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Abstract

Liveness analysis is an important analysis in optimizing compil-
ers. Liveness information is used in several optimizations and is
mandatory during the code-generation phase. Two drawbacks of
conventional liveness analyses are that their computations are fairly
expensive and their results are easily invalidated by program trans-
formations.

We present a method to check liveness of variables that over-
comes both obstacles. The major advantage of the proposed method
is that the analysis result survives all program transformations ex-
cept for changes in the control-flow graph. For common program
sizes our technique is faster and consumes less memory than con-
ventional data-flow approaches. Thereby, we heavily make use of
SSA-form properties, which allow us to completely circumvent
data-flow equation solving.

We evaluate the competitiveness of our approach in an industrial
strength compiler. Our measurements use the integer part of the
SPEC2000 benchmarks and investigate the liveness analysis used
by the SSA destruction pass. We compare the net time spent in
liveness computations of our implementation against the one pro-
vided by that compiler. The results show that in the vast majority
of cases our algorithm, while providing the same quality of infor-
mation, needs less time: an average speed-up of 16%.

Categories and Subject Descriptors F.3.2 [LOGICS AND MEAN-
INGS OF PROGRAMS]: Semantics of Programming Languages—
Program Analysis; F.3.3 [LOGICS AND MEANINGS OF PRO-
GRAMS]: Studies of Program Constructs—Static Single Assign-
ment, SSA

General Terms Algorithms, Languages, Performance

Keywords Liveness Analysis, SSA form, Dominance, Compilers,
JIT-compilation

1. Introduction

Liveness analysis provides information about the points in a pro-
gram where a variable carries a value that might still be needed.
Thus, liveness information is indispensable for storage assign-
ment/optimization passes. For instance optimizations like soft-
ware pipelining, trace scheduling, and register-sensitive redun-
dancy elimination make use of liveness information. In the code
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generation part, particularly for register allocation, liveness infor-
mation is mandatory.

Traditionally, liveness information is computed by a data-flow
analysis (e.g. see [9]). This has the disadvantage that the computa-
tion is fairly expensive and its results are easily invalidated by pro-
gram transformations. Adding instructions or introducing new vari-
ables requires suitable changes in the liveness information: partial
re-computation or degradation of its precision. Further, one can-
not easily limit the data-flow algorithms to compute information
only for parts of a procedure. Computing a variable’s liveness at a
program location generally implies computing its liveness at other
locations, too.

In this paper, we present a novel approach for liveness checking
(“is variable v live at location q?”). In contrast to classical data-flow
analyses our approach does not provide the set of variables live at
a block, only its characteristic function. The results of our analysis
remain valid during most program changes and, at the same time,
allow for an efficient algorithm. Its main features are:

1. The algorithm itself consists of two parts, a precomputation
part, and an online part executed at each liveness query. It is
not based on setting up and subsequently solving data-flow
equations.

2. The precomputation is independent of variables, it only de-
pends on the structure of the control-flow graph. Hence, pre-
computed information remains valid upon adding or removing
variables or their uses.

3. An actual query uses the def-use chain of the variable in ques-
tion and determines the answer essentially by testing member-
ship in precomputed sets.

4. It relies on connections between liveness, dominance, and
depth-first search trees, most of them only valid under static
single-assignment form (SSA).

SSA is a popular kind of program representation that is used in
most modern compilers. Earlier, SSA was only used as an inter-
mediate representation of the program during compilation. Since
then, SSA has also been proposed to be used in the backend of a
compiler, see [15] for example. Nowadays, there exist several in-
dustrial and academic compilers using SSA in their backend, such
as LLVM, Java HotSpot, LAO, and Firm. Most recent research on
register allocation [3, 6, 12, 16] even allows for retaining the SSA
property until the end of the code generation process. Even just-in-
time compilers (Java Hot-Spot, Mono, LAO), where compilation

1 2007/11/27



time is a non-negligible issue, make use of its advantages. As we
will see, the special conditions encountered in SSA-form programs
make our approach possible at all.

Finally, we rely on the following prerequisites to be met:

• The program is in SSA form and the dominance property must
hold.

• The control-flow graph G = (V, E, r) of the program is avail-
able.

• The dominance tree of the control-flow graph is available. Oth-
erwise it is computable in O(|V |).

• A depth-first search tree of the control-flow graph is available.
Also computable in O(|V |).

• A list of uses for each variable, also known as def-use chain is
available. Having an easy-to-maintain def-use chain is one of
the major advantages of the SSA form. Hence, def-use chains
are often available in SSA-based compilers. Updating the def-
use chain when adding or removing uses of a variable incurs
virtually no costs, quite contrary to updating liveness informa-
tion on each change.

As one can see, our assumptions are weak and easy to meet for
clean-sheet designs. The SSA requirement is the main obstacle for
compilers not already featuring it.

In the next section we give a summary of control-flow graphs,
dominance, SSA and liveness. The main contribution is presented
in Section 3.3: it introduces the concepts of our approach and
presents the main algorithm and its correctness proof. Section 4
provides additional details on optimization and extension of the al-
gorithm. The main focus of Section 5 is implementation efficiency,
and Section 6 gives and discusses evaluation results. Finally, Sec-
tion 7 contrasts this paper with other work, and Section 8 con-
cludes.

2. Foundations

This section introduces the notation used in this paper and presents
the theoretical foundations we will use. Readers familiar with flow
graphs, depth-first search, dominance and the SSA form can skip
ahead to Section 3.3.

