P. Agarwal and M. Sharir, Arrangements and their applications. Handbook of Computational Geometry, pp.49-119, 2000.

L. Alberti, G. Comte, and B. Mourrain, Meshing implicit algebraic surfaces: the smooth case, Mathematical Methods for Curves and Surfaces: Tromso'04, pp.11-26, 2005.

J. L. Bentley and T. A. Ottmann, Algorithms for Reporting and Counting Geometric Intersections, IEEE Transactions on Computers, vol.28, issue.9, pp.643-647, 1979.
DOI : 10.1109/TC.1979.1675432

J. Boissonnat and M. Yvinec, Algorithmic geometry, 1998.
DOI : 10.1017/CBO9781139172998

A. Bowyer, J. Berchtold, D. Eisenthal, I. Voiculescu, and K. Wise, Interval methods in geometric modeling. gmp, p.321, 2000.

G. Elber and M. Kim, Geometric constraint solver using multivariate rational spline functions, Proceedings of the sixth ACM symposium on Solid modeling and applications , SMA '01, pp.1-10, 2001.
DOI : 10.1145/376957.376958

I. Z. Emiris, B. Mourrain, and E. P. Tsigaridas, Real Algebraic Numbers: Complexity Analysis and Experimentation, Reliable Implementation of Real Number Algorithms: Theory and Practice, 2007.
DOI : 10.1007/978-3-540-85521-7_4

G. Farin, Curves and Surfaces for Computer Aided Geometric Design: A Practical Guide, 1993.

J. Garloff and A. P. Smith, Investigation of a subdivision based algorithm for solving systems of polynomial equations, Proceedings of the Third World Congress of Nonlinear Analysts, pp.167-178, 2001.
DOI : 10.1016/S0362-546X(01)00166-3

Y. Hijazi and T. Breuel, Computing arrangements using subdivision and interval arithmetic, To appear in the Proceedings of the Sixth International Conference on Curves and Surfaces Avignon, 2006.

S. Joon-kyung, E. Gershon, and K. Myung-soo, Contouring 1- and 2-manifolds in arbitrary dimensions, International Conference on Shape Modeling and Applications 2005 (SMI' 05), pp.218-227, 2005.
DOI : 10.1109/SMI.2005.10

C. Liang, B. Mourrain, and J. Pavone, Subdivision Methods for the Topology of 2d and 3d Implicit Curves, Computational Methods for Algebraic Spline Surfaces, 2006.
DOI : 10.1007/978-3-540-72185-7_11

URL : https://hal.archives-ouvertes.fr/inria-00130216

V. Milenkovic and E. Sacks, An approximate arrangement algorithm for semi-algebraic curves, SCG '06: Proceedings of the twenty-second annual symposium on Computational geometry, pp.237-246, 2006.

B. Mourrain and J. Pavone, Subdivision methods for solving polynomial equations, Journal of Symbolic Computation, vol.44, issue.3, 2005.
DOI : 10.1016/j.jsc.2008.04.016

URL : https://hal.archives-ouvertes.fr/inria-00070350

B. Mourrain, J. Técourt, and M. Teillaud, On the computation of an arrangement of quadrics in 3D, Special issue, 19th European Workshop on Computational Geometry, pp.145-164, 2005.
DOI : 10.1016/j.comgeo.2004.05.003

URL : https://hal.archives-ouvertes.fr/inria-00350858

E. Sherbrooke and N. Patrikalakis, Computation of the solutions of nonlinear polynomial systems, Computer Aided Geometric Design, vol.10, issue.5, pp.379-405, 1993.
DOI : 10.1016/0167-8396(93)90019-Y

N. Wolpert, Jacobi Curves: Computing the Exact Topology of Arrangements of Non-singular Algebraic Curves, ESA 2003, pp.532-543, 2003.
DOI : 10.1007/978-3-540-39658-1_49