Context-based image retrieval: A case study in background image access for Multimedia presentations

Abstract : Conventional approaches of image indexing and retrieval from digital libraries include content-based, metadata-based, and keyword-based approaches. This paper addresses a different way of image retrieval motivated by real-life applications for an intelligent system that can automatically select appropriate background images from textual passages. We explored techniques for developing automatic image-retrieval systems based on essential contextual information of a textual passage. We propose a framework that applies semantic role labeling techniques and a commonsense knowledge base, ConceptNet. The primitive results indicate that the proposed methodology has a potential on applications with textual passages that describe things and events that are regularly seen in every day life. However, for fantasy tales that describe truly fictitious things and events, the use of ConceptNet does not allow to obtain accurate results.
Type de document :
Communication dans un congrès
IADIS International Conference WWW/Internet 2007, Oct 2007, Vila Real, Portugal. 2007
Liste complète des métadonnées

Littérature citée [12 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/inria-00192463
Contributeur : Samuel Cruz-Lara <>
Soumis le : mercredi 28 novembre 2007 - 10:35:32
Dernière modification le : jeudi 11 janvier 2018 - 06:21:35
Document(s) archivé(s) le : lundi 12 avril 2010 - 05:21:49

Fichier

IADIS-context-image-final.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : inria-00192463, version 1

Collections

Citation

Sheng-Hao Hung, Pai-Hsun Chen, Jen-Shin Hong, Samuel Cruz-Lara. Context-based image retrieval: A case study in background image access for Multimedia presentations. IADIS International Conference WWW/Internet 2007, Oct 2007, Vila Real, Portugal. 2007. 〈inria-00192463〉

Partager

Métriques

Consultations de la notice

236

Téléchargements de fichiers

837