2.1 Control-Flow Graphs

A control-flow graph (CFG) G = (V, E, r) is a directed graph with
a distinguished node r ∈ V that has no incoming edge. Normally,
the nodes of the CFG are the basic blocks of a procedure each
associated with a list of instructions.

Let G = (V, E, r) be a CFG. A path P = (VP , EP ) is an
induced subgraph of G for which holds:

EP = {(v1, v2), . . . , (vn−1, vn)}

for VP = {v1, . . . , vn}

This explicitly allows for trivial paths containing only a single
node. Note, that the existence of a trivial path does not imply the
existence of a self-loop in G. If a node v is contained in a path p,
we write v ∈ p.

Dominance A node x in a control-flow graph dominates another
node y if every path from r to y contains x. The dominance is
said to be strict if additionally x 6= y. If x dominates y, we
write x dom y and x sdom y if the dominance is strict. Further, we
denote the set of dominated nodes of some node v by dom(v). We
write sdom(v) for dom(v) \ {v}. The nodes of the CFG and the
dominance relation form a tree.

D
FS

subtree

Path of non-

back edges

cross edge

cross edge

back
edge

Figure 1: Back edges and cross edges

Depth-first Search A depth-first search (DFS), e.g. see [20], in-
duces a spanning tree on the CFG. Furthermore, it subdivides the
edges of the CFG into four classes:

tree edge Edge of the DFS tree.

back edge (u, v) where v is an ancestor of u in the DFS tree. In
figures, we will draw back edges with dashed lines.

forward edge (u, v) where u is an ancestor of v in the DFS tree
and (u, v) is not a tree edge.

cross edge All other edges.

Figure 1 sketches the different edge types in a DFS. Note that
cross edges always point in the “same direction” as they lead to
nodes that were already visited but are not ancestors of their source.
Since back edges play a major role in this paper, we dedicate some
notation to them:

E
↑ = {(s, t) ∈ E | t is an ancestor of s}

To avoid confusion, parents are called parents in the DFS tree
and immediate dominators in the dominance tree; ancestors are
called (proper) ancestors in the DFS and (strict) dominators in the
dominance tree. Clearly, if x dom y then x is also an ancestor of y.

Reducible Control Flow A control-flow graph is called reducible
if for each back edge (s, t) the target t dominates the source s
(see [14]). To create irreducible control flow, loops with multiple
entries are necessary. From a language perspective, gotos are nec-
essary to create irreducible control flow. Because of its structural
properties, the class of reducible control-flow graphs is (and has
long been) of special interest for compiler writers. This is because
the vast majority of programs (even with explicit use of gotos) ex-
hibit reducible CFGs.

2.2 SSA Form

SSA (static single assignment, see e.g. [10]), is a popular program
representation property used in many compilers nowadays. In SSA
form, each scalar variable is defined only once in the program text.
To construct SSA form, the n definitions of a variable are replaced
by n definitions of n different variables, first. At control flow join
points one may have to disambiguate which of the new variables to
use. To this end, the SSA form introduces the abstract concept of
φ-functions that select the correct one depending on control flow.
A φ-function defines a new variable that holds the control-flow-
disambiguated value. See Figure 2 for an example. We use the
following notation: def (a) denotes the node in the control-flow
graph where variable a is defined. Furthermore, uses(a) denotes
the set of all control-flow graph nodes where a is used.

In this paper, we will require the program under SSA form to
be strict. In a strict program with a CFG (V, E, r) every path from

2 2007/11/27



x← . . . x← . . .

z← x + y

(a) non-SSA program

x1 ← . . . x2 ← . . .

x3 ← φ(x1, x2)
z ← x3 + y

(b) SSA program

Figure 2: Placement of φ-functions

r to a use of a variable contains a definition of this variable. Under
SSA, because there is only a single (static) definition per variable,
strictness is equivalent to the dominance property: each use of a
variable is dominated by its definition.

Phi-Functions φ-functions are somewhat peculiar in terms of
how they use their operands. Usually, an operation z ← τ(x, y)
is evaluated strictly, i.e. the value of x and y have to be computed
in order to compute z. However, φ-functions are evaluated lazily.
Consider a φ-function z ← φ(x, y). Each operand is associated
with a control flow predecessor of the φ-function’s block. If the
φ-function’s block was reached via its i-th predecessor, the i-th
argument of the φ-function is assigned to z.

This behavior suggests that the actual assignment is performed
“on the way” from the predecessor to the φ-function’s block i.e.
on the corresponding edge. In fact, when leaving SSA, most com-
pilers destruct φ-functions by inserting copies in the appropriate
predecessor blocks (e.g., see [4]). This implies the following defi-
nition:

Definition 1 (Use): A variable x is used at a node v if:

1. Either v contains an instruction . . . ← τ(. . . , x, . . . ) where
τ 6= φ,

2. or v is the i-th predecessor of some node v′ containing a φ-
function . . .← φ(. . . , x, . . . ) where x is the i-th argument.

2.3 Liveness

A variable is live at some point if both:

1. its value is available at this point. This can be expressed as the
existence of a reaching definition, i.e. existence of a path from
a definition to this point.

2. its value might be used in the future. This can be expressed as
the existence of an upward exposed use, i.e. existence of a path
from this point to a use that does not contain any definition of
this variable.

In fact, the reaching definition constraint is useful only for non-
strict programs. In such a case, an upward exposed use at the
entry of the CFG is a potential bug in the program that usually
lets the compiler dump a warning message (use of a potentially
undefined variable). With our assumption the program being in
strict SSA form (with dominance property), liveness can be defined
as follows:

Definition 2 (live-in): A variable a is live-in at a node q if there
exists a path from q to a node u where a is used and that path does
not contain def (a).

