Theorem Proving for Maude's Rewriting Logic

Abstract : We present an approach based on inductive theorem proving for verifying invariance properties of systems specified in Rewriting Logic, an executable specification language implemented (among others) in the Maude tool. Since theorem proving is not directly available for rewriting logic, we define an encoding of rewriting logic into its membership equational (sub)logic. Then, inductive theorem provers for membership equational logic, such as the itp tool, can be used for verifying the resulting membership equational logic specification, and, implicitly, for verifying invariance properties of the original rewriting logic specification. The approach is illustrated first on a 2-process Bakery algorithm and then on a parameterised, n-process version of the algorithm.
Type de document :
Rapport
[Research Report] PI 1873, 2007, pp.47
Liste complète des métadonnées

Littérature citée [18 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/inria-00190909
Contributeur : Anne Jaigu <>
Soumis le : vendredi 23 novembre 2007 - 13:41:32
Dernière modification le : mercredi 11 avril 2018 - 01:56:57
Document(s) archivé(s) le : mardi 21 septembre 2010 - 15:24:38

Fichiers

PI-1873.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : inria-00190909, version 2

Collections

Citation

Vlad Rusu, Manuel Clavel. Theorem Proving for Maude's Rewriting Logic. [Research Report] PI 1873, 2007, pp.47. 〈inria-00190909v2〉

Partager

Métriques

Consultations de la notice

218

Téléchargements de fichiers

108