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Abstract

This article gives the sufficient condition which guarantees the existence of a refer-
ence frame in which a multi-output nonlinear system is linearizable with a linear
part depending on its outputs. Our method is based on the design of a reference
frame associated with nonlinear observable systems. Moreover, we give the general-
ization of the result obtained in [5] and [19]. And some examples are given in order
to highlight our thinking.

Key words: normal form, observer design, linearization, left invertibility

1 Introduction

Given a nonlinear system, it is clear that no general approach can be used
to design an observer. However, at least there are two ways to try. The first
way is to design an observer directly to the given nonlinear system, including
Kalman-like observer [8], adaptive observer [3], sliding mode observer [13] and
so on. Nevertheless, some extra conditions should be imposed for these direct
approaches, such as Lipschitz, persistent excitation. The second method is
based on the conception of normal form. A normal form represents a class
of equivalent systems which possess the same properties (we focus on the
observability in this paper). In other words, the appearance differences among
this class of equivalent systems are not intrinsic, but because of the wrong
choice of the coordinates.

Obviously one of the keys of this category is to find out a coordinate transfor-
mation with which a given system could be converted into the target observ-
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able normal form. And then the existed nonlinear observer design techniques
can be easily applied. In this category, [3,1,2] deal with the problem of trans-
form a nonlinear system into a class of state affine ‘normal forms’. In fact,
in their works, the sense of normal form is more general since no structure
constraints were imposed for its linear part. However, it is also because of this
merit, some existed techniques for linear systems cannot be easily applied.
And this leads to the raise of linearization problem of nonlinear system.

The linearization problem with output injection was firstly treated in [10]
for single output system. And it was generated in multi-output systems in
[11,17]. Some other results about input-output injection for the linearization
problem were stated in [6,14]. Moreover, [15,16] gave the sufficient and neces-
sary geometrical conditions to transform a nonlinear system into the so-called
output-dependent time scaling linear canonical form. In [7], the author gave
independently the dual geometrical conditions of [15]. Furthermore, the geo-
metrical conditions to guarantee the existence of a local diffeomorphism and
an output injection to transform a nonlinear system in a ‘canonical’ normal
form depending on its output was presented [18][19], called Single Output De-
pendent Observability normal form (SODO). Moreover, an extension for this
normal form with quadratic terms was also studied in [20]. As another natural
extension for our previous study, we will extend our result for multi-outputs
nonlinear system.

Motivated by this interest, this paper focuses on the analysis of nonlinear
systems with multiple outputs as follows:





ẋ = f(x, u)

y = (h1(x), ..., hm(x))T
(1)

where x ∈ IR n, u ∈ IR p, f : IR n × IR p → IR n and h :IR n → IR m are
analytic, and we deal with the following problem: Find sufficient condition for
the existence of a local diffeomorphism φ(x) = z to transform system (1) into





ż = A (y, u) z + β (y, u)

y = Cz
(2)
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where

z =




z1

z2

...

zm




, β (y) =




β1 (y1, u)

β2 (y1, y2, u)
...

βm (y1, ..., ym, u)




, C =




C1

C2

...

Cm




and

A (y, u) =




A1 (y1, u) 0 · · · 0

0 A2 (y1, y2, u) · · · 0
...

...
. . .

...

0 0 · · · Am (y1, ..., ym, u)




with

zi =




zi,1

zi,2

...

zi,ki




, βi (y1, ..., yi, u) =




βi,1 (y1, ..., yi, u)

βi,2 (y1, ..., yi, u)
...

βi,ki
(y1, ..., yi, u)




, Ci =
[
0 · · · 0 1

]

1×ki

and

Ai (y1, ..., yi, u) =




0 · · · 0 0

αi,1 (y1, ..., yi, u) · · · 0 0
...

. . .
...

...

0 · · · αi,ki−1 (y1, ..., yi, u) 0




with αi,j 6= 0 for all y and u in a certain studied neighborhood. For dynamical
systems in the form 2, the high gain observer proposed in [4] can be applied
directly (refer to [4] for more details).

In this paper, we will give the geometrical condition which is sufficient to
guarantee the existence of a local diffeomorphism and an output injection
to transform system (1) into the normal form (2). This kind of linearization
will be named Multi-Output Dependent Observability normal form (MODO
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normal form) and generalizes the result obtained in [5,19] for nonlinear systems
with single output. In section 2, we give some basic notations and a preliminary
result is presented in Section 3 in order to introduce our method. In section 4,
we propose our main result as a generalization of the result given in section 3.