Definition 3 (live-out): A variable a is live-out at a node q if it is
live-in at a successor of q.

3. SSA Liveness Checking

3.1 Overview

We present a decision procedure for the question whether a vari-
able is live-in at a certain control-flow node. To avoid notational
overhead we will from now on consider the live-in query of vari-
able a at node q. The CFG node def (a) where a is defined will be
abbreviated by d. Furthermore, the variable a is used at a node u.
The basic idea of the algorithm is simple. It is the straightforward
implementation of Definition 2:

For each use u we test if u is reachable from the query
block q without passing the definition d.

Our algorithm is thus related to problems such as computing the
transitive closure or finding a (shortest) path between two nodes
in a graph. However, the paths relevant for liveness are further con-
strained: they must not contain the definition of the variable. Hence,
a large part of this paper deals with describing these paths and how
their presence (or absence) can be checked efficiently. To this end
we split the problem: we search for such a path by trying to in-
crementally compose it of back-edge-free subpaths. The following
section summarizes the basic concepts of our investigation. Sec-
tion 3.3 presents the algorithm, and Section 3.4 provides its cor-
rectness proof.

3.2 Concepts

Simple Paths The first observation considers paths that do not
contain back edges. If such a path starts at some node q strictly
dominated by d and ends at u, all nodes on the path are strictly
dominated by d. Especially, the path cannot contain d. Hence, the
existence of a back-edge-free path from q to u directly proves a

being live-in at q.

This gives rise to the reduced graph eG of G which contains
everything from G but the back edges. If there is a path from q to
u in the reduced graph we say that u is reduced reachable from q.

To be able to efficiently check for reduced reachability we
precompute the transitive closure of this relation. For each node
v we store in Rv all nodes reduced reachable from v.

Definition 4 (Rv):

Rv = {w ∈ V | ∃ path v → w in eG}
Paths Containing Back Edges Of course, for the completeness of
our algorithm we must also handle back edges: consider Figure 3
and the query “is x live-in at node 10?”. Although x is live-in at 10
no use of x is reduced reachable from 10. However, the use of x at 9
is reduced reachable from node 8, which is the target of the back
edge (10, 8). If a variable is live-in but no use is reduced reachable
there must be some back edge target from which the use is reduced
reachable. Consider the second query “is y live-in at 10?”. The
answer is “yes” but requires more indirection than the previous
example. One must traverse the back edge to 8, a tree edge and
a cross edge to 6, and finally the back edge reaching the use in 5.

Our goal is to answer a liveness query by testing for the reduced
reachability of uses from back edge targets. Hence, a second part of
our precomputation constructs for each node q a set Tq that contains
all back edge targets relevant for this query. For this precomputation
to make sense, these Tq must be independent of variables. Thus,
they must contain all relevant back edge targets for any variable.

The first question is, given a specific query (q, a), how do we
decide which back edge targets of Tq to consider? Apparently, this
choice depends on the variable or more precisely on its dominance
subtree. Consider again node 10 but now with variable w. All back
edge targets (8, 5, 2) are reachable from 10. But if we pick 2 to test
if 4 (w’s use) is reduced reachable, we get “yes”, but obviously w is
not live at 10.
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Figure 3: An example CFG

The problem is that 2 is not strictly dominated by def (w). Thus,
even if 2 is reachable from 10, reaching 4 from 2 requires passing
def (w) since 4 is dominated by 2. Therefore, it is necessary to
exclude all back edge targets of Tq that are not strictly dominated
by the definition of the variable in question.

However, this condition is not strong enough as we will see in
the next example. Assume we want to test for x being live-in at 4.
The back edge target 8 is reachable via 4, 5, 6, 7, 2, 3, 8 and is
inside the dominance subtree of def (x). However, x is not at all
live at 4. The problem is that to reach 8 on a path from 4 the path
must leave the dominance subtree of def (x) and re-enter it.

The Main Principle The two last examples have in common that
the paths first leave the dominance subtree and then re-enter it.
Thus, they always contain the definition of the variable and do
not comply with the requirements of Definition 2. The dominance
subtree however depends on the actual variable whose liveness we
are checking. That seems to be contradictory to the statement that
we want to precompute the Tq sets independently of variables.
However, in the following we will show that the Tq sets can be
precomputed such that taking the intersection Tq ∩ sdom(def (a))
will yield a set of representatives that is suitable for testing a’s
liveness at q. Therefore, we will construct the Tq such that each
t ∈ Tq is reachable from q along a path that never re-enters any
dominance subtree once it left it.

Definition 5 (Tq):

T
↑
t =

˘
t
′ ∈ V \Rt | ∃s

′ ∈ Rt ∧ (s′, t′) ∈ E
↑
¯

T
0
q = {q}

T
i
q =

[

t∈T
i−1
q

T
↑
t

Tq =

∞[

i=0

T
i
q

Tq is defined recursively starting from q. To compute T i
q , the

set T
↑
t is computed for each back edge target t in the previous set

T i−1
q . T

↑
t contains exactly those back edge targets

1. whose sources are reduced reachable from t

2. from which t itself is not reduced reachable.

Hence, in each step, we will only add back edge targets that will
provide new reachability information. Furthermore, this will estab-
lish the property mentioned above, as will be shown in Theorem 1.
Section 5.2 describes how to compute the Tq efficiently.

