Probabilistic Estimation of Response Times Through Large Deviations

Abstract : We apply large deviation theory to assess the probability that the average, or the sum, of the response times of a sequence of consecutive aperiodic jobs is below a given threshold. This coarse-grained performance metric is for instance adapted to evaluate the responsiveness of a soft-real system or the freshness of input data consumed by an algorithm. The technique proposed works with distribution of response times as input but does not require that the distribution obeys a closed-form equation. Indeed, it can accept empirical distributions given under the form of frequency histograms obtained, for instance, by monitoring the system. Future work should be devoted to further assess the applicability of the proposal and relax some technical assumptions.
Type de document :
Communication dans un congrès
Work-in Progress of the 28th IEEE Real-Time Systems Symposium (RTSS'2007 WiP), Dec 2007, Tucson, United States. 2007
Liste complète des métadonnées

Littérature citée [10 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/inria-00191163
Contributeur : Nicolas Navet <>
Soumis le : mardi 27 novembre 2007 - 16:18:31
Dernière modification le : jeudi 11 janvier 2018 - 06:25:24
Document(s) archivé(s) le : lundi 12 avril 2010 - 04:56:43

Fichier

wip_NNLCRS.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : inria-00191163, version 1

Collections

Citation

Nicolas Navet, Liliana Cucu, René Schott. Probabilistic Estimation of Response Times Through Large Deviations. Work-in Progress of the 28th IEEE Real-Time Systems Symposium (RTSS'2007 WiP), Dec 2007, Tucson, United States. 2007. 〈inria-00191163〉

Partager

Métriques

Consultations de la notice

235

Téléchargements de fichiers

175