2 Notations

Consider system (1), with a possible reordering of hi, we assume that there

exist k1 ≥ k2 ≥ ... ≥ km ≥ 1 and
m∑

i=1
ki = n such that

θ =
(
θ1
1, ..., θ

k1
1 , .., θ1

m, .., θkm
m

)T
(3)

where

θj
i = dLj−1

f hi

is a frame of the cotangent bundle T ∗U. Thus, system (1) is observable. Integers
(ki)1≤i≤m are called observability indices of system (1). For a nice description
and more details about this assumption, see [11]. Obviously the list of these
integers is generally not unique. For 1 ≤ l ≤ m and 1 ≤ j ≤ kl, let (τi,1)1≤i≤m

be the family of vector fields defined by:

θj
l (τi,1) =





1, l = i, j = ki

0, otherwise
(4)

and construct by induction the following family of vector fields:

τi,r = [τi,r−1, f ] = (−1)r−1 adr−1
f τi,r−1, for 2 ≤ r ≤ ki. (5)

The family τ = (τi,j)1≤i≤m and 1≤j≤ki
is a basis of the tangent bundle TU. The

frame T was addressed firstly in [10] for p = 0 and m = 1 and it is well-known
in [10] that system (1) can be transformed into the normal form (2) if and
only if we have

[τ1,i, τ1,j] = 0, for 1 ≤ i, j ≤ n. (6)

In this case, τ is a frame with which system (1) is in the form (2).
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3 Preliminary results

In this section, we will generalize the result stated in [5] and [19] to systems
with multi-output.

Lemma 1 For a system in the form (2) we have for 1 ≤ l ≤ m, 1 ≤ t ≤ kl,

τl,t = 1
πl,t

∂
∂zl,t

+




l∑
r=1

(
Al,t

r,t−1 (y1, ..., yl, u) zr,kr−1

)

+ηl,t
t−1 (y1, ..., yl, u)


 ∂

∂zl,t−1

+
t−2∑
i=1




l∑
r=1




Al,t
r,i (y1, ..., yl, u) zr,kr−t+i

+
kr−1∑

j=kr−t+i+1

kr−1∑
s=j

T l,t
r,j,s (y1, ..., yl, u) zr,jzr,s





 ∂

∂zl,i

+
t−2∑
i=1




l∑
r=1

(
kr∑

j=kr−t+i+1
ηl,t

r,i (y1, ..., yl, u) zr,j

)

+O
[3]
(y1,...,yl,u)




z1,k1−t+i+1, .., z1,k1−1,

...., zl,kl−t+i+1, .., zl,kl−1







∂
∂zl,i

,

(7)

where πl,kl
= 1 and πl,t−1 = πl,tαl,t−1 for 2 ≤ t ≤ kl, ηl,t

i and T l,t
r,j,q are some

smooth functions of (y1, ..., yl, u), O
[3]
(y1,...,yl,u)




z1,k1−t+i+1, .., z1,k1−1,

...., zl,kl−t+i+1, .., zl,kl−1


 repre-

sents the residue higher than order 2 with coefficient which is function of
(y1, ..., yl, u) and

Al,t
r,i (y1, ..., yl, u) = (−1)t−i+1 Sl,t

r,t−i,1
∂yr πl,i

π2
l,i

πr,kr−t+i+

(−1)t−i+1
t−1∑

m=t−i+1
Sl,t

r,t−i,m−t+i+1
∂yr πl,t−m

π2
l,t−m

(
m∏

j=t−i+1
αl,k−j

)
πr,kr−t+i,

(8)

where ∂yrπl,i represents
∂πl,i(y1,...,yl,u)

∂yr
, Sl,t

r,t−i,1 and Sl,t
r,t−i,m−t+i+1 are defined as

follows

Sl,t
r,j,1 = 1, Sl,t

r,j,s = Sl,t−1
r,j−1,s + Sl,t−1

r,j,s−1, (9)

for 1 ≤ l ≤ m, 1 ≤ r ≤ l, 2 ≤ t ≤ kl, 1 ≤ j ≤ t− 1 and 1 ≤ s ≤ t− j.

Proof 1 For a system in the (2) form, for 1 ≤ l ≤ m, τl,1 = 1
πl,1

∂
∂zl,1

, then we
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use equation (5) to obtain

τ1,t = 1
π1,t

∂
∂z1,t

+
(
A1,t

1,t−1 (y1, u) z1,k1−1 + η1,t
t−1 (y1, u)

)
∂

∂z1,t−1

+
t−2∑
i=1

(
A1,t

1,i (y1, u) z1,k1−t+i +
k1−1∑

j=k1−t+i+1

k1−1∑
l=j

T 1,t
j,l (y1, u) z1,jz1,l

)
∂

∂z1,i

+
t−2∑
i=1

(
k1∑

j=k1−t+i+1
η1,t

i (y1, u) z1,j + O
[3]
(y1,u) (z1,k1−t+i+1, .., z1,k1−1)

)
∂

∂z1,i
,

for 1 ≤ t ≤ k1 and

τ2,t = 1
π2,t

∂
∂z2,t

+




A2,t
1,t−1 (y1, y2, u) z1,k1−1 + A2,t

2,t−1 (y1, y2, u) z2,k2−1

+η2,t
t−1 (y1, y2, u)