3.3 The Algorithm

Now let us give the live-in checking algorithm that relies on the
sets Rv and Tv being precomputed for each node v. Regarding
a live-in query (q, a), we first construct the set T(q,a) = Tq ∩
sdom(def (a)) that contains all nodes of Tq that are strictly dom-
inated by def (a). Note that this set is empty if q is not strictly
dominated by def (a). Then we use these nodes in T(q,a) and the
precomputed Rv to test for reachability of a use. The pseudocode
of this procedure is given by Algorithm 1.

Algorithm 1 Live-In Check

1: function ISLIVEIN(variable a, node q)
2: T(q,a) ← Tq ∩ sdom(def (a))
3: for t ∈ T(q,a) do

4: if Rt ∩ uses(a) 6= ∅ then return true

5: return false

3.4 Correctness

Before the actual correctness proof, let us give a lemma and a
corollary about back-edge-free d-dominated paths, which we will
use in that proof.

Lemma 1: Let d strictly dominate two nodes t and u. If there is
a path p from t to u in G that is not strictly d-dominated, then p
contains a back edge.

Proof. Let y be a node of p that is not strictly dominated by d. The
only way to reach u from y is via d since d dominates u. So p
must contain d. Hence we have that d is reachable from t along p.

But t is also reachable from d in eG (d dominates t). So there is a
cycle, consisting of a path from t to d (a subpath of p) and a path in
eG from d to t. Since the latter part contains no back edge, p must
contain a back edge.

Corollary 1: If there is a path from t to u in the reduced graph
and t and u are strictly dominated by some d, then every node on
that path is also strictly dominated by d.

Now, let us show the correctness of Algorithm 1. First we show
the identity of liveness and the existence of strictly dominated
paths, and then use this equivalence in the main correctness proof.
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Lemma 2: Variable a is live-in at block q if and only if there is a
strictly d-dominated path from q to some use u of a.

Proof. “⇐” Straightforward.

“⇒” According to Definition 2, if a is live-in at block q then
there exists a path p from q to u that does not contain d.
By contradiction: Suppose p is not strictly d-dominated. Then,
there exists some node y ∈ p that is not strictly dominated
by d. As u is strictly dominated by d, any path from y to u must
contain d.

Theorem 1: Algorithm 1 is complete and sound.

Proof.

Completeness We have to show that if there is a strictly d-
dominated path from q to some use u, the algorithm returns
true . Considering the loop in line 3 and the check in line 4, we
have to show: If there is a strictly d-dominated path from q to u
then there is a t ∈ Tq , strictly dominated by d, and u is reduced
reachable from t.
Let p be the strictly d-dominated path. In the trivial case that
u ∈ Rq we have q ∈ T 0

q . Otherwise, p is decomposed into

subpaths in eG and back-edges (sj , tj) ∈ E↑:

p = q, . . . , s1, t1, . . . , sk, tk, . . . , u

Without loss of generality, let p be minimal concerning the
number of back edges. Suppose, p contains a back edge target
tj that is reduced reachable from tj−1. Then sj+1 (or u if
j = k) is reduced reachable from tj−1, too, which contradicts
the assumption that p is a shortest path. Thus, no back edge

target in p is ruled out by the definition of T
↑
t . Hence, by

construction, for each 1 ≤ i ≤ k: ti ∈ T i
q , and in particular

tk ∈ Tq from which u is reduced reachable.

Soundness Here, we have to show: If the algorithm returns true
there exists a strictly d-dominated path from q to some use u.
Again, considering Algorithm 1, this is identical to the state-
ment: If there is a t in Tq , strictly dominated by d, from
which u is reduced reachable, then there exists a d-dominated
path from q to u.
If t = q Corollary 1 applies. In the non-trivial case there is a
path

p = q, . . . , s1, t1, . . . , sk, tk, . . . , u

such that (si, ti) ∈ E↑, ti ∈ Tq , and d strictly dominates tk.
We will show that all sub-paths of p are strictly d-dominated.
Since tk and u are strictly d-dominated, Corollary 1 shows this
for that part of p. For the remaining sub-paths we show the
property by induction.

base case tk is strictly d-dominated by premise.

induction step Let ti be strictly d-dominated.

the part si, ti: Since ti is strictly dominated by d and si is
the direct predecessor of ti, si is dominated by d. Hence
it rests to prove that d 6= si. d is a proper ancestor of ti

because it strictly dominates ti. Furthermore, ti is an
ancestor of si. Hence, d is a proper ancestor of si and
si 6= d.

the part ti−1, . . . , si: Assume ti−1 is not strictly d-dominated.
Then the path from ti−1 to si must contain d (d dom si).
Since this sub-path contains no back edges, d is reduced
reachable from ti−1. Additionally, ti is reduced reach-
able from d, since d dominates ti by induction hypoth-
esis. Together, ti is reduced reachable from ti−1 con-

tradicting the definition of T ↑
q . Thus, ti−1 is strictly

d-dominated and, again, Corollary 1 applies for the sub-
path ti−1 . . . si.

The remaining sub-path q, . . . , s1 is covered by thinking of the
node q as t0.

4. Further Details

4.1 Ordering the Tq

The number of iterations spent in the loop of Algorithm 1 (line 3)
depends on the order in which the elements of Tq are iterated.
Consider an iteration of that loop with some t. Trivially, if there
has already been an iteration for some t′ ∈ Tq and t′ sdom t then
the iteration with t will not return true , either. This is because t
is reduced reachable from t′ and thus Rt ⊆ Rt′ . Hence, it makes
sense to order the back edge targets by dominance.

