2 (vΩ2)S1 − σ−1

1 (vΩ1)S1

(∂nvΩ2)S2 − (∂nvΩ3)S2

σ−1
3 (vΩ3)S2 − σ−1

2 (vΩ2)S2

(∂nvΩ3)S3 − (∂nvΩ4)S3

σ−1
4 (vΩ4)S3 − σ−1

3 (vΩ3)S3

...
(∂nvΩN

)SN


Figure 9: System representing the continuous operator version of the symmetric
method. Observe that the system is symmetric and block-diagonal. Special care
is needed in writing the last block because of the conductivity σN+1 = 0. We
have noted σi,i+1 the sum σi + σi+1 and σ−1

i,i+1 the sum σ−1
i + σ−1

i+1.
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3.1.2 sBEM for MEG

As one can note from equation 2, the magnetic field B can be fully deduced from
the knowledge of V on the interfaces. With the piecewise-constant conductivity
model, the ohmic term can be decomposed as a sum over volumes of constant
conductivity:∫

σ∇V × r− r′

‖r− r′‖3
dr′ =

∑
i

σi

∫
Ωi

∇V × r− r′

‖r− r′‖3
dr′ =

∑
i

σiIi (9)

In the above identity, note that the conductivities must not only be assumed
constant in each domain Ωi but, but also isotropic, in order to take σi out of the
integral over Ωi. The volume integral Ii can be expressed as a surface integral
on ∂Ωi = Si−1 ∪ Si. With this in view, we use the Stokes formula, and the
identity:

∇× (V∇g) = ∇V ×∇g

Thus,

Ii =
∫

Ωi

∇×
(
V (r′)

r− r′

‖r− r′‖3

)
dr′ =

∫
∂Ωi

n× V (r′)
r− r′

‖r− r′‖3
ds

=
∫

Si

n× V (r′)
r− r′

‖r− r′‖3
ds−

∫
Si−1

n× V (r′)
r− r′

‖r− r′‖3
ds

This expression is then inserted in 9 ans recalling, that σN+1 = 0,

B(r) = B0(r) +
µ0

4π

N∑
i=1

(σi − σi+1)
∫

Si

V (r′)n′ ×∇
(

1
‖r− r′‖

)
ds′(r′).

INRIA
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3.2 The tetrahedral Finite Element Method

The Finite Element Method developed for the forward problem in EEG, deals
with the weak formulation of equation 1. This equation is obtain by choosing
a solution in a discretized space, multiplying both sides by a test function φ
and then integrating over the all computational domain. Using the divergence
theorem we get the following equivalences:∫

Ω

∇ · (σ∇V )φdΩ =
∫

Ω

∇ · Jp φdΩ∫
∂Ω

(φσ∇V ) · n d∂Ω−
∫

Ω

σ∇V · ∇φdΩ = −
∫

Ω

Jp · ∇φdΩ +
∫

∂Ω

Jp φ · n d∂Ω∫
Ω

σ∇V · ∇φdΩ =
∫

Ω

Jp · ∇φdΩ (10)

We then discretize our solution V decomposing its values at the nodes lo-
cation using the finite basis function φi as V =

∑n
i=1 Viφi on the discretized

computational domain Ωh. Using Galerkin method, which uses the same basis
functions as test functions, we can decompose these integrals on each element
which in the tFEM, are tetrahedra. The integrals are then performed on tetra-
hedra of different shapes with constant conductivity inside. The mesh is coming
from our volumic mesh generator and must have several properties as discussed
in the section 2.1.1. Finally, we get the matricial equation that has to be solved:

Ax = b, (11)

where x is the vector of the unknowns, the potential Vi at the grid point i
— and A the matrix such that:

Ai,j =
∫

Ωh

σ(r)∇φi(r) · ∇φj(r) dr

=
∑

Tk∈T

∑
k:Vi,Vj∈Tk

σk

∫
Tk

∇φi(r) · ∇φj(r) dr

where T represents the triangulation of Ωh, and Vk the vertices of the tetrahe-
dron Tk, and finally the right hand side of 11 is:

bi =
∫

Ωh

Jp · ∇φi dr =
∫

Ωh

qδ(r0) · ∇φi dr = q · ∇φi(r0)