 ∂

∂z2,t−1

+
t−2∑
i=1




A2,t
1,i (y1, y2, u) z1,k1−t+i

+
k2−1∑

j=k2−t+i+1

k2−1∑
l=j

T 2,t
1,j,l (y1, y2, u) z1,jz1,l+

A2,t
2,i (y1, y2, u) z2,k2−t+i

+
k2−1∑

j=k2−t+i+1

k2−1∑
l=j

T 2,t
2,j,l (y1, y2, u) z2,jz2,l




∂
∂z2,i

+
t−2∑
i=1




k1∑
j=k1−t+i+1

η2,t
1,i (y1, y2, u) z1,j +

k2∑
j=k2−t+i+1

η2,t
2,i (y1, y2, u) z2,j

+O
[3]
(y1,y2,u) (z1,k1−t+i+1, .., z1,k1−1, z2,k2−t+i+1, .., z2,k2−1)


 ∂

∂z2,i
,

for 1 ≤ t ≤ k2. Then by an induction, for 1 ≤ t ≤ kl, we get

τl,t = 1
πl,t

∂
∂zl,t

+




l∑
r=1

(
Al,t

r,t−1 (y1, ..., yl, u) zr,kr−1

)

+ηl,t
t−1 (y1, ..., yl, u)


 ∂

∂zl,t−1

+
t−2∑
i=1




l∑
r=1




Al,t
r,i (y1, ..., yl, u) zr,kr−t+i

+
kr−1∑

j=kr−t+i+1

kr−1∑
s=j

T l,t
r,j,s (y1, ..., yl, u) zr,jzr,s





 ∂

∂zl,i

+
t−2∑
i=1




l∑
r=1

(
kr∑

j=kr−t+i+1
ηl,t

r,i (y1, ..., yl, u) zr,j

)

+O
[3]
(y1,...,yl,u)




z1,k1−t+i+1, .., z1,k1−1,

...., zl,kl−t+i+1, .., zl,kl−1







∂
∂zl,i

,

where

Al,t
r,i (y1, ..., yl, u) = (−1)t−i+1

(
Sl,t

r,t−i,1

∂yrπl,i

π2
l,i

+
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t−1∑

m=t−i+1

Sl,t
r,t−i,m−t+i+1

∂yrπl,t−m

π2
l,t−m




m∏

j=t−i+1

αl,k−j





 πr,kr−t+i,

with the coefficients Sl,t
r,j,s defined by 9.

In order to determine the αi,j(y1, ..., yi, u) for 1 ≤ i ≤ m, 1 ≤ j ≤ ki − 1, we
also impose that for 1 ≤ i, l ≤ m,

∂

∂zi,j

hl ◦ φ =





1, if l = i and j = ki,

0, otherwise.

Now, we are ready to state a set of partial differential equations which enables
us to compute functions αi,j(y1, ..., yi, u) for 1 ≤ i ≤ m, 1 ≤ j ≤ ki − 1.

Proposition 1 If there exists a diffeomorphism which transforms system (1)
into form (2) then for 1 ≤ l ≤ m, 1 ≤ t ≤ kl − 1, 1 ≤ s ≤ l − 1,





[τl,t, τs,ks ] = λs
l,tτl,t mod span {τl,1, ..., τl,t−1}

[τl,t, τl,kl
] = λl

l,tτl,t + G
[1]
l,kl,t

+ Rl,t

where

G
[1]
l,kl,t

=

[
t−1∑

i=1

(
1

πl,t

T l,t
l,t,kl−t+izl,kl−t+i

)
∂

∂zl,i

]
+

1

πl,t

T l,t
l,t,tzl,t

∂

∂zl,2t−kl

,

and

Rl,t =
t−1∑

i=1




kl∑
j=kl−t+i+1

η̄l,t
i (y1, ..., yl, u)

+O
[2]
(y1,...,yl,u)




z1,k1−t+i+1, .., z1,k1−1,

...., zl,kl−t+i+1, .., zl,kl−1







∂

∂zl,i

and





λs
l,t = −∂ysπl,t

πl,t
,

λl
l,t = diag{δl,t

1 (y1, ...yl, u) , ..., δl,t
i (y1, ...yl, u) , ..., δl,t

t (y1, ...yl, u) , 0, ..., 0},
(10)

7



defining ∂ysπl,t :=
∂[πl,t(y1,...yl,u)]

∂ys
, δl,t

t = Al,kl
l,t +

∂yl
πl,t

πl,t
and

δl,t
i = Al,kl

l,i − Al,kl
l,kl−t+i −

∂yl

(
Al,t

l,i

)

Al,t
l,i

for 1 ≤ i ≤ t− 1, and Al,t
l,i is given in (8).