For reducible CFGs this order is even optimal, i.e. leads to the
earliest exit possible. Furthermore, we show that dominance im-
plies a total order on the Tq for reducible CFGs. Hence there is one
t ∈ T(q,a) that dominates all others. Testing reduced reachability
from this t will provide the result of the liveness query, and the
loop can be left after the first iteration.

Lemma 3: If the CFG is reducible, then for all q the dominance
relation is a total order on Tq .

Proof. If a strictly dominates b we say that a is the larger and b the
smaller element. To prove the lemma, we will prove by induction

that: First, for all i all nodes in some T i
q are totally ordered by

the dominance relation. And second, all nodes in T i+1
q strictly

dominate the largest element of T i
q .

Let us start with T 1
q . Let t1 ∈ T 1

q and s1 be its corresponding
source. Because the CFG is reducible, t1 strictly dominates s1. By
construction s1 is reduced reachable from q. Hence, because t1 is
not reduced reachable from q (by construction t1 ∈ V \ Rq), t1
strictly dominates q. Now, because dominance is a tree order and
all elements of T 1

q dominate a common element q, they are totally
ordered by the dominance relation.

The induction step from T i
q to T i+1

q is similar replacing q by the

largest element of T i
q and t1 by an element of T i+1

q .

As noticed earlier, for t′ sdom t both in T(q,a), if u is reduced

reachable from t′ then necessarily u is reduced reachable from t.
This leads directly to the following theorem:

Theorem 2: If the CFG is reducible and a is live-in at q then there
is one unique t ∈ T(q,a) for which a use is reduced reachable
from t. This node dominates all others in T(q,a).

4.2 Live-Out

Now, let us use the results of the last section to implement checking
for variables being live-out. Reconsider the definition of live-out
(Definition 3).

Our goal is to prove the presence or absence of a path from a
successor of q to a use u of a without running the live-in test for
all successors. Clearly, if such a path exists, then there exists a non-
trivial d-dominated path from q to u. Hence, the live-out test is
similar to the live-in test but with two special cases:

1. If the query block q coincides with d, then a is live-out at q if
and only if a has a use that is not in q. Hence, we can add a
simple test; see line 2 in Algorithm 2.

2. Let the query block q be strictly dominated by def (a). Then
a is live-out at q if and only if there exists a non-trivial strictly
def (a)-dominated path from q to a use u. The only difference to
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the live-in check is that the path must be non-trivial, i.e. it must
contain at least one edge. Clearly, if u is reduced reachable form
a t ∈ T(q,a), t 6= q then the corresponding path is non-trivial.
Otherwise, if it is only reduced reachable from q (i.e. t = q),
then the path is non-trivial only if u 6= q or q is a back edge
target (If q is a back edge target, there exists a non-trivial path
from q to q). This condition is expressed in Algorithm 2 by the
additional clause in line 8.

Algorithm 2 Live-Out Check

1: function ISLIVEOUT(var a, node q)
2: if def (a) = q then
3: return uses(a) \ def (a) 6= ∅

4: if def (a) sdom q then
5: T(q,a) ← Tq ∩ sdom(def (a))
6: for t ∈ T(q,a) do

7: U ← uses(a)
8: if t = q and q is no back edge target then U ←

U \ {q}

9: if Rt ∩ U 6= ∅ then return true

10: return false

5. Practical Considerations

5.1 An Implementation using Bitsets

The liveness checks presented in the last section were discussed
rather abstractly using sets and set operations. This section is con-
cerned with the efficiency of a practical implementation. Since the
average number of basic blocks is about 36 in our benchmarks (see
Section 6) we chose to implement the precomputed sets as bitsets.
For a 32-bit machine that makes two machine words per block,
which is space- as well as time-efficient. Using bitsets requires a
numeration of the objects we want to put into them. The results of
Section 4.1 suggest using a preorder numeration of the dominance
tree, such that if a node dominates another, it has a smaller number
than the other one. The example graph of Figure 3 exhibits such a
numeration.

1. When constructing the T(q,a) set we only consider nodes in
Tq that are strictly dominated by def (a). Let num(q) be the
preorder number of q and maxnum(q) be the largest preorder
number in the dominance subtree of q. The preorder num-
bers of all nodes strictly dominated by q lie in the interval
[num(q),maxnum(q)]. Hence, we do not have to material-
ize the set T(q,a). We can simply iterate over Tq , starting at
num(def (a)) and stopping at maxnum(def (a)).

2. The numeration will guarantee that dominating nodes have a
lower index in the bitset (closer to 0) than dominated nodes.
That means, if we traverse the bitset starting at index 0, we
will always find the “more dominating” node first. According
to Theorem 2, for reducible CFGs it suffices to test the t ∈
Tq ∩ sdom(def (a)) that dominates all the others. By using the
proposed numeration, this node is given by the smallest set bit
in the range [num(q),maxnum(q)] of the bitset representing
Tq .

Algorithm 3 shows the bitset-based liveness check. It is a
straightforward implementation of Algorithm 1 using the facts
stated above. A fact we discussed in Section 4.1 is used at the end
of the while-loop: If we have tested whether u is reduced reach-
able from a node t, any test from a t′ dominated by t yields the
same result because t′ is reducibly reachable from t. Hence, we
can skip t’s dominance tree completely and continue with the next

node outside of it. The index of this node is obtained by adding 1 to
the maximal index in t’s dominance subtree. For reducible CFG’s,
Theorem 2 ensures that the while body is executed at most once. 1

Algorithm 3 Bitset implementation of the live-in check

bool is_live_in(var a, int q) {
int def = get_def_block_num(a);
int max_dom = get_max_num(def);

if (q <= def || max_dom < q)
return false;

int t = bitset_next_set(T[q], def + 1);
while (t <= max_dom) {

for (each u in def-use chain of a)
if (bitset_is_set(R[t], u))

return true;

t = get_max_num(t) + 1;
t = bitset_next_set(T[q], t);

}

return false;
}

The function bitset_next_set searches the next set bit in
a bitset starting form the given position (inclusive). It returns the
position of the next set bit or MAX_INT if no further bit is set.

