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Convergence d’un schéma non monotone pour les

équations HJB avec donnée initiale discontinue

Résumé : On étudie un schéma non monotone pour l’équation Hamilton Jacobi Bellman
du premier ordre, en dimension 1. Le schéma qu’on considère est lié au schéma anti-diffusif,
appellé UltraBee, proposé dans [7]. Dans ce papier, on prouve la convergence, en norme L1,
à l’ordre 1, pour une condition initiale discontinue. Le caractère anti-diffusif du schéma est
illustré par quelques exemples numériques.

Mots-clés : équation HJB, schéma non monotone, estimation d’erreur en norme L1,
schéma anti-diffusif, condition initiale discontinue
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1 Introduction

We consider the following first order Hamilton-Jacobi-Bellman equation:

ϑt(t, x) + max
α∈A

(f(x, α) ϑx(t, x)) = 0, t > 0, x ∈ R, (1a)

ϑ(0, x) = v0(x), x ∈ R, (1b)

with discontinuous initial data v0. In optimal control theory, the solution ϑ of equation
(1) corresponds to the value function of the optimized problem [3, 2]. It is usual that this
function, as well as the “final” cost v0, is discontinuous (for instance for target or Rendez-
Vous problems).

In the continuous case (v0 is continuous), there are several contributions dealing with
numerical schemes for the discretization of HJB equations [8, 10, 1, 13]. The work of
Barles and Souganidis [4] gives a general framework for the convergence of approximated
solutions towards the viscosity solution, under generic monotonicity stability and consistency
assumptions. In that case, an error bound in ∆x

γ
2 is exhibited, ∆x being the mesh size,

whenever the function v0 is bounded γ-Hölder.
Nevertheless, when we deal with discontinuous intial data v0, classical monotone schemes

are no more adapted. In fact, if we attempt to use these schemes, we observe an increasing
numerical diffusion around discontinuities, and this is due to the fact that monotone schemes
use at some level finite differences and/or interpolation technics.

In this paper, we analyse an explicit scheme for the numerical resolution of (1), closely
related to the HJB-UltraBee scheme proposed in [7]. We give a convergence proof, show
anti-dissipative properties of the scheme, and give a L1-error estimate.

The UltraBee scheme has been developed to study compressible gas dynamics [9], and
more precisely to solve the transport equation. A generalization to HJB equations and many
academic tests have been done to evaluate the behaviour of the scheme when dealing with
discontinuities [7]. Its comparison with the viability algorithm [5] [15] was encouraging to
study more deeply convergence results.

Let us stress on that this scheme is explicit and non-monotonous (neither ε-monotone
in the sense of R. Abgrall [1]). As far as we know, there are few non-monotone schemes
that have been proved to converge for HJ equations. In [12], Lions and Souganidis show the
convergence of a TVD second order scheme, but which is implicit.

For a large class of discontinuous initial data v0, and under some asumptions on the
dynamics f(x, α) (see asumption (H3) in Section 2), we obtain a first-order error bound in
L1 norm, of the following form:

‖V (tn, .) − ϑ(tn, .)‖L1(R) ≤ C(L, tn, v0)∆x ∀tn ≥ 0, (2)

where ϑ is the viscosity solution of (1), V is the numerical approximation and C(L, tn, v0)
is a positive contant wich depends only on tn, on L (Lipschitz constant of x → f(x, α), see
Section 2.1), tn, and on the total variation of v0 (see Definition 2.2).
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4 O. Bokanowski, N. Megdich & H. Zidani

This is the first result of this kind to our knowledge, in the case of discontinuous viscosity
solutions. Furthermore, in some particular cases, such as the eikonal equation (ϑt + |ϑx| = 0,
corresponding to A := {±1} and f(x, α) = α), the constant C does not depend of tn. This
shows a ”non-diffusive” behavior of the scheme, as identified in [9], for the advection case
with constant sign velocity.

The paper is organized as follows: Sections 2 and 3 are devoted to the proof of (2) in
the case of piece-wise constant initial data. In Section 4, we prove (2) for more general
discontinuous initial data. In Section 5, we weaken some assumptions made before on the
velocities and prove a similar estimate for a modified scheme. We conclude in Section 6 by
some numerical illustrations, in particular showing the non-diffusive behavior of the proposed
scheme. The appendix contains some useful technical results.

2 Preliminaries

2.1 Notations and preliminary results

We denote by v0 : R → R a bounded lower semicontinuous (l.s.c.) function, A a compact
set, and f : R ×A → R a continuous function satisfying:

∃L ≥ 0, ∀α ∈ A, ∀x, y ∈ R, |f(y, α) − f(x, α)| ≤ L|y − x|. (3)

It is known that, under these assumptions, equation (1) admits a unique bounded l.s.c.
bilateral viscosity solution [3, 2]. For convenience of the reader, we recall in the following
definition the viscosity notion we use.

Definition 2.1. A bounded l.s.c. function ϑ is a bilateral viscosity solution of (1) if,
i) for any φ ∈ C1((0, +∞) × R) and at any local minimum (t, x) ∈]0, +∞[×R of ϑ − φ,

φt(t, x) + max
α∈A

(f(x, α) φx(t, x)) = 0.

ii) lim inf
t→0+

y→x

ϑ(t, y) = v0(x), ∀x ∈ R.

If we set for all x ∈ R

fm(x) := min
α∈A

f(x, α) and fM (x) := max
α∈A

f(x, α),

then equation (1) can be rewritten in the equivalent form:

ϑt(t, x) + max(fm(x) ϑx(t, x), fM (x) ϑx(t, x)) = 0, t > 0, x ∈ R, (4a)

ϑ(0, x) = v0(x), x ∈ R. (4b)

INRIA



Convergence of a non monotone scheme for HJB equations 5

Notice that by (3) and the definitions of fm and fM , we have fm(x) ≤ fM (x), ∀x ∈ R, and
also

(H1) fm and fM are L-Lipschitz continuous.

For simplicity of presentation, we first suppose the simplifying additional assumptions:

(H2) fm and fM are of constant sign,

(H3) fm and fM are increasing functions of x.

These assumptions will be weakened in Section 5.

Remark 2.1. Assumptions (H1)-(H3) are satisfied for the particular case of the Eikonal
equation: ϑt+c|ϑx| = 0, where c is a given constant and c ≥ 0 (taking fM (x) = −fm(x) = c).

We now define exact and approximated characteristics that will be very useful throughout
the paper. Let xj := j ∆x be a uniform mesh with ∆x > 0 and j ∈ Z, and denote:

xj+ 1
2

:= (j +
1

2
) ∆x, and Ij :=]xj− 1

2
, xj+ 1

2
[.

As the dynamics fm and fM are lipschitz continuous, then for any x ∈ R we can define
characteristics XM

x and Xm
x as the solutions of the Cauchy problems:

{

ẊM
x (t) = fM (XM

x (t)),
XM

x (0) = x,
and

{

Ẋm
x (t) = fm(Xm

x (t)),
Xm

x (0) = x.
(5)

We also define approximated piece-wise constant velocity functions fS
M and fS

m, such
that, ∀j ∈ Z:

fS
M (x) = fM (xj), ∀x ∈ Ij ,

fS
M (xj+ 1

2
) =

{

0 if fM (xj) fM (xj+1) ≤ 0,
fM (xj) otherwise,

and

fS
m(x) = fm(xj), ∀x ∈ Ij ,

fS
m(xj+ 1

2
) =

{

0 if fm(xj) fm(xj+1) ≤ 0,
fm(xj) otherwise.