Proof 2 According to equation (7), for 1 ≤ l ≤ m, 1 ≤ t ≤ kl − 1, we have

τl,t = 1
πl,t

∂
∂zl,t

+




l∑
r=1

(
Al,t

r,t−1 (y1, ..., yl, u) zr,kr−1

)

+ηl,t
t−1 (y1, ..., yl, u)


 ∂

∂zl,t−1

+
t−2∑
i=1




l∑
r=1




Al,t
r,i (y1, ..., yl, u) zr,kr−t+i

+
kr−1∑

j=kr−t+i+1

kr−1∑
s=j

T l,t
r,j,s (y1, ..., yl, u) zr,jzr,s





 ∂

∂zl,i

+
t−2∑
i=1




l∑
r=1

(
kr∑

j=kr−t+i+1
ηl,t

r,i (y1, ..., yl, u) zr,j

)

+O
[3]
(y1,...,yl,u)




z1,k1−t+i+1, .., z1,k1−1,

...., zl,kl−t+i+1, .., zl,kl−1







∂
∂zl,i

,

then we can calculate

[τl,t, τs,ks ] = −∂ysπl,t

πl,t

∂

∂zl,t

mod span {τl,1, ..., τl,t−1},

Defining λs
l,t = −∂ysπl,t

πl,t
, we obtain

[τl,t, τs,ks ] = λs
l,tτl,t mod span {τl,1, ..., τl,t−1}

Moreover, as

[τl,t, τl,kl
] =

(
Al,kl

l,t +
∂yl

πl,t

πl,t

)
1

πl,t

∂

∂zl,t

+
t−1∑

i=1




(
Al,kl

l,i − Al,kl
l,kl−t+i −

∂yl(Al,t
l,i)

Al,t
l,i

)
Al,t

l,izl,kl−t+i

+ 1
πl,t

T l,t
l,t,kl−t+izl,kl−t+i




∂

∂zl,i

+
1

πl,t

T l,t
l,t,tzl,t

∂

∂zl,2t−kl

8



+
t−1∑

i=1




kl∑
j=kl−t+i+1

η̄l,t
i (y1, ..., yl, u)

+O
[2]
(y1,...,yl,u)




z1,k1−t+i+1, .., z1,k1−1,

...., zl,kl−t+i+1, .., zl,kl−1







∂

∂zl,i

.

Set

λl
l,t (y1, ..., yl, u) = diag{δl,t

1 (y1, ..., yl, u) , ..., δl,t
i (y1, ..., yl, u) , ..., δl,t

t (y1, ..., yl, u) , ..., 0, ..., 0},

where δl,t
t = Al,kl

l,t +
∂yl

πl,t

πl,t
and

δl,t
i = Al,kl

l,i − Al,kl
l,kl−t+i −

∂yl

(
Al,t

l,i

)

Al,t
l,i

for 1 ≤ i ≤ t− 1, then

[τl,t, τl,kl
] = λl

l,tτl,t + G
[1]
l,kl,t

+ Rl,t. (11)

Remark 1 In equation (11), λl
l,t could be uniquely determined since G

[1]
l,kl,t

might be separated according to the coefficients of second-order terms in τl,kl
.

Finally, the following result enables us to determine all the functions αl,i (y1, ..., yl, u)
for 1 ≤ l ≤ m and 1 ≤ i ≤ kl − 1.

Proposition 2 If there exists a diffeomorphism which transforms system (1)
into form (2), then αl,i =

πl,i

πl,i+1
for 1 ≤ l ≤ m and 1 ≤ i ≤ kl − 2, and

αl,kl−1 = πl,kl−1, where the πl,i for 1 ≤ i ≤ kl − 1 is the solution of the
following partial differential equations:





∂ysπl,i

πl,i
= −λs

l,i (y1, ..., yl) , for 1 ≤ s ≤ l − 1 and 1 ≤ i ≤ kl − 1

∂yl
πl,i

πl,i
= exp

∫ (
δl,i
i − δl,kl−1

i − δl,i+1
i+1

)
dyl − B̄l,kl−1

l,i , for 1 ≤ i ≤ kl − 2

∂yl
πl,kl−1

πl,kl−1
=

δ
l,kl−1

kl−1
−Ā

l,kl
l,kl−1

2

(12)

with B̄l,0
l,1 = 0 and for 1 ≤ i, t ≤ kl − 1

B̄l,t
l,i =

t−1∑

m=t−i+1

Sl,t
t−i,m−t+i+1

∂yl
πl,t−m

πl,t−m

. (13)

Proof 3 Obviously, according to (10), we have

∂ysπl,i

πl,i

= −λs
l,i (y1, ..., yl, u) , for 1 ≤ s ≤ l − 1 and 1 ≤ i ≤ kl − 1

9



Define

Bl,t
l,i =

∂yl
πl,i

πl,i

+ B̄l,t
l,i . (14)

where 1 ≤ l ≤ m and 1 ≤ i, t ≤ kl − 1.

According to (8), for 1 ≤ i, k ≤ kl − 1,

∂yl

(
Al,t

l,i

)

Al,t
l,i

=
∂yl

(
Bl,t

l,i

)

Bl,t
l,i

− ∂yl
πl,i

πl,i

+
∂yl

πl,kl−t+i

πl,kl−t+i

.