5.2 Precomputation

Let us briefly discuss how the sets Rv and Tv can be computed
efficiently. First, the Rv sets can be computed using a topological
order on the reduced graph (which is acyclic). Such a topological
order is provided by a reverse postorder numeration created during
the DFS on the CFG.

The Tv sets are calculated in a second pass since they rely on
the Rv sets to be present (see Definition 5). Consider the following
(directed) graph GT : Let its nodes be the nodes of the CFG. For

each node v let its set of successors be T ↑
v . Clearly, Tv is the set

of nodes reachable from v in this graph. Hence, the computation of
Tv is similar to a transitive closure on GT . The following theorem
shows more: The graph GT is acyclic and Tv can be computed by

Tv = {v} ∪

2
4

[

w∈T
↑
v

Tw

3
5 (1)

Theorem 3: For all t′ ∈ T
↑
t the DFS preorder number of t′ is

smaller than the DFS preorder number of t.

Proof. First, recall the definitions of back- and cross edges as given
in Section 2. A back edge always leads to an ancestor and hence to
a node with a smaller number. A cross edge always leads to a node
already visited in another DFS subtree and thus also to a node with
a smaller number.

Consider some t′ ∈ T
↑
t and its corresponding source s′ (see

Definition 5). If t is an ancestor of s′ then t′ is a proper ancestor of
t. Hence, it has a smaller number than t. If t is not an ancestor of s′,
s′ was reached from t via one (or more) cross edge. Each cross edge
leads to a DFS subtree in which each node has smaller numbers
than the origin of the cross edge. Hence, s′ has a smaller number
than t and so has t′. See also Figure 1 for an illustration.

1 Of course, in that case the function can be further optimized by replacing
the while with an if.

6 2007/11/27



In practice, we first compute the Tv for all back edge targets
using a DFS preorder exploiting Equation 1. Then, we compute the
set Ts \ {s} for each back edge source s by taking the union of the
Tv sets of their back edge targets. The results of the second part are
then propagated through the reduced graph, similar to computing
the Rv sets, i.e. using a DFS postorder. Finally, v is added to Tv for
each node.

6. Experimental Evaluation

We implemented our algorithm in the LAO open-source VLIW
code generator and compared its performance to the available live-
ness analysis. The LAO code generator is used by STmicroelec-
tronics to complement the Open64 framework in several production
compilers. More important, the LAO code generator is also used by
an experimental just-in-time compiler for the Common Language
Infrastructure (CLI) program representation. For this reason, it has
been carefully profiled and tuned.

Our experimental evaluation consists of two parts. A quantita-
tive analysis of the sizes that influence liveness analysis to support
our assumptions, and a runtime analysis of both methods in the
described environment. We compiled a subset of ten programs of
the integer part of the SPEC2000 benchmark suite with the LAO
compiler. The benchmarks 252.eon and 253.perlbmk are missing
because they use library functions incompatible with our runtime
environment. Hence, they could not be compiled without larger
modifications. In total 4823 procedures were compiled.

6.1 Quantitative Analysis

The main factors influencing the speed of our algorithm are

• the length of the def-use chain; used in the for loop of Algo-
rithm 3.

• the number of basic blocks since it determines the size of the
bitsets Tv and Rv .

• the number of CFG edges since they govern the time to precom-
pute the Tv and Rv .

Table 1 shows the results of the quantitative evaluation: That is
statistics about the number of basic blocks and the number of uses
per variable for each benchmark program.

The number of uses (i.e. the length of the def-use chain) mainly
governs the runtime of the liveness query. About 95% percent of
all variables have less than five uses. Even more, over 70% of all
variables have only one use. However, there are also cases in which
variables have more than 600 uses.

The runtime of the precomputation is governed by the number
of edges in the procedure to compile. As CFGs are sparse, the
number of edges in a CFG depends linearly on the number of
nodes. On average there were 1.3 edges per basic block with a total
maximum of 1.9.

72.71% (87.18%) percent of the compiled procedures had less
than or equal to 32 (64) blocks. This means that the bitsets Tv

and Rv consume two or less machine words for most CFG nodes.
Finally, 99.58% had less than 512 blocks, and the largest block
count we encountered was 2240.

In total, the benchmarks contained 238427 edges of which 8701
were back edges. We encountered 60 edges whose back edge target
did not dominate its source and hence contributed to irreducible
control flow. Out of 4823 compiled functions, 7 contained irre-
ducible control flow.

Discussion The structural parameters of the benchmark programs
support our assumptions. The def-use chains are shorter than five
elements in more than 95% of all cases. That justifies our presump-
tion that the def-use chain is very short and iterating over it in the
check is efficient in most cases.