In general, the differential equation

χ̇x(t) = fS
M (χx(t)), a.e. t ≥ 0, χx(0) = x, (6)

may have more than one absolutely continuous solution. The non-uniqueness comes from
the behavior on boundary points (xj+ 1

2
) in the case when the velocity vanishes (or changes

sign). Throughout this paper, we shall denote by XM,S
x the function defined by:

XM,S
x solution of (6), and (7a)

if ∃t∗ ≥ 0 s.t.

{

XM,S
x (t∗) = xj+ 1

2
,

fM (xj)fM (xj+1) ≤ 0
then XM,S

x (t) = xj+ 1
2
∀t ≥ t∗. (7b)
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6 O. Bokanowski, N. Megdich & H. Zidani

We have uniqueness of such solution (see appendix A). We construct Xm,S
x in a similar way.

Lemma 2.1. Assume that (H1) holds. Let a, b be in R. The following assertions are
satisfied:
(i) For every t ≥ 0, we have:

max
(

|XM,S
a (t) − XM

a (t)|, |Xm,S
b (t) − Xm

b (t)|
)

≤
1

2
Lt eLt ∆x,

where L is the Lipschitz constant of fM and fm (see (H1)).

(ii) Let s ≤ t and assume that Xm,S
a (θ) ≥ XM,S

b (θ), for every θ ∈ [s, t]. Then

|Xm,S
a (t) − XM,S

b (t)| + ∆x ≤ eL(t−s)(|Xm,S
a (s) − XM,S

b (s)| + ∆x).

On the other hand, if Xm
a (θ) ≥ XM

b (θ), for every θ ∈ [s, t], then

|Xm
a (t) − XM

b (t)| ≤ eL(t−s)(|Xm
a (s) − XM

b (s)|).

(iii) Assume (H1) and (H3). If a > b, then the functions t 7−→ XM,S
a (t) − Xm,S

b (t) and
t 7−→ XM

a (t) − Xm
b (t) are increasing for t ≥ 0.

(iv) Assume (H1) − (H3). If ∆x
2 < a − b, then the function t 7−→ XM,S

a (t) − Xm
b (t) is

increasing for t ≥ 0.
(v) Assume (H1) − (H3). If Xm,S

b (θ) ≥ Xm,S
a (θ), for every θ ∈ [s, t]. Then we have

|Xm,S
b (t) − Xm,S

a (t)| + ∆x ≤ eL(t−s)(|Xm,S
b (s) − Xm,S

a (s)| + ∆x).

On the other hand, if XM,S
a (θ) ≤ XM,S

b (θ), for every θ ∈ [s, t], then

|XM,S
b (t) − XM,S

a (t)| + ∆x ≤ eL(t−s)(|XM,S
b (s) − XM,S

a (s)| + ∆x).

Proof. (i) Let x ∈ R and j ∈ Z such that x ∈ Ij . For y ∈ R, the following inequality holds

|fS
M (x) − fM (y)| = |fM (xj) − fM (x) + fM (x) − fM (y)|

≤
1

2
L∆x + L|x − y|.

Therefore, for all t ≥ 0, we get:

|XM,S
a (t) − XM

a (t)| = |

∫ t

0

(

fS
M (XM,S

a (s)) − fM (XM
a (s))

)

ds|

≤
1

2
Lt∆x + L

∫ t

0

|XM,S
a (s) − XM

a (s)|ds.

Hence by using Gronwall’s Lemma we obtain the desired estimate for |XM,S
a (t) − XM

a (t)|.

The bound for |Xm,S
b (t) − Xm

b (t)| is obtained in the same way.

INRIA



Convergence of a non monotone scheme for HJB equations 7

(ii) Let δ(θ) := Xm,S
a (θ) − XM,S

b (θ) + ∆x. We have

d

dθ
δ(θ) = fS

m(Xm,S
a (θ)) − fS

M (XM,S
b (θ))

≤ fS
M (Xm,S

a (θ)) − fS
M (XM,S

b (θ))

≤ L

(

Xm,S
a (θ) − XM,S

b (θ) + ∆x

)

= L δ(θ).

The result follows by using a Gronwall estimate. The proof for the other estimate is similar.
(iii) Define δ(t) := XM,S

a (t)−Xm,S
b (t), and t∗ := inf{t > 0, δ(t) < 0}. As δ(0) > 0, then

t∗ > 0. Then for all t ∈ [0, t∗[, δ(t) ≥ 0 and we have:

d

dt
δ(t) = fS

M (XM,S
a (t)) − fS

m(Xm,S
b (t)) ≥ fS

m(XM,S
a (t)) − fS

m(Xm,S
b (t)),

which is positive, for t ∈ [0, t∗[, by (H3). We deduce that δ is increasing on [0, t∗[. Suppose

that t∗ is finite, then we get by continuity of XM,S
a and Xm,S

b that δ(t∗) ≥ δ(0) > 0. This
contradiction shows that t∗ = +∞ and δ is increasing for all t ≥ 0. (The proof is similar for
t 7−→ XM

a (t) − Xm
b (t).)

(iv) Similar arguments as in (iii)
(v) The proof is obtained as in (ii). 2

Lemma 2.2. Let v0 be a bounded l.s.c. function on R, and assume that (H1) holds. Then,
the unique viscosity solution of (4) is given by:

ϑ(t, x) = min
y∈[XM

x (−t),Xm
x (−t)]

v0(y), ∀t > 0, x ∈ R. (8)

Proof. Notice that equation (4a) can be rewritten as follows

ϑt(t, x) + max
α∈[0,1]

{

((1 − α)fm(x) + αfM (x)) · ϑx(t, x)
}

= 0, t > 0, x ∈ R. (9)

The unique viscosity solution of equation (9) satisfying the initial condition (4b) (see [2]) is
given by

ϑ(t, x) = min
α∈L∞(R+,[0,1])

v0(X
α
x (−t)) = min

y∈[XM
x (−t),Xm

x (−t)]
v0(y),

where Xα
x is the solution of Xα

x (0) = x and Ẋα
x (t) = (1− α(t))fm(Xα

x (t)) + α(t)fM (Xα
x (t))

for t ≥ 0 with α ∈ L∞(R+, [0, 1]). 2

We also consider the function ϑS which is defined in an analogous way as in (8), but with
the approximated characteristics XM,S

x , Xm,S
x instead of XM

x and Xm
x :

ϑS(t, x) := min
y∈[XM,S

x (−t),Xm,S
x (−t)]

v0(y), ∀t > 0, x ∈ R. (10)

This approximate function will play an important role throughout the paper.
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8 O. Bokanowski, N. Megdich & H. Zidani

Proposition 2.1. Under assumption (H1), we have1:

‖ϑ(t, .) − ϑS(t, .)‖L1(R) ≤ LteLt TV (v0) ∆x. (11)

Proof. By using Lemma B.1 (taking a1
x = XM

x (−t), b1
x = Xm

x (−t), and a2
x = XM,S

x (−t),
b2
x = Xm,S

x (−t)) (whose inverse functions are XM
x (t), Xm

x (t), and XM,S
x (t), Xm,S

x (t) respec-
tively) together with Lemma 2.1 (i), we obtain the L1-norm estimate. 2

Using Lemma B.3, we also obtain

Proposition 2.2. Under assumption (H1),

TV (ϑS(t, .)) ≤ TV (v0), ∀t ≥ 0.