As δl,t
t = Al,kl

l,t +
∂yl

πl,t

πl,t
, hence

δl,kl−1
i = Al,kl

l,i − Al,kl
l,1+i −

∂yl

(
Bl,kl−1

l,i

)

Bl,kl−1
l,i

+
∂yl

πl,i

πl,i

− ∂yl
πl,1+i

πl,1+i

= δl,i
i − δl,1+i

1+i − ∂yl

(
∂yl

πl,i

πl,i

+ B̄l,kl−1
l,i

)
/

(
∂yl

πl,i

πl,i

+ B̄l,kl−1
l,i

)
.

which yields

∂yl
πl,i

πl,i

= exp
∫ (

δl,i
i − δl,kl−1

i − δl,i+1
i+1

)
dyl − B̄l,kl−1

l,i , for 1 ≤ i ≤ kl − 2

where B̄l,kl−1
l,i is defined in (13) and cl,i 6= 0. As δl,kl−1

kl−1 = 2
∂yl

πl,kl−1

πl,kl−1
+ Āl,kl

l,kl−1,

where Āl,kl
l,kl−1 =

kl−1∑
m=2

Sl,kl
1,m

∂yl
πl,kl−m

πl,kl−m
, then we obtain

∂yl
πl,kl−1

πl,kl−1

=
δl,kl−1
kl−1 − Āl,kl

l,kl−1

2

4 Main result

If there exists a diffeomorphism which transforms system (1) into form (2),
then equation (12) of Proposition 2 gives all αl,i (y1, ..., yl, u) for 1 ≤ l ≤ m
and 1 ≤ i ≤ kl − 1. Therefore, let us consider a new family of vector fields
defined as follows:

τ̃l,1 = πl,1 (y1, ..., yl, u) τl,1 (15)

10



τ̃l,i =
1

αl,i−1

[τl,i−1, f ] for i = 2 : kl

where πl,1 (y1, ..., yl, u) =
kl−1∏
i=1

αl,i (y1, ..., yl, u) . Set τ̃ = (τ̃i,j)1≤i≤m and 1≤j≤ki

and Λ̃ = θτ̃ , we can define the following multi 1-form:

ω = Λ̃−1θ. (16)

It is clear that

ωτ̃ = In×n

Then we are ready to state our main result.

Theorem 1 There exists a diffeomorphism which transforms system (1) into
a MODO normal form (2) if

i) there exists a family of functions αl,i (y1, ..., yl, u) for 1 ≤ l ≤ m and 1 ≤ i ≤
kl−1 such that the family of vector fields τ̃l,i for 1 ≤ l ≤ m and 1 ≤ i ≤ kl−1
defined in (15) satisfies the following commutativity conditions

[τ̃i,j, τ̃s,l] = 0, for 1 ≤ i, s ≤ m, 1 ≤ j ≤ ki and 1 ≤ l ≤ ks (17)

or

ii) there exists a family of functions αl,i (y1, ..., yl, u) for 1 ≤ l ≤ m and
1 ≤ i ≤ kl − 1 such that the Rn-valued form ω defined in (16) satisfies the
following condition

dω = 0. (18)

Proof 4 Assume that there exist αl,i (y1, ..., yl, u) > 0 for 1 ≤ l ≤ m and 1 ≤
i ≤ kl − 1 such that [τ̃i,j, τ̃s,l] = 0 for 1 ≤ i, s ≤ m, 1 ≤ j ≤ ki and 1 ≤ l ≤ ks,
then it is well-known ([12], [9]) that we can find a local diffeomorphism φ = z
such that

φ∗(τ̃l,i) =
∂

∂zl,i

.

As φ∗(τ̃l,i) = ∂
∂zl,i

is constant, hence

∂

∂zl,i

φ∗(f) = φ∗ ([τ̃l,i, f ]) = αl,iφ∗(τ̃l,i+1) = αl,i
∂

∂zl,i+1

,

11



thus ∂
∂zl,i

φ∗(f) = αl,i
∂

∂zl,i+1
for 1 ≤ l ≤ m and 1 ≤ i ≤ kl− 1. Consequently, by

integration we obtain: φ∗(f) = A(y, u)z + β(y, u). Moreover, as dh ◦ τ̃l,i = 0
for 1 ≤ l ≤ m and 1 ≤ i ≤ kl − 1 and dh ◦ τ̃l,kl−1 = 1, we obtain h ◦ φ = Cz
where C is defined in (1).

Finally, in order to prove that in Theorem 1 Condition i) is equivalent to Con-
dition ii), it is sufficient to prove that equation (17) is equivalent to equation
(18). Recall that for any two vector fields X,Y, we have

dω(X,Y ) = LX (ω(Y ))− LY (ω(X))− ω([X,Y ]).

Setting X = τ̃i.j and Y = τ̃s.l, we obtain

dω(τ̃i,j, τ̃s,l) = Lτ̃i,j
ω(τ̃s,l)− Lτ̃s,l

ω(τ̃i,j)− ω([τ̃i,j, τ̃s,l]).