RR n° 6364
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3.3 The implicit Finite Element Method

3.3.1 iFEM for EEG

The implicit FEM works with the same formulation as the tFEM (10) but
computes the integrals present in the stiffness matrix and the source term in a
different manner. The integrals are evaluated on the voxels of the image, and
so this method does not need any mesh generation and uses directly the grid
provided by the MRI. In order to distinguish the different volumes that can
have different conductivities, a level-set method is used to extract the surfaces
from the MRI.
The computation of the stiffness matrix is then:

Ai,j =
∑

k:Pi∈Vk,Pj∈Vk

∫
Vk

σ(r)∇φi
k(r) · ∇φj

k(r) dr

The Cartesian grid cannot match perfectly the geometry of the domains, and
as domains can have different conductivities, we must split the integral in order
to take into account each domains:∫

Vk

σ(r)∇φi
k(r)·∇φj

k(r) dr =
∫

V 1
k

σ1
k∇φi

k(r)·∇φj
k(r) dr+

∫
V 2

k

σ2
k∇φi

k(r)·∇φj
k(r) dr

Integration over a voxel crossing an interface is done thanks to the level-sets [9].

3.3.2 iFEM for MEG

A method for solving the forward problem in MEG has been developed by [11]
using the adjoint approach. We refer to this article for further explanations.

INRIA
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3.4 Benefits and drawbacks of each methods

The symmetric BEM constructs a symmetric matrix, which is dense and can be
stored; a direct solver is used to inverse it. The main drawback of this method
is that it has to work on isotropic media with piecewise constant conductivities.
On the other hand, we have the FEM:s that create huge but sparse matrices that
cannot be inverted, the solution is obtained thanks to iterative solvers; here a
preconditioned conjugated gradient. A significant advantage is that anisotropy
and inhomogeneous media can be taken into account.
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Figure 10: From the MRI acquisition to the simulated potential.

4 Quantitative comparisons of the results

In order to fairly compare the three methods, we have taken into account the
precision of their results for a comparable amount of time/memory consumtion
for the computations. Fig.10 shows the pipeline from an MRI acquisition to the
result of the forward problem. We see the ease of use of the implicit FEM which
bypasses the mesh generation. by simulating a dipole at 5 different locations on
the Z-axis: {0.465, 0.615, 0.765, 0.8075, 0.8415} and oriented toward one of the
following Cartesian direction: (1, 0, 1), (1, 1, 0), (0, 0, 1). Simulated potentials
have been compared with the analytical ones.

4.1 The spherical model

The spherical model is widely used in the MEEG community, because it allows
to get an analytical solution of the electric potential and the magnetic field.
One can now use the analytic expression as a reference to compare the results
coming from other methods. The analytic solution is given by [13] and [10]. The
conductivities of the cortex and the scalp were set to 1 whereas the conductivity
of the skull was set to 1/80. We computed the potential V in each xi of the scalp
mesh and measured two errors: the Relative Difference Measure (RDM) which is
a topographical measure of the error and the Magnification error (MAG) which
gives the amplitude of the errors. These errors are defined as:

RDM =
∥∥∥∥ Vanalytic

‖Vanalytic‖
− Vcomputed

‖Vcomputed‖

∥∥∥∥ MAG =
‖Vcomputed‖
‖Vanalytic‖

(12)

where ‖V ‖ = ‖V ‖2 = (Σ|Vi|2)
1
2
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Figure 11: EEG — RDM with orientation [1 0 1].

Figure 12: EEG — RDM with tangential orientation.

Figure 13: EEG — RDM with radial orientation.RR n° 6364



22Emmanuel Olivi, Mariette Yvinec, Maureen Clerc and Theodore Papadopoulo

4.2 Precisions of iFEM and tFEM

We have tested the precision of the two FE codes comparing them with the
analytical solution. To do so, we have tested three meshes for the tFEM
with: 118 000, 310 000, 590 000 points, and worked on images with dimensions:
128x128x128, 200x200x200, 256x256x256 for the iFEM.