For E ⊂ R a given set, we shall use in all the sequel the notation 1E for the function defined
by:

1E(x) :=

{

1 if x ∈ E,
0 otherwise.

2.2 The HJB-UltraBee scheme

Let ∆t > 0 be a constant time step, and tn := n∆t for n ≥ 0. We set the following notation
for local ”CFL” numbers:

νm
j :=

∆t

∆x
fm(xj) and νM

j :=
∆t

∆x
fM (xj),

and νm = {νm
j , j ∈ Z}, νM = {νM

j , j ∈ Z}. An adaptation of the UltraBee scheme
has been proposed and numerically tested for the HJB equation [7, 5, 6]. Let us recall this
formulation. We first introduce the notation for the average values of initial data:

V 0
j :=

1

∆x

∫ x
j+ 1

2

x
j− 1

2

v0(x)dx, j ∈ Z. (12)

As we deal with an explicit scheme, we will assume in all the paper that the mesh size
satisfies the CFL condition:

max
x∈R

max(|fm(x)|, |fM (x)|)
∆t

∆x
≤ 1. (13)

1Throughout this paper, we will use the following definition for the variation of a real-valued function w.

Definition 2.2. Let w be a real-valued function. the total variation of w is defined by:

TV (w) := sup

8

<

:

X

j=1,...,k

|w(yj+1) − w(yj)|; k ∈ N
∗, and (yj)1≤j≤k+1 increasing sequence

9

=

;

.

INRIA



Convergence of a non monotone scheme for HJB equations 9

Algorithm 1 :

Initialization: We compute the initial averages V 0 = (V 0
j )j∈Z as defined in (12).

Loop: For n ≥ 0, We compute V n+1 = (V n+1
j )j∈Z by:

� Define “fluxes” V n
j+ 1

2

(ν) for ν ∈ {νm, νM} as follows:

If νj ≥ 0 for every j ∈ Z, define:

V n
j+1/2(ν) :=







min(max(V n
j+1, b

+
j (ν)), B+

j (ν)) if νj > 0

V n
j+1 if νj = 0 and V n

j 6= V n
j−1

V n
j if νj = 0 and V n

j = V n
j−1,

where
{

b+
j (ν) := max(V n

j , V n
j−1) + 1

νj
(V n

j − max(V n
j , V n

j−1)),

B+
j (ν) := min(V n

j , V n
j−1) + 1

νj
(V n

j − min(V n
j , V n

j−1)),
(14)

If νj ≤ 0 for every j ∈ Z, define:

V n
j−1/2(ν) :=







min(max(V n
j−1, b

−
j (ν)), B−

j (ν)) if νj < 0

V n
j−1 if νj = 0 and V n

j 6= V n
j+1

V n
j if νj = 0 and V n

j = V n
j+1,

where
{

b−j (ν) := max(V n
j , V n

j+1) + 1
|νj |

(V n
j − max(V n

j , V n
j+1)),

B−
j (ν) := min(V n

j , V n
j+1) + 1

|νj |
(V n

j − min(V n
j , V n

j+1)).
(15)

� For ν ∈ {νm, νM}, let

V n+1
j (ν) := V n

j − νj

(

V n
j+ 1

2

(ν) − V n
j− 1

2

(ν)
)

.

� Finally, set V n+1
j := min

(

V n+1
j (νm), V n+1

j (νM )
)

for every j ∈ Z.

In all the sequel, we shall use the notation:

SUB(V n) :=

(

min
(

V n+1
j (νm), V n+1

j (νM )
)

)

j∈Z

.

Under assumption (H2), we notice that the resulting scheme is well defined. We associate
to the scheme values (V n

j )j , the l.s.c. step function V (tn, .) defined for every tn ≥ 0, x ∈ R

by

V (tn, x) :=

{

V n
j if x ∈]xj− 1

2
, xj+ 1

2
[,

min(V n
j , V n

j+1) if x = xj+ 1
2
.

(16)
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10 O. Bokanowski, N. Megdich & H. Zidani

2.3 A first case where fronts do not meet

We consider here the case of an initial data of the form

v0(x) := 1]−∞,b[(x) + 1]a,+∞[(x), (17)

where a, b ∈ R∪{±∞} and a > b. Our aim in this section is to study in this simple case the
relationship between the viscosity solution at time tn, ϑ(tn, .) and the values V n computed
by the HJB-UB algorithm. We show, under the CFL condition, an L1-error estimate in ∆x
stated in the following theorem:

Theorem 2.1. We assume that (H1)− (H3) and the CFL condition (13) are satisfied. Let
v0 be defined by (17), ∆x be such that a ≥ b + 3∆x, and ϑ be the viscosity solution of (4).
Then

‖V (tn, .) − ϑ(tn, .)‖L1(R) ≤ (1 + LtneLtn)TV (v0) ∆x, ∀n ≥ 0. (18)

Before dealing with the proof of Theorem 2.1, it will be useful to have the analytic
expression of the viscosity solution ϑ (known in this case, since v0 has a simple form):

Remark 2.2. Assume assumption (H1) is satisfied, a > b, and v0 as in (17). Then using
Lemma 2.2 and by a direct calculation we obtain that the l.s.c. viscosity solution of (4) is
given by :

ϑ(t, x) := 1]−∞,Xm
b

(t)[(x) + 1]XM
a (t),+∞[(x). ∀t ≥ 0, x ∈ R.

Also, the function ϑS defined by (10) satisfies:

ϑS(t, x) = 1]−∞,Xm,S
b

(t)[(x) + 1]XM,S
a (t),+∞[(x), ∀t ≥ 0, x ∈ R.

In the following we denote by ϑ
S,n

the cell averages of ϑS(tn, ·), defined by

ϑ
S,n

j :=
1

∆x

∫

Ij

ϑS(tn, x) dx for j ∈ Z, n ∈ N. (19)

Lemma 2.3. Assume that (H1)− (H3) hold, v0 is defined by (17), and a ≥ b+3∆x. Then
the values V n

j computed by algorithm 1 satisfy:

V n
j = ϑ

S,n

j , ∀n ≥ 0, ∀j ∈ Z.

Proof. Case 1. We consider the case of v0(x) := 1]a,∞[(x), and proceed by recursion on
n ≥ 0 (the case v0(x) = 1]−∞,b[(x) may be treated in a similar way).
Let j ∈ Z be such that the discontinuity position xn := XM,S

a (tn) lies in ]xj− 1
2
, xj+ 1

2
].