As ω(τ̃s,l) and ω(τ̃i,j) are constant, then we have

dω(τ̃i,j, τ̃s,l) = −ω([τ̃i,j, τ̃s,l]).

Because ω is an isomorphism and (τ̃i,j)1≤i≤m and 1≤j≤kl−1 is a basis of TU, then
equation (17) is equivalent to equation (18).

Example 1 Let us consider the following system:





ẋ1,1 = γ(y1,u)
1+x3

x1,1x1,2,

ẋ1,2 = µ(y1,u)
1+x1,3

x1,1,

ẋ1,3 = γ (y1, u) x1,2,

ẋ2,1 = β (y1, y2, u)
x2
2,1

(1+x2,2)2

ẋ2,2 = β (y1, y2, u) x2,1

(1+x2,2)

y1 = x1,3,

y2 = x2,2,

(19)

with y1 ∈ ]−1, 1[ , y2 ∈ ]−1, 1[ and γµβ 6= 0 for any u, y1 and y2, then we can
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obtain





τ1,1 = 1+x1,3

γµ
∂

∂x1,1
,

τ1,2 = 1
γ(y1,u)

∂
∂x1,2

+
(
(1 + x1,3)

∂y1 (γ(y1,u)µ(y1,u))

γ(y1,u)µ2(y1,u)

)
x1,2

∂
∂x1,1

,

τ1,3 = ∂
∂x1,3

+
(

∂y1 (µ(y1,u)γ(y1,u))

(µ(y1,u)γ(y1,u))
+

∂y1γ(y1,u)

γ(y1,u)

)
x1,2

∂
∂x1,2

+
(

1
1+x1,3

− ∂y1 (γ(y1,u)µ(y1,u))

γ(y1,u)µ(y1,u)

)
x1,1

∂
∂x1,1

τ2,1 = (1+x2,2)

β(y1,y2,u)
∂

∂x2,1

τ2,2 = ∂
∂x2,2

+




2 x2,1

(1+x2,2)
− ∂y1

(
(1+x2,2)

β(y1,y2,u)

)
γ (y1, u) x2,2

−∂y2

(
(1+x2,2)

β(y1,y2,u)

)
β (y1, y2, u) x2,1

(1+x2,2)


 ∂

∂x2,1

which yields





δ1
1,1 = 0,

δ1
2,2 = 2

∂y1γ(y1,u)

γ(y1,u)
+

∂y1 (µ(y1,u)γ(y1,u))

(µ(y1,u)γ(y1,u))
,

δ1
2,1 = −∂y1 (µ(y1,u)γ(y1,u))

(µ(y1,u)γ(y1,u))
− 2

∂y1γ(y1,u)

γ(y1,u)

−∂y1

(
∂y1 (µ(y1,u)γ(y1,u))

(µ(y1,u)γ(y1,u))

)
/

(
∂y1 (µ(y1,u)γ(y1,u))

(µ(y1,u)γ(y1,u))

)
,

λ1
1,1 = −∂y1β(y1,y2,u)

β(y1,y2,u)

δ2
1,1 = 2

∂y2β(y1,y2,u)

β(y1,y2,u)
,

Then, according to (12), we have





∂y1π11

π11
= exp

∫ (
δ1
1,1 − δ1

1,2 − δ1
2,2

)
dy1,

∂y2π12

π12
= 1

2

(
δ1
2,2 − ∂y1π11

π11

)

∂y1π21

π21
= −λ1

1,1 =
∂y1β(y1,y2,u)

β(y1,y2,u)
,

∂y2π21

π21
= 1

2
δ2
2,1 =

∂y2β(y1,y2,u)

β(y1,y2,u)

which gives us π11 = c1γ (y1, u) µ (y1, u), π12 = c2γ (y1, u) and π2,1 = α2,1 =
c3β (y1, y2, u) , then we can obtain α1,1 (y1, u) = c1

c2
µ (y1, u) and α1,2 = c2γ (y1, u).

Then we have





τ̃1,1 = c1 (1 + x1,3)
∂

∂x1,1
,

τ̃1,2 = c2
∂

∂x1,2
,

τ̃1,3 = ∂
∂x1,3

+ x1,1

1+x1,3

∂
∂x1,1

.
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and




τ̃2,1 = c3 (1 + x2,2)
∂

∂x2,1

τ̃2,2 = ∂
∂x2,2

+ x2,1

1+x2,2

∂
∂x2,1

It is obvious [τ̃ij, τ̃st] = 0 for 1 ≤ i, s ≤ 2, j ∈ [1, 3], t ∈ [1, 2] . So we have

ω = Λ−1τ̃ =




1
c1(1+x1,3)

0 − 1
c1(1+x1,3)2

x1,1 0 0

0 1
c2

0 0 0

0 0 1 0 0

0 0 0 1
c3(1+x2,2)

− x2,1

c3(1+x2,2)2

0 0 0 0 1




which yields

z = φ (x) =

(
x1,1

c1 (1 + x1,3)
,

1

c2

x1,2, x1,3,
x2,1

c3 (1 + x2,2)
, x2,2

)T

with this diffeomorphism, system (19) is transformed into:





ż1,1 = 0,

ż1,2 = c1
c2

µ (y1, u) z1,1,

ż1,3 = c2γ (y1, u) z1,2,

ż2,1 = 0

ż2,2 = c3β (y1, y2, u) z2,1

y1 = z1,3,

y2 = z2,2.