Furthermore, calculating as well as storing the transitive closure
of the reduced graph is a feasible approach as the compiled proce-
dures have almost always less than 500 basic blocks. In terms of
memory consumption there is a point where our algorithm needs
more memory than the native liveness algorithm, which uses an
ordered array per basic block to store live-in variables. This break-
even point is reached if the number of basic blocks is larger than
the size of such an array (measured in bits). Consider the ordered-
array approach on a 32-bit architecture: If a variable is repre-
sented by a pointer and one assumes an array length of 32 vari-
ables then our method needs less storage if the procedure has less
than 32 × 32 = 1024 blocks. Regarding the block counts given
above we can say that this is nearly almost the case. However, for
large block counts like 10,000 or more, the quadratic behavior of
the precomputation becomes an issue, especially its memory con-
sumption. Section 8 discusses possible solutions to this problem.

Computing and storing the Tv sets is negligible as the amount
of back edges is fairly small (about 3.6% of all edges). Hence,
future implementations could use sorted arrays instead of bitsets
to save space in case of larger CFGs and speed up the loop iteration
(by abandoning bitset_next_set). Also, the fact that the vast
majority of programs exhibit reducible control flow supports our
approach.

6.2 Runtime Analysis

We collected our data during the SSA destruction phase of LAO,
which uses the third variant of the algorithm of Sreedhar et al. [19].
This algorithm tests interference of certain SSA variables (results
and arguments of φ-functions) in order to make coalescing deci-
sions. The interference test employed was proposed by Budimlić
et al. [7] and uses SSA properties and liveness to determine if two
variables interfere. Basically, it decides whether one variable is live
directly after the instruction that defines the other one. This allows
for circumventing the construction of an interference graph. We
used the liveness queries of this algorithm to compare our method
with the liveness facility implemented in LAO, which is described
next.

The liveness analysis used in the LAO code generator is based
on a classic iterative solver whose worklist is a stack. The stack
is initialized with nodes that are pushed in CFG postorder. Imple-
menting the worklist by a simple stack was shown to be effective
for liveness analysis by Cooper et al. [8]. However, the distinguish-
ing features of the LAO liveness analysis implementation is that it
does not rely on bit vectors to implement sets of variables.

First, the universe of the variables to consider is collected in a ta-
ble prior to liveness analysis. While doing so, variables are assigned
dense indices. Second, the local liveness analysis is performed us-
ing the sparse sets of Briggs & Torczon [5]. Third, the global live-
ness analysis relies on sets represented as sorted dense arrays of
pointers (to variables). For procedures with many variables, this has
proven to be far more memory efficient than data-flow bit-vector
implementations. Testing set membership only requires a binary
search, which takes logarithmic time in the set cardinality. In case
of SSA destruction, liveness information is only needed for the φ-
related variables. This is exploited in LAO’s liveness analysis (for
SSA destruction) by ignoring non-φ-related variables completely.
Table 2 shows the results of the runtime experiments. We ran LAO
on the set of benchmark programs mentioned above and measured

1. the time for constructing the data structures (columns “Precom-
putation”). For our approach (“New”) that is calculating the Tv

and Rv . For the native liveness (“Native”) this consists of com-
puting for each block the set of live variables using data-flow
analysis.
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# of Basic Blocks # of Uses per Variable

Benchmark Average Sum % ≤ 32 % ≤ 64 Maximum % ≤ 1 % ≤ 2 % ≤ 3 % ≤ 4

164.gzip 33.35 2735 69.51 85.36 51 65.64 86.38 92.81 95.94

175.vpr 34.45 7752 68.88 84.44 75 70.36 88.90 93.93 96.28

176.gcc 38.96 78666 72.85 86.03 422 73.99 87.81 92.42 94.84

181.mcf 20.31 528 84.61 100.00 46 66.91 83.50 89.33 94.46

186.crafty 69.28 7551 59.63 76.14 620 72.98 90.09 93.85 95.75

197.parser 23.60 7623 84.82 93.49 96 65.12 86.75 94.26 96.62

254.gap 32.89 28020 67.60 87.44 156 70.46 85.95 91.26 94.54

255.vortex 26.46 24425 77.57 90.68 254 65.99 90.80 95.02 96.97

256.bzip2 22.97 1700 78.37 91.89 36 69.89 89.89 94.47 96.17

300.twolf 56.97 10825 59.47 77.36 165 69.71 87.59 93.23 95.92

Total 35.21 169825 72.71 87.18 620 71.30 87.85 92.76 95.31

Table 1: Results of Quantitative Evaluation

2. the total time of all liveness queries (columns “Queries”). For
our method that is the running time of Algorithm 3 and for the
native liveness this is the lookup of a variable in the set of the
corresponding block.

The numbers in the columns “Native” and “New” represent
processor clock cycles that were taken by reading the proces-
sor’s time stamp counter. The machine used for the experiments
was a Dell Latitude X300 notebook using a Pentium M proces-
sor at 1.4 GHz and 640 MB of main memory running Ubuntu
Linux 7.04. Hence, 1000 cycles correspond to 714 nanoseconds.
For each group, the column “Spdup” gives the respective speedup.
The column “Spdup” in “Both” gives the speedup resulting from
the sum of the time spent in the precomputation and query part:
# Proc.×Avg. cycles per proc.+# Queries×Avg. cycles per query.

Discussion First, consider the precomputation. Our precomputa-
tion is about three times faster than the native liveness computa-
tion. Note that the native precomputation is already optimized for
the SSA destruction pass by considering only φ-related variables.
We measured that, on average, the live-sets computed by the na-
tive algorithm contained 3.16 elements. Our experiments show that
its runtime is basically bounded by the number of set insertions
and not by the number of data-flow iterations. Hence, a full live-
ness precomputation regarding all variables takes even longer: we
measured an average fill ratio of 18.52 elements per set and an av-
erage precomputation time of 283403.5 which is 60% higher as in
SSA destruction and about 4.7 times slower than our approach. Our
precomputation is completely independent of the number of vari-
ables since it solely depends of the control-flow graph’s structure.