INRIA



Convergence of a non monotone scheme for HJB equations 11

Then we have V n
k = 0 for k < j, V n

j ∈ [0, 1[, and V n
k = 1 for k > j. By straightforward

calculations, if νM ≥ 0, we can verify that

ϑ
S,n+1

j−1 = V n+1
j−1 = 0,

ϑ
S,n+1

j = V n+1
j = max(0, V n

j − νM
j ),

ϑ
S,n+1

j+1 = V n+1
j+1 =

{

1 −
νM

j+1

νM
j

max(0, νM
j − V n

j ) if νM
j > 0

1 if νM
j = 0

and, if νM ≤ 0,

ϑ
S,n+1

j−1 = V n+1
j−1 =

{

|νM
j−1|

|νM
j |

(

max(1, V n
j + |νM

j |) − 1
)

if νM
j < 0,

0 if νM
j = 0

ϑ
S,n+1

j = V n+1
j = min(1, V n

j + |νM
j |),

ϑ
S,n+1

j+1 = V n+1
j+1 = 1,

and in all cases, ϑ
S,n+1

k = V n+1
k = 0, ∀k ≤ j − 2, and ϑ

S,n+1

k = V n+1
k = 1, ∀k ≥ j + 2.

This means that the HJB-UltraBee scheme computes exactly V n+1(νM ) from V n for the
advection with velocity fS

M . In the same way we obtain that V n+1(νm) computes exactly
the average values from V n for the advection with velocity fS

m. Hence we have, for every
k ∈ Z,

V n+1
k (νM ) =

1

∆x

∫

Ik

1]XM,S
xn (∆t),∞[(x)dx, (20)

V n+1
k (νm) =

1

∆x

∫

Ik

1]Xm,S
xn (∆t),∞[(x)dx. (21)

Since Xm,S
xn

(∆t) ≤ XM,S
xn

(∆t) we deduce that V n+1
k (νM ) ≤ V n+1

k (νm), and, for all k ∈ Z,

V n+1
k = V n+1

k (νM ).

This concludes the proof of ϑ
S,n+1

= V n+1.
Case 2. Consider the case of v0(x) := 1]−∞,b[(x) + 1]a,∞[(x). As a − b ≥ 3∆x, by

Lemma 2.1 (iii), we get XM,S
a (t) ≥ 3∆x + Xm,S

b (t) for t ≥ 0. This means that there are

at least two successive cells with value V n
j = V n

j+1 = 0 separating Xm,S
b (tn) and XM,S

a (tn).
Then as in Case 1 we obtain for k ≥ j + 1 that (20) and (21) are also valid, and thus

for k ≥ j + 1, V n+1
k = V n+1

k (νM ) = ϑ
S,n+1

k

(i.e, an exact evolution following the discontinuity position XM,S
a (tn+1)). Also, in the same

way as in Case 1, we obtain

for k ≤ j, V n+1
k = V n+1

k (νm) = ϑ
S,n+1

k

RR n
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12 O. Bokanowski, N. Megdich & H. Zidani

(i.e, an exact evolution following the discontinuity position Xm,S
b (tn+1)). This concludes to

V n+1
k = ϑ

S,n+1

k for all k ∈ Z. 2

Proof of Theorem 2.1: Since V n
j = ϑ

S,n

j , for all j ∈ Z and n ≥ 0, we obtain:

‖ϑS(tn, .) − V (tn, .)‖L1(R) ≤ ∆x TV (ϑS(tn, .)) = 2∆x = TV (v0) ∆x. (22)

Inequalities (22) and (11) lead to the desired result (18). 2

Remark 2.3. Lemma 2.3 shows the behaviour of the HJB-UltraBee scheme: when the two
discontinuities are far from each other, the algorithm is able to recover, from the average
values, their exact positions XM,S

a (t) and Xm,S
b (t). Then the scheme makes these disconti-

nuities evolve with the piece-wise constant velocities fS
M and fS

m. This is due to the fact that,
as long as the discontinuities are separated by more than 3∆x from each other, the extrema
of ϑS can be identified by the scheme.

This interpretation of the scheme extends some results of [11] (for the advection case) to
HJB equations. We will see in the next section that this exact computation of the averages
of ϑS is no more possible when two discontinuities lie in two successive cells, or in the same
cell.

3 Case of piece-wise constant initial data

In this section we assume that there exists an increasing sequence of real values (yi)i=0,··· ,p+1

with y0 = −∞, yp+1 = +∞, and (γi)i=0,··· ,p such that

v0(x) =







∑

i=0,...,p

γi1]yi,yi+1[(x) for x ∈ R\{y1, . . . , yp},

min(γi−1, γi) for x = yj and for i = 1, . . . , p.

(23)

With this definition, v0 is a l.s.c. piece-wise constant function. We also assume that the
mesh size ∆x satisfies:

∆x ≤
1

3
min

1≤i≤p−1
(yi+1 − yi). (24)

We have derived in the previous section an error estimate when the discontinuities keep
far enough from each other (more precisely, when they are separated by at least two entire
cell intervals). In general, two discontinuities may become very close. Two critical cases
may happen, see Figure 1.

In these cases, one time step of the UltraBee scheme given in algorithm 1 may not com-
pute the average values exactly. In fact, it would do a false interpretation of the maximum
value and of the discontinuity localization. The idea is to anticipate this critical situation.
Hence when two discontinuities are too close, a truncation is done such that just one discon-
tinuity remains in its right location (see Fig. 2). Here we modify the HJB-UltraBee scheme
around maxima when one of the two critical cases of Fig. 1 occur.

INRIA



Convergence of a non monotone scheme for HJB equations 13

case 1 case 2

Figure 1: Critical cases of truncation

Algorithm 2

Initialization: We compute the averages (V 0
j )j∈Z by (12)

Loop: For n ≥ 0:
A) Compute W := SUB(V n) (HJB-UltraBee step).
B) (Truncation step)

� For all indexes j such that







Wj > max(Wj−1, Wj+1), and Wj = V n
j

or
Wj > Wj−1, Wj+1 > Wj+2, and Wj < V n

j







and V n
j − Wj−2 < V n

j − Wj+2,

set

V n+1
j−1 := Wj−2, V n+1

j := Wj−2,

and V n+1
j+1 := Wj+2 +

Wj−2 − Wj+2

V n
j − Wj+2

(Wj+1 − Wj+2),

� For all indexes j such that







Wj > max(Wj−1, Wj+1), and Wj = V n
j

or
Wj−1 > Wj−2, Wj > Wj+1, and Wj < V n

j







and V n
j − Wj−2 ≥ V n

j − Wj+2,

set

V n+1
j+1 := Wj+2, V n+1

j := Wj+2,

and V n+1
j−1 := Wj−2 +

Wj+2 − Wj−2

V n
j − Wj−2

(Wj−1 − Wj−2).

� Otherwise set V n+1
j := Wj .
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14 O. Bokanowski, N. Megdich & H. Zidani

xj

xj xj+1

xj+1

(a) Initial data ϑS(0, .)

(b) Evolution by the scheme

ϑ](t1, .), with averages V 1

Exact evolution at time t1, ϑS(t1, .)

Exact evolution at time t1, ϑ
S(t1, .)

Figure 2: Truncation step for critical case 2

Hereafter the truncation step will be denoted by

V n+1 := TV n(W ).

Remark 3.1. The truncation step modifies values only near local strict maxima of (V n
j )j∈Z.