5 Extension to system with unknown inputs

In this section, we extend our results to a system with unknown inputs and
which is in following form:





ẋ = f(x, u) + g(x, u, w)

y = (h1(x), ..., hm(x))T
(20)
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where x ∈ Rn, u ∈ Rp, w ∈ Rq, f : Rn × Rp → Rn , g : Rn × Rp × Rq → Rn

and h : Rn → Rm are analytic functions. For system (20) we seek the MODO
normal form along its output trajectory as follows:





ż = A (y, u) z + β (y, u) + η (y, u, w)

y = Cz
(21)

where A (y, u) , β (y, u) and C are defined in (2), and the matrix η (y, u, w) is
defined as the matrix β (y, u).

Theorem 2 System (20) can be transformed into MODO normal form (21)
by a diffeomorphism and an output injection if and only if there is a fam-
ily functions (αi,j(y, u))

1≤i≤m and 1≤j≤ki−1
, satisfies both commutativity con-

ditions:

i) For 1 ≤ i, s ≤ m, 1 ≤ j ≤ ki and 1 ≤ l ≤ ks,

[τ̃i,j, τ̃s,l] = 0. (22)

ii)

[g, τ̃i,j] = 0 for 1 ≤ i ≤ m, 1 ≤ j ≤ ki − 1

Proof 5 From Theorem 1, we can state that there exists a diffeomorphism φ
such that

φ∗(f) = A(y, u)z + β(y, u).

For 1 ≤ i ≤ m and 1 ≤ j ≤ kl − 1, because φ∗ (τ̃i,j) = ∂
∂zi,j

is constant, hence

we have

∂

∂zi,j

φ∗(g) = φ∗([g, τ̃i,j]) = 0.

Therefore φ∗(g) = η(y, u, w). Thus, we obtain the form (21).

Remark 2 If g(x, u, w) = g1(x, u)w1+..+gq(x, u)wq, and also both conditions
i) and ii) of Theorem 2 are fulfilled, then:

η(y, u, w) = B1(y, u)w1 + .. + Bq(y, u)wq (23)

Let us now study some special cases of the output injection.

Corollary 1 Let us assume that conditions i) and ii) of theorem2 are fulfilled:
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a) if [g, τ̃i,ki
] = 0, for 1 ≤ i ≤ m, then:

η(y, u, w) = η(u,w)

b) if g(x, u, w) = g1(x, u)u1 + .. + gq(x, u)uq and

[gk, τ̃i,ki
] = 0 for 1 ≤ i ≤ m, 1 ≤ k ≤ p

then

η(y, u, w) = B1(u)w1 + .. + Bq(u)wq.

where Bi are functions of u. c) if g(x,w) = g1(x)w1 + .. + gq(x)wq and

[gk, τ̃i,ki
] = 0 for 1 ≤ i ≤ m, 1 ≤ k ≤ q

then

η(y, u, w) = B1w1 + .. + Bqwp

where Bi are constant vector fields.

Example 2 Let us consider the following system




ẋ1,1 = γ (y1, u)
x2
1,1

(1+x1,2)2
+ x1,1

(1+x1,2)
w1

ẋ1,2 = γ (y1, u) x1,1

1+x1,2
+ w1 + x2,1w2

ẋ2,1 = β(y1, y2, u)x1,2

y1 = x1,2

y2 = x2,1

(24)

with y1 ∈ ]−1, 1[ , γβ 6= 0 for any u, y1 and y2, then we can obtain




τ1,1 = 1+x1,2

γ(y1,u)
∂

∂x1,1

τ1,2 = ∂
∂x1,2

+
(
3γ2 (y1, u) x1,1

(1+x1,2)3
− γ (y1, u) ∂y1 (γ (y1, u)) x1,1

(1+x1,2)2

)
∂

∂x1,1

τ2,1 = ∂
∂x2,1

which yields

δ1,1
1 = 2

∂y1γ (y1, u)

γ (y1, u)
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so according to equation (12), we obtain

∂y1π1,1

π1,1

=
δ1,1
1

2
=

∂y1γ (y1, u)

γ (y1, u)

which gives π1,1 = α1,1 = c1γ (y1, u) . Consequently, we have





τ̃1,1 = c1 (1 + x1,2)
∂

∂x1,1

τ̃1,2 = ∂
∂x1,2

+ x1,1

1+x1,2

∂
∂x2,1

τ̃2,1 = ∂
∂x2,1

As g1 = ∂
∂x1,2

+ x1,1

1+x1,2

∂
∂x2,1

= τ̃1,2, so [g1, τ̃1,1] = [g1, τ̃1,2] = [g1, τ̃2,1] = 0.