Fig. 11 to 13 show a higher precision of the tFEM (in red) compared with
the iFEM (in green) for the same amount of memory used. Computations made
on the 590 000-points mesh has required 2.4 GB of RAM for the tFEM, and
as well for the finest grid 256x256x256 used by the iFEM. Table.2 gives the
times needed for computations. We have not yet solved an issue regarding the
MAG of the iFEM, so it is not plotted; the MAG of the tFEM, will be shown
in section 4.5. In exchange, one can see that results coming from the iFEM are
more linear regarding the location of the dipoles for all orientations.

Methods NbPts — Dim Assembling time Iterations time NbIterations
tetrahedric 118 000 16 s 121 s 291

310 000 45 s 702 s 416
590 000 94 s 1852 s 509

implicit 128x128x128 82 s 338 s 337
200x200x200 217 s 1728 s 509
256x256x256 366 s 3824 s 579

Table 2: Computation time depending on the mesh size.

Figure 14: Decrease of the residuals through iterations: log(residue). Blue for
the iFEM, and black for the tFEM.

Figure 14 presents the logarithm of the error through the iterative process for
both codes. In blue, the implicit code for the three dimensions and all dipoles,
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and in black the tetrahedral one. One can see a ratio between the errors of the
iFEM and tFEM. In order to speed up computations one could also stop earlier.
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4.3 Precision of the sBEM

The symmetric BEM developed in the software OpenMEEG3, uses surfacic
meshes. Several meshes have been generated with 228, 2 262, 6 121 , 7 289 to-
tal number of points. We first present the results for the EEG forward problem,
and then the one of the MEG.

4.3.1 results for the EEG problem

Figure 15: EEG — RDM with tangential orientation.

Figure 16: EEG — MAG with tangential orientation.

3http://openmeeg.gforge.inria.fr
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Number of points 228 2 262 6 121 7 289
Computation Time 9 s 18 min 5 h 30 7 h

Table 3: Computation time depending on the mesh size.

The RDM is constantly below the 2% for all dipoles considering the meshes
with 6 121 points and 7 289 points. Finally, table 3 gives the computation time4

needed to solved a forward problem for all meshes. We see a high difference in
time consumptions between the meshes of 2 262 and 6 121 points, whereas the
error does not decrease significantly.

4.3.2 results for the MEG problem

Notice that the results shown in fig.17 and fig.18 do not share the same resolution
on the y-axis than previous fig.15& 16. The errors are smaller than the ones of
the EEG problem. Indeed, MEG is less sensitive to ohmic currents; the primary
term in 2 dominates.

4Computations done on a 4 processors Xeon 3.20 GHz computer with 2 MB Cache and
8GB RAM
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Figure 17: MEG — RDM with tangential orientation.

Figure 18: MEG — MAG with tangential orientation.

4.4 Realistic model and trials

On realistic models, analytical solution is not available, so one could test the
precision by considering very high resolution model as a ground true and com-
pare solutions with this model. We refer to [5].
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4.5 Summary, for the spherical model, of all methods solv-
ing the forward EEG problem

Figure 19: EEG — RDM of all methods.

Figure 20: EEG — MAG of all methods.

On fig.19 and fig.20 are shown the errors for all methods.
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5 Conclusion

In this document, we have seen how from a segmented MRI one could solve the
MEEG forward problem. The sBEM gives the best results for the same amount
of time spent in computations compared with the tetrahedric FEM, but the
meshing step is still expensive. Furthermore, the sBEM is limited with the
number of elements, and on realistic shape, it cannot provide a very detailed
description of the geometry. Future computations on realistic model should
clarify this point.
Even if the tFEM gives slightly better results, the iFEM remains easy to use
and could be easy to parallelize.
The code Head mesher could be optimized by reducing the time spent in the
exudation of the slivers which in our case was responsible for 90% of the meshing
time.
Finally, we recall that the sBEM cannot take into account anisotropy, such as
the one of the skull.

INRIA



Comparisons of forward problems in MEEG 29

References
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