The test V n
j − Wj−2 < V n

j − Wj+2 (resp. V n
j − Wj−2 ≥ V n

j − Wj+2) allows to check
if the left jump is strictly smaller (resp. equal or greater) than the right jump near a local
maxima, see Figure 2. In this case, the truncation corresponds to a recomputation of the
average values such that the right (resp. left) discontinuity position is correctly coded. Hence
the truncation allows to get rid of the left discontinuity and to keep the right one in its correct
location. This truncation step aims to improve the treatment by the UltraBee scheme and to
prevent the presence of two discontinuities in the same cell or in adjacent2 cells.

The main result of the section is the following.

2We mean by adjacent here the neighboring cells from the left and from the right

INRIA



Convergence of a non monotone scheme for HJB equations 15

Theorem 3.1. Assume that (H1) − (H3) are satisfied. Let v0 be a piece-wise constant
function as in (23). We assume that the mesh size satisfies (13) and (24). Let ϑ be the
viscosity solution of (4), and let V be defined by (16) and algorithm 2. We have

‖V (tn, .) − ϑ(tn, .)‖L1(R) ≤ (Ltn + 4)eLtn TV (v0) ∆x, ∀n ≥ 0.

Notice that the total variation of v0 given by (23) is TV (v0) :=
∑

i=1,...,p−1

|γi+1 − γi|.

Remark 3.2. We shall also see in the proof, for instance in the case of the eikonal equation,

that ϑ
S,n

j = V n
j as long as the discontinuities are far enough one from each other.

3.1 A first simple case when two fronts may meet

Let a, b be in R, with b ≥ a + 3∆x. Consider the following initial data:

v0(x) = 1]a,b[(x), a.e. x ∈ R. (25)

Remark 3.3. Thanks to (8), under assumption (H1), the unique l.s.c. viscosity solution of
(4) is given by (for t ≥ 0, x ∈ R):

ϑ(t, x) :=

{

1]XM
a (t),Xm

b
(t)[(x), if XM

a (t) < Xm
b (t),

0 otherwise.
(26)

Also, by definition of ϑS (see (10)), for t ≥ 0 and x ∈ R we get

ϑS(t, x) :=

{

1]XM,S
a (t),Xm,S

b
(t)[(x), if XM,S

a (t) < Xm,S
b (t),

0 otherwise
(27)

(the approximated characteristics XM,S
a and Xm,S

b are defined as in (7)).

As in (19) we denote by ϑ
S,n

the average cell values of ϑS(tn, ·).

Lemma 3.1. Assume that (H1) − (H3) are satisfied. Let v0 be as in (25), and the mesh

size satisfy (13) and ∆x ≤
b − a

3
. For every n ≥ 0, we have

‖V (tn, .) − ϑS(tn, .)‖L1(R) ≤ 4∆x eLtn . (28)

Proof. For n ∈ N, let jn and `n be two integers such that XM,S
a (tn) ∈]xjn− 1

2
, xjn+ 1

2
] and

Xm,S
b (tn) ∈]x`n− 1

2
, x`n+ 1

2
].

Two cases may occur:

(i) `n ≥ jn + 3 ∀n ≥ 0.
(ii) There exists a first index n ≥ 1 such that `n < jn + 3.
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16 O. Bokanowski, N. Megdich & H. Zidani

Assume (i). By the results of section 2.3 we know that the scheme computes the exact
averages of ϑS as long as the fronts are separated by at least two cells, that is, in the case
for all k ≤ n, `k ≥ jk + 3. In particular, no truncation step has occured in this case. We

then have V n
j = ϑ

S,n

j and can conclude as in (22) to

‖ϑS(tn, .) − V (tn, .)‖L1(R) ≤ ∆x TV (ϑS(tn, .)) = 2∆x = TV (v0) ∆x. (29)

Assume now (ii). For k < n, the estimate (29) holds (no truncation done yet). For k ≥ n,
a truncation has occured at step n and thus V k = 0. For k ≥ n, we then have (using

Lemma 2.1(ii)) ||V (tk , .) − ϑS(tk, .)||L1 = ||ϑS(tk, .)||L1 = max
(

0, Xm,S
b (tk) − XM,S

a (tk)
)

≤

eL(tk−tn)(Xm,S
b (tn) − XM,S

a (tn) + ∆x) ≤ eLtk4∆x. This gives the desired bound. 2

Proof of theorem 3.1 in the case v0 is given by (25): It is now a simple consequence
of (28) and of Proposition 2.1.

3.2 Proof of Theorem 3.1 in the general case

We notice that since v0 is a step function, ϑS(t, .) is also a step function. We need to define
a truncation ϑ] of ϑS that will be connected to the scheme values.

For a given piece-wise constant l.s.c. function w (of the form (23)), we define the trun-
cation function Trunc(w) as follows. For x ∈ R, set

zx
1 := sup{z, z ≤ x, w(z) 6= w(x)} ∈ [−∞, ∞[,

zx
2 := inf{z, z ≥ x, w(z) 6= w(x)} ∈ ] −∞, ∞]

(i.e. the closest left and right discontinuities of w to x). Let j1 be such that zx
1 ∈

]xj1−
1
2
, xj1+ 1

2
] and j2 be such that zx

2 ∈ [xj2−
1
2
, xj2+ 1

2
[. Then set (see Fig. 2(b)):

Trunc(w)(x) :=











max(w(zx
1 ), w(zx

2 )) if j2 ∈ {j1 + 1, j1 + 2}
and w(x) > max(w(zx

1 ), w(zx
2 )),

w(x) otherwise.

We now define the function ϑ] by:

� ϑ](0, .) := v0, and

� ∀n ≥ 0, ϑ](tn+1, .) = Trunc(wn+1) where

wn+1(x) := min
y∈[XM,S

x (−∆t),Xm,S
x (−∆t)]

ϑ](tn, y). (30)

In the next result we derive an L1-error bound for ϑ] − ϑS . We also prove that the cell
averages of ϑ] are exactly the values given by algorithm 2.

INRIA



Convergence of a non monotone scheme for HJB equations 17

Lemma 3.2. Assume (H1)-(H3).
(i) ∀n ≥ 0, ‖ϑS(tn, .) − ϑ](tn, .)‖L1(R) ≤ (4eLtn − 1)TV (v0) ∆x.
(ii) ∀j ∈ Z, ∀n ≥ 0, we have

1

∆x

∫

Ij

ϑ](tn, x) dx = V n
j .

Proof. (i) First we notice that for t ≥ 0, ϑ](t, .) is a piece-wise constant l.s.c function (this
can be proved, as for ϑS , by using a recursion argument).

At a given time tn, let (]αi, βi[)i=1,...,p be the local maxima intervals of ϑS(tn, .) (i.e.
ϑS(tn, x) ≡ const = µi on ]αi, βi[ and µi > max(ϑS(tn, αi), ϑ

S(tn, βi))).
Then we obtain

(a) ϑ](tn, .) and ϑS(tn, .) can only differ on the intervals ∪i=1,...,p]αi, βi[,
(b) ∀i, if ϑ](tn, .) and ϑS(tn, .) differ on ]αi, βi[, then ∀x ∈]αi, βi[, ϑ](tn, x) =
max(ϑS(tn, αi), ϑ

S(tn, βi)).