Moreover, due to g2 = x2,1
∂

∂x1,2
, then we have [g2, τ̃1,1] = 0, [g2, τ̃1,2] 6= 0 and

[g2, τ̃2,1] 6= 0. Thus system (24) can be putted into the following form:





ż1,1 = − x1,1

c1(1+x1,2)2
x2,1w2

ż1,2 = c1γ(y1, u)z1,1 + w1 + z2,1w2

ż2,1 = β(y1, y2, u)z1,2

y1 = z1,2

y2 = z2,1

(25)

by the following diffeomorphism

φ =




x1,1

c1(1+x1,2)

x1,2

x2,1




Corollary 2 Assume conditions i) and ii) of theorem 2 are fulfilled and m ≥
q, then the OMC (Observability Matching Condition) for system (21) is as
follows:

rank ∂
∂w

ηi,1(y, u, w) = q

and

∂
∂w

ηi,j(y, u, w) = 0, for 1 ≤ i ≤ m, 2 ≤ j ≤ ki
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Here we give another example to highlight the above corollary.

Example 3 Consider the following system:





ẋ1,1 = γ (y1, u)
x2
1,1

(1+x1,2)2
+ γ (y1, u) w1 + w2

ẋ1,2 = γ (y1, u) x1,1

1+x1,2

ẋ2,1 = β(y1, y2, u)x1,2 + w1 + β(y1, y2, u)w2

y1 = x1,2

y2 = x2,1

(26)

with y1 ∈ ]−1, 1[ , βγ 6= 0 for any u, y1 and y2. According to example (24) we
can get π1,1 = α1,1 = c1γ (y1, u) which yields the following new vector fields:





τ̃1,1 = c1 (1 + x1,2)
∂

∂x1,1

τ̃1,2 = ∂
∂x1,2

+ x1,1

1+x1,2

∂
∂x2,1

τ̃2,1 = ∂
∂x2,1

which means the diffeomorphism is as follows:

φ =




x1,1

c1(1+x1,2)

x1,2

x2,1




then system (26) can be putted into the following form:





ż1,1 = 1
c1(1+x1,2)

(γ (y1, u) w1 + w2)

ż1,2 = c1γ(y1, u)z1,1

ż2,1 = β(y1, y2, u)z1,2 + w1 + β(y1, y2, u)w2

y1 = z1,2

y2 = z2,1

(27)
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Then

η (y, u, w) =




η1,1 (y, u, w)

η1,2 (y, u, w)

η2,1 (y, u, w)




=




1
c1(1+y1)

(γ (y1, u) w1 + w2)

0

w1 + β(y1, y2, u)w2




Since

rank ∂
∂w

ηi,1(y, u, w) =




1
c1(1+y1)

γ (y1, u) 1
c1(1+y1)

1 β(y1, y2, u)


 , for 1 ≤ i ≤ 2

and

∂
∂w

η1,2(y, u, w) = 0,

if γ (y1, u) β(y1, y2, u) 6= 1 and c1 (1 + y1) 6= 0, then Corollary 2 is fulfilled,
therefore both the state and the unknown input of system (26) can be recovered
by an observer.

Now, let us design an observer for system (27). We assume that u is bounded
and γ (y1, u) β(y1, y2, u) 6= 1 and c1 (1 + y1) 6= 0, then the left invertibility
problem for (27) may be solved by a step by step sliding mode observer [13]
of the following form:

˙̂z1,1 = E1κ2sign (z̃1,1 − ẑ1,1)

˙̂z1,2 = c1γ(y1, u)ẑ1,1 + κ1sign (z1,2 − ẑ1,2)

˙̂z2,1 = β(y1, y2, u)ẑ1,2 + κ3sign (z2,1 − ẑ2,1)

where z1,2 = y1, z2,1 = y2 and

z̃1,1 = ẑ1,1 + E1
κ1sign(z1,2−ẑ1,2)

c1γ(y1,u)


w̃1

w̃2


 =




1
c1(1+y1)

γ (y1, u) 1
c1(1+y1)

1 β(y1, y2, u)




−1 


E2κ2sign (z̃1,1 − ẑ1,1)

E2κ3sign (z2,1 − ẑ2,1)




with

if z1,2 = ẑ1,2, E1 = 1, else E1 = 0

if z2,1 = ẑ2,1and z̃1,1 = ẑ1,1, then E2 = 1, else E2 = 0
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6 Conclusion

This article focused on seeking the MODO normal form. Firstly, the partial
differential equations were given to deduce all functions αi,j, with which we
can design a new frame of vector fields from the natural one associated with a
dynamical system with outputs. And then sufficient geometrical condition was
given in order to determine whether a system (1) can be transformed into the
normal form (2). Finally the obtained result was extended for systems with
unknown inputs. Nevertheless, one open problem remained to be solved is to
find the necessary condition.
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