Convergence of a non-monotone scheme for Hamilton-Jacobi-Bellman equations with discontinuous data - Archive ouverte HAL Access content directly
Journal Articles Numerische Mathematik Year : 2010

Convergence of a non-monotone scheme for Hamilton-Jacobi-Bellman equations with discontinuous data

(1) , (2, 3) , (2, 3)
1
2
3

Abstract

On étudie un schéma non monotone pour l'équation Hamilton Jacobi Bellman du premier ordre, en dimension 1. Le schéma considèré est lié au schéma anti-diffusif, appellé UltraBee, proposé par Bokanowski-Zidani (publié en 2007 dans J. Sci. Compt.). Ici, on prouve la convergence, en norme $L^1$, à l'ordre 1, pour une condition initiale discontinue. Le caractère anti-diffusif du schéma est illustré par quelques exemples numériques.
Fichier principal
Vignette du fichier
Zidani-main.pdf (625.31 Ko) Télécharger le fichier
Origin : Files produced by the author(s)
Loading...

Dates and versions

inria-00193157 , version 1 (30-11-2007)

Identifiers

Cite

Olivier Bokanowski, Nadia Megdich, Hasnaa Zidani. Convergence of a non-monotone scheme for Hamilton-Jacobi-Bellman equations with discontinuous data. Numerische Mathematik, 2010, 115 (1), pp.1--44. ⟨10.1007/s00211-009-0271-1⟩. ⟨inria-00193157⟩
307 View
245 Download

Altmetric

Share

Gmail Facebook Twitter LinkedIn More