Indeed, by Lemma 2.1(iii), the length of the minima regions of ϑS can only increase, so they
will not deasappear and create new local extrema; Also by (H3) the fronts of an increasing
region of ϑS cannot get closer, as well as the fronts of a decreasing region of ϑS .

Now if ϑS(tn, .) and ϑ](tn, .) differ on some interval ]αi, βi[, we have for x ∈]αi, βi[:

‖ϑS(tn, .) − ϑ](tn, .)‖L1([αi,βi]) =

(

ϑS(tn, x) − max(ϑS(tn, αi), ϑ
S(tn, βi))

)

|βi − αi|

≤ TV (ϑS(tn, .); ]αi, βi]) |βi − αi|.

Also we know that a truncation has occured at some time tk < tn. At time tk, the dis-
continuity positions corresponding to αi and βi are located in α0

i := XM,S
αi

(−(tn − tk)) and

β0
i := Xm,S

βi
(−(tn − tk)) respectively. Since the truncation has occured, α0

i and β0
i are sep-

arated by less than two cell intervals, and |β0
i − α0

i | ≤ 3∆x. By Lemma 2.1(ii), we thus
have

|βi − αi| ≤ eL(tn−tk)(|β0
i − α0

i | + ∆x) − ∆x

≤ (4eLtn − 1)∆x.

Summing these bounds for all local maxima intervals [αi, βi] we obtain ‖ϑS(tn, .)−ϑ](tn, .)‖L1(R) ≤
(4eLtn − 1)∆xTV (ϑS(tn, .)). Then we conclude the proof of (i) using Proposition. 2.2.

(ii) Now, we prove recursively that for all n ≥ 0:

(Pn) V n
j =

1

∆x

∫

Ij

ϑ](tn, x)dx, ∀j ∈ Z

and

(Qn)

{

Any two successive discontinuity positions in ϑ](tn, .)
are separated by at least two cell intervals
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18 O. Bokanowski, N. Megdich & H. Zidani

((Qn) amounts to have ϑ](tn, .) =
∑

i µn
i 1]yi,yi+1[ a.e. , with yi ∈]xji

1−
1
2
, xji

1+ 1
2
], yi+1 ∈

[xji
2−

1
2
, xji

2+ 1
2
[ and ji

2 ≥ ji
1 + 3.)

For n = 0, ϑ](0, .) = v0 = ϑ(0, .) and (P0) follows, also (Q0) is true by the definition of
v0 and of the mesh step ∆x.

Now let us suppose (Pn) and (Qn). Let W := SUB(V n), and define wn+1 as in (30).
Since V n codes the average values of ϑ](tn, .) where the discontinuity positions are separated
by at least two cells, the Ultra-Bee scheme computes the correct averages for one time-step
evolution, and we will have

Wj =
1

∆x

∫

Ij

wn+1(x)dx

(this uses the same arguments as in the proof of Lemma 2.3).
As long as the discontinuity positions in wn+1 are separated by at least two entire cells,

ϑ](tn+1, .) = Trunc(wn+1) = wn+1, and we have (Qn+1). Also V n+1
j values in step B) of

algorithm 2 are unchanged. Hence V n+1
j = Wj which proves (Pn+1).

Because of assumption (H3), the only case the discontinuity positions of wn+1 may be
separated by less than two entire cells is around the local maxima. (Recall that by (H3),
discontinuity positions in a monotonous part of ϑ](tn, .) can only get far from each other.
This is also true for discontinuity positions around a local minimum, by Lemma 2.1(iii)).

Now let us assume that ϑ](tn+1, x) := Trunc(wn+1)(x) 6= wn+1(x) for some x ∈ R. This
means that x is surrounded by two discontinuities of wn+1, denoted zx

1 and zx
2 , which are

separated by one cell (critical case 1), or which lie in two successive cells (critical case 2),
see Fig. 1. Let us consider for instance that we have a critical case 2 (critical case 1 being
similar). We may also assume that V n

j − Wj−2 < V n
j − Wj+2 as illustrated in Fig. 2.

In this case we see that the average values in cells Ij−1 and Ij can be set to Wj−2 (hence
the redefinition V n+1

j−1 = V n+1
j := Wj−2 in algorithm 2). Then the remaining discontinuity

position x̄ ∈ Ij+1 can be computed by two different ways: first, by

x̄ − xj+ 1
2

∆x
=

Wj+1 − Wj+2

V n
j − Wj+2

,

and second, if V n+1
j+1 codes the correct average value on Ij+1 after truncation,

x̄ − xj+ 1
2

∆x
=

V n+1
j+1 − Wj+2

Wj−2 − Wj+2

(recall that the scheme values should code the average of an exact piece-wise function). Thus
we obtain the desired definition of V n+1

j in terms of the (Wk) as in algorithm 2 B), which
proves (Pn+1).

On the other hand, after the truncation step, there are no more critical cases in ϑ](tn+1, .)
and thus we have (Qn+1). 2
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Convergence of a non monotone scheme for HJB equations 19

Proof of theorem 3.1 in the general piece-wise constant case: Combining Proposi-
tion 2.1 and Lemma 3.2(i) we obtain

‖ϑ(tn, .) − ϑ](tn, .)‖L1(R) ≤ ‖ϑ(tn, .) − ϑS(tn, .)‖L1(R) + ‖ϑS(tn, .) − ϑ](tn, .)‖L1(R)

≤ (Ltn + 4)eLtn − 1)TV (v0) ∆x. (31)

Then, using Lemma 3.2(ii), we obtain

‖ϑ](tn, .) − V (tn, .)‖L1(R) ≤ TV (ϑ](tn, .))∆x. (32)

By construction of ϑ] (and using Lemma B.3), we also have TV (ϑ](t, .)) ≤ TV (ϑS(t, .)) ≤
TV (v0). Together with (31), (32) we obtain the desired bound of Theorem 3.1. 2

4 Case of a general discontinuous initial data

In this section we generalize Theorem 3.1 (where we supposed that v0 was a piece-wise
constant function) to more general discontinuous initial data v0.

We assume that v0 : R → R is a l.s.c. function, with TV (v0) < ∞, and that v0 has a
finite number of extrema. More precisely we consider the following assumption :

(H4)















There exist A1, . . . , Aq+1 and B1, . . . , Bq real numbers with
A1 = −∞ ≤ B1 < A2 < · · · < Bq ≤ Aq+1 = +∞,

(with possibly B1 = −∞ or Bq = +∞), such that v0 ↗ on each [Ai, Bi[,
v0 ↘ on each ]Bi, Ai+1], and v0(Bi) = min(v0(B

−
i ), v0(B

+
i )).