Second, consider the query time. As expected, a liveness query
in our approach is slower than a query in the native approach. A
query in the native approach is an array lookup using binary search.
Even if we assume 32 elements in such an array, the worst case
query consists of 5 memory lookups on an array that is in the cache
with a high probability. In our approach, we have bitset lookups
and a traversal of the def-use chain that is not as cache-local as
an array. We measured that our query is on average about 2.8 times
slower than the set lookup of the native approach. Given the number
of queries, we compensate this by the faster precomputation. Con-
sidering all the benchmarks, there were, on average, 5.19 queries
per variable. However, in the case of 186.crafty, there were 26.53
queries per variable, which consumed more time than was gained
by the faster precomputation.

7. Related Work

Liveness analysis has mostly been treated in the context of data-
flow analysis. Data-flow analysis goes back to the 1960s and is thus

very well explored. Much research in iterative data-flow analysis
was dedicated to efficiently solve the data-flow equations. There
exist approaches for determining efficient node orderings, exploit-
ing structural properties of the program, and using more efficient
data structures to accelerate the solvers. We will not discuss this in
further detail as this is extensively covered in almost every avail-
able compiler textbook. For example, [9] gives a good overview of
the seminal work in the area.

Gerlek et al. [11] use so-called λ-operators to collect upward
exposed uses at control-flow split points. Precisely, the λ-operators
are placed at the iterated dominance frontiers, computed on the
reverse CFG, of the set of uses of a variable. These λ-operators
and the other uses of variables are chained together and liveness is
efficiently computed on this graph representation. The technique of
Gerlek et al. can be considered as a precursor of the live variable
analysis based on the Static Single Information (SSI) form [18].
In both cases, insertion of pseudo-instructions guarantee that any
definition is post-dominated by a use.

The only liveness analysis we are aware of that relies on SSA
properties is given in [2]. Similarly to our work, the algorithm
uses the fact, that a variable can only be live inside the dominance
subtree of its definition. It then uses the def-use chain to search all
blocks lying on paths from the variable’s definition to a use. The
variable must be marked live at each of these blocks. Since it uses
the def-use chain, there is no need to traverse the instructions inside
a basic block. Hence, the algorithm’s runtime corresponds exactly
to the number of set insertion operations. Furthermore, it can be
run on each variable separately. However, this method only differs
from data-flow approaches in how the analysis data is computed
and not how it is represented. Hence, it is as vulnerable to program
modifications as the data-flow approaches.

8. Conclusions and Outlook

We presented a novel approach to liveness checking for SSA-form
programs. In contrast to the existing data-flow based techniques,
our analysis data solely depends on the CFG’s structure and ex-
ploits the properties of the SSA form. Hence, adding, modifying, or
removing an instruction does not invalidate our precomputed data,
in contrast to prior approaches. This makes our approach especially
attractive to compiler phases where keeping liveness information
up to date is considered too expensive. Although being of quadratic
complexity concerning the number of basic blocks, our benchmarks
show that for procedure sizes encountered in our benchmark it is at
least three times faster than data-flow based methods.

This acceleration of the precomputation of course has its price:
The actual liveness check is slower than an ordinary set lookup.
Hence, the performance of our approach strongly depends on the
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Precomputation Queries Both

Avg. cycles per proc. Avg. cycles per query

Benchmark # Proc. Native New Spdup # Queries Native New Spdup Spdup

164.gzip 82 174000.82 55054.62 3.12 90659 86.84 162.23 0.53 1.16

175.vpr 225 116963.18 54291.50 2.17 55670 85.71 179.38 0.48 1.41

176.gcc 2019 205923.64 67310.79 3.03 1109202 88.17 339.54 0.26 1.00

181.mcf 26 65544.73 35696.62 1.85 2369 84.09 190.37 0.44 1.39

186.crafty 109 437037.94 156418.57 2.78 858121 81.07 166.14 0.49 0.73

197.parser 323 85194.79 40392.45 2.13 38719 86.54 177.81 0.49 1.54

254.gap 852 191000.39 55515.27 3.45 245540 87.38 168.82 0.52 2.08

255.vortex 923 71444.18 42651.30 1.67 88554 85.09 187.21 0.45 1.32

256.bzip2 74 137544.10 40178.87 3.45 10100 95.00 184.86 0.51 2.32

300.twolf 190 446186.87 94197.44 4.76 184621 94.89 193.81 0.49 1.92

Total 4823 177655.50 60375.69 2.94 2683555 86.09 241.06 0.36 1.16

Table 2: Results of the Runtime Experiments

number of queries. We experimentally show that for the SSA de-
struction in LAO the number of queries is sufficiently low to out-
perform the highly tuned, data-flow based native liveness algorithm
of LAO. As work in progress, we verify the competitiveness of our
approach in other passes/optimizations, which exhibit a different
query behavior than SSA destruction.

Our technique uses structural properties of the CFG and could
take advantage of a precomputed loop nesting forest [17, 13]. In
fact, our algorithm can be adapted to most loop nesting forest
definitions. For the sake of brevity and generality, we did not
elaborate this further. Furthermore, due to its quadratic nature,
memory consumption becomes an issue for procedures with some
thousand blocks. Studying more memory efficient ways of storing
the transitive closure (e.g. see [1]) is subject to further investigation.
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