In particular Ai are local minima of v0, and Bi are local maxima of v0.
We also consider ∆x small enough such that the minima and maxima of v0 are separated

at least by 3∆x:

∆x <
1

3
min

i=1,...,q
min (Bi − Ai, Ai+1 − Bi) . (33)

Let a regular grid with mesh size ∆x, and let ∆t > 0.
We denote by vP

0 the l.s.c. function associated to v0 as follows. We set Uj :=]x3j− 1
2
, x3j+ 5

2
[,

for all j ∈ Z,

• If Uj ∩ {(Ak)k=2,...,q , (Bk)k=1,...,q} = ∅, set

vP
0 (x) :=

1

3∆x

∫

Uj

v0(y)dy, ∀x ∈ Uj . (34a)

• otherwise if Ak ∈ Uj (resp. Bk ∈ Uj) set

vP
0 (x) := v0(Ak)(resp. v0(Bk)) ∀x ∈ Uj . (34b)

• Extend vP
0 by lower semi-continuity :

vP
0 (x3j− 1

2
) = min

(

vP
0 (x+

3j− 1
2

), vP
0 (x−

3j− 1
2

)
)

. (34c)

RR n
�

0123456789



20 O. Bokanowski, N. Megdich & H. Zidani

Then the scheme values are initialized as usual but starting from vP
0 , i.e.

V 0
j :=

1

∆x

∫

[x
j− 1

2
,x

j+ 1
2
]

vP
0 (y)dy = vP

0 (xj) (35)

This initialization ensures that the initial step function vP
0 will satisfy (23)-(24), and that

the coded discontinuities are separated by at least 3∆x. The aim of step (34) is also to keep
the correct (local) extremal value of v0. This is motivated by the fact that the exact minima
and maxima values should propagate. It allows to obtain better long-time approximations.

The general convergence result is the following.

Theorem 4.1. We assume (H1)-(H3), and consider a l.s.c. function v0 satisfying (H4),
and such and TV (v0) < ∞. We also assume that mesh steps ∆x and ∆t satisfy the CFL
condition (13) and (33). Let ϑ be the unique viscosity solution of (4a)-(4b). We consider
(V 0

j ) defined by (34)-(35) and (V n)n≥1 given by algorithm 2. Let V be defined by (16). Then

‖V (tn, .) − ϑ(tn, .)‖L1(R) ≤ (Ltn + 7)eLtn TV (v0) ∆x, ∀n ≥ 0.

Remark 4.1. We can treat a discontinuous initial data of the form v0 := 1R\{0}. In this
case we have vP

0 = 1
R\[−∆x

2
,5∆x

2
].

We shall need preliminary estimates

Lemma 4.1. We have

‖v0 − vP
0 ‖L1(R) ≤ 3∆x TV (v0).

Proof. The result is immediate by the definition of vP
0 . 2

Now let ϑP be the l.s.c. viscosity solution of (4a) with initial data vP
0 , i.e.,

ϑP (0, x) := vP
0 (x), ∀x ∈ R.

The following estimate is essential in the analysis (the proof is postponed to the end of
the section).

Proposition 4.1. We assume (H1). Let u0 and v0 be two l.s.c. functions, such that
v0 − u0 ∈ L1(R). We suppose furthermore that
(i) u0 satisfies assumption (H4) (with (Ai)i=2,...,q local minima);
(ii) for all interval I ⊂ R,

{

u0 ↗ on I ⇒ v0 ↗ on I,
u0 ↘ on I ⇒ v0 ↘ on I ;

(36)

(iii) for any local minima Ai of u0 (i = 2, . . . , q), u0(Ai) = v0(Ai).
Let u and v be defined by

u(t, x) := min
y∈[XM

x (−t),Xm
x (−t)]

u0(y), and v(t, x) := min
y∈[XM

x (−t),Xm
x (−t)]

v0(y).
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We have

‖v(t, .) − u(t, .)‖L1(R) ≤ eLt ‖v0 − u0‖L1(R) ∀t ≥ 0. (37)

Proof of Theorem 4.1. By construction of vP
0 , and under assumption (H4), the function

vP
0 is increasing on intervals where v0 is increasing, and decreasing on intervals where v0 is

decreasing, and the local minima of vP
0 are the same as the ones of v0. Hence we can apply

Proposition 4.1 to compare ϑ and ϑP and obtain together with Lemma 4.1:

‖ϑ(t, ·) − ϑP (t, ·)‖L1(R) ≤ eLt(3∆xTV (v0)), ∀t ≥ 0. (38)

Now by Theorem 3.1 we also have

‖V (tn, .) − ϑP (tn, .)‖L1(R) ≤ (Ltn + 4)eLtnTV (vP
0 )∆x, ∀n ≥ 0.

Furthermore, it is easy to see that TV (vP
0 ) ≤ TV (v0). Together with (38) this concludes

the proof of Theorem 4.1. 2

We now conclude the section with the proof of Proposition 4.1.

Proof of Proposition 4.1: Step 1. We first study the case when u0 is a monotonous

increasing function. In this case v0 is also increasing. u(t, x) = u0(X
M
x (−t)) and v(t, x) =

v0(X
M
x (−t)). Hence, using the change of variable y = XM

x (t), we get

‖u(t, .) − v(t, .)‖L1(R) =

∫

R

|u(t, y) − v(t, y)|dy

=

∫

R

|u(t, XM
x (t)) − v(t, XM

x (t))||
dy

dx
(t)|dx.

Here, as fM is Lipschitz then, by the Rademacher theorem, it is almost everywhere differen-
tiable and we get: dy

dx(t) = exp
( ∫ t

0
f ′

M (XM
x (s))ds

)

. In particular, | dy
dx(t)| ≤ eLt for all t ≥ 0,

and we obtain the bound

‖u(t, .) − v(t, .)‖L1(R) ≤ eLt‖u0 − v0‖L1(R).

The proof is similar when u0 is a decreasing function.
Step 2. Now we study the case when u0 has essentially only one local maximum located
in B1. More precisely, we suppose that u0 ↗ on (−∞, B1) and u0 ↘ on (B1,∞). The
representation Lemma C.2 allows to write u0 as:

u0 = min(u01, u02), with u01 ↗ and u02 ↘

where u01 and u02 are defined as in Lemma C.2. Then the viscosity solution is given by:

u(t, x) = min
(

u01(X
M
x (−t)), u02(X

m
x (−t))

)

, t ≥ 0, x ∈ R.
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22 O. Bokanowski, N. Megdich & H. Zidani

By assumption (ii), v0 also satisfies v0 ↗ on (−∞, B1) and v0 ↘ on (B1,∞). We can also
write v0 = min(v01, v02) where v01 and v02 are also defined as in Lemma C.2, and we have

v(t, x) = min
(

v01(X
M
x (−t)), v02(X

m
x (−t))

)

t ≥ 0, x ∈ R. (39)

Next, we define b as a meeting point for the following two curves at a given time t:

x → v01(X
M
x (−t)) and x → v02(X

m
x (−t)).

Then

‖u(t, .) − v(t, .)‖L1(R) =

∫ b

−∞

|u(t, x) − v(t, x)|dx +

∫ +∞

b

|u(t, x) − v(t, x)|dx.

We notice that for x ≤ b, u(t, x) = u01(X
M
x (−t)) and v(t, x) = v01(X

M
x (−t)). We thus get

∫ b

−∞

|u(t, x) − v(t, x)| dx =

∫ b

−∞

|u01(X
M
x (−t)) − v01(X

M
x (−t))| dx

=

∫ XM
b (−t)

−∞

|u01(x) − v01(x)| exp

(
∫ t

0

f ′
M (XM

x (s))ds

)

dx

≤ eLT ‖u01 − v01‖L1(−∞,XM
b

(−t)), (40)

In the same way:
∫

(b,+∞)

|u(t, x) − v(t, x)| dx ≤ eLT ||u02 − v02||L1(Xm
b

(−t),+∞) (41)

Since fM ≥ fm, then XM
b (−t) ≤ Xm

b (−t). Hence combining (40) and (41) we obtain (37).
Notice that for Step 1 and Step 2 there is no need of assumption (iii).

Step 3. We turn now to the proof in the general case (u0 as in (H4)). Using assumptions
(23)-(24) we can decompose u0 into monotonous parts: there exist an integer q ≥ 1 and real
numbers A1, . . . , Aq+1, B1, . . . , Bq as in (H4) (with possibly B1 = −∞ or Bq = +∞), and
such that u0 ↗ on each [Ai, Bi[ and ↘ on each ]Bi, Ai+1].

We first consider the time interval [0, τ1[ such that the number of local maxima q of u
keeps constant.3 We note that around a local minima Ai, the solutions u and v will stay
constant in the following sense: if we set I t

i := [Xm
Ai

(t), XM
Ai

(t)] for t ∈ [0, τ1], we have

u(t, x) = u0(Ai) and v(t, x) = u0(Ai), ∀x ∈ It
i .

Hence, in order to bound ||u(t, .) − v(t, .)||L1(R), we have to estimate the difference on the
remaining intervals J t

i := [XM
Ai

(t), Xm
Ai+1

(t)]:

‖u(t, .) − v(t, .)‖L1(R) =

q
∑

i=1

‖u(t, .) − v(t, .)‖L1(Jt
i ),

3 For instance we consider τ1 > 0 to be the first time such that mini=1,...,q Xm
ai+1

(t) − XM
bi

(t) vanishes,

with ai := inf{x, u0(y) = u0(Ai) ∀x ≤ y ≤ Ai} and bi := sup{x, u0(y) = u0(Ai) ∀Ai ≤ y ≤ x}.
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(the J t
i are disjoint as long as t < τ1). Notice that ϑ(t, .) and ϑP (t, .) admit only one

maximum on J t
i . Then as in Step 2 we can show that:

‖u(t, .) − v(t, .)‖L1(Jt
i ) ≤ eLt ‖u0 − v0‖L1(J0

i ) = eLt ‖u0 − v0‖L1([Ai,Ai+1]).

Summing the previous bounds we obtain for t ∈ [0, τ1]:

‖u(t, .) − v(t, .)‖L1(R) ≤ eLt

q
∑

i=1

‖u0 − v0‖L1([Ai,Ai+1])

≤ eLt ‖u0 − v0‖L1(R). (42)

Now we consider the case when the number of maxima q may lower, and proceed recur-
sively on q. We obtain on a time interval [τ1, τ2[, where the number of maxima is constant
and equal to q − 1, the similar bound:

‖u(t, .) − v(t, .)‖L1(R) ≤ eL(t−τ1) ‖u(τ1, .) − v(τ1, .)‖L1(R), t ∈ [τ1, τ2[.

Then with (42) we obtain for all t ≤ τ2 the desired bound, and so on. This concludes the
proof of Proposition 4.1. 2

5 Case of changing sign velocities

We explain in this section how to get a general error estimate using mainly assumption (H1).
Instead of assumptions (H2) and (H3) we shall use less restrictive assumptions that will be
detailled in Theorem 5.1 below. Let v0 : R → R be a l.s.c. function such that TV (v0) < ∞.
We consider a regular grid (xj) as in Section 2, and define fS

M and fS
m as in Section 2.1.

The following algorithm introduces two modifications to algorithm 2: left and right fluxes
(denoted by V n,L and V n,R), for computing the UltraBee estimates, and a prediction step.
We will explain later on the relevance of these modifications.

Algorithm 3

Initialization: We compute the initial averages (V 0
j ) as in (34)-(35).

Loop: For n ≥ 0, we compute V n+1 from V n in three steps:

A) Evolution by a modified HJB-UltraBee scheme:

� Define “fluxes” V n,L

j+ 1
2

(ν), V n,R

j+ 1
2

(ν) for ν ∈ {νm, νM} as follows:

If νj ≥ 0, set

V n,L

j+ 1
2

(ν) :=







min(max(V n
j+1, b

+
j (ν)), B+

j (ν)) if νj > 0

V n
j+1 if νj = 0 and V n

j 6= V n
j−1

V n
j if νj = 0 and V n

j = V n
j−1,
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24 O. Bokanowski, N. Megdich & H. Zidani

If νj ≤ 0, set

V n,R
j−1/2(ν) :=







min(max(V n
j−1, b

−
j (ν)), B−

j (ν)) if νj < 0

V n
j−1 if νj = 0 and V n

j 6= V n
j+1

V n
j if νj = 0 and V n

j = V n
j+1,

(where b+
j , b−j , B+

j and B−
j are defined by (14)-(15)).

If νj ≥ 0 and νj+1 > 0, set V n,R

j+ 1
2

(ν) := V n,L

j+ 1
2

(ν).

If νj+1 ≤ 0 and νj < 0, set V n,L

j+ 1
2

(ν) := V n,R

j+ 1
2

(ν).

If νj < 0 and νj+1 > 0, then set

V n,R

j+ 1
2

(ν) :=

{

V n
j+1 if V n

j+1 = V n
j+2

V n
j otherwise

and V n,L

j+ 1
2

(ν) :=

{

V n
j if V n

j = V n
j−1

V n
j+1 otherwise.

(43)

� For ν ∈ {νm, νM}, let V n+1
j (ν) := V n

j − νj

(

V n,L

j+ 1
2

(ν) − V n,R

j− 1
2

(ν)
)

.

� Set V n+1,1 := min

(

V n+1(νm), V n+1(νM )

)

.

B) Truncation: Set V n+1,2 := TV n(V n+1,1) as in algorithm 2.

C) Prediction: Set W := V n+1,2.
� (decreasing critical cases)

Let J− :=







j ∈ Z,
[

Wj−1 > Wj > Wj+1 > Wj+2 and V n
j < Wj

]

or
[

Wj−2 > Wj−1 > Wj > Wj+1 > Wj+2 and V n
j = Wj

]







and J−,∗ := J−\ {j ∈ J−, s.t. j + 2 ∈ J−}.

For j ∈ J−,∗, set

V n+1
j−1 := Wj−2, V n+1

j := Wj−2, and

V n+1
j+1 := Wj+2 +

Wj+1 − Wj+2

V n
j − Wj+2

(Wj−2 − Wj+2).
(44)

� (increasing critical cases)

Let J+ :=







j ∈ Z,
[

Wj+1 > Wj > Wj−1 > Wj−2 and V n
j < Wj

]

or
[

Wj+2 > Wj+1 > Wj > Wj−1 > Wj−2 and V n
j = Wj

]







and J+,∗ := J+\{j ∈ J+, s.t. j − 2 ∈ J+}.

For j ∈ J+,∗, set

V n+1
j+1 := Wj+2, V n+1

j := Wj+2,

and V n+1
j−1 := Wj−2 +

Wj−1 − Wj−2

V n
j − Wj−2

(Wj+2 − Wj−2).
(45)
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� otherwise set V n+1
j = Wj (i.e. for j such that {j − 1, j, j + 1} ∩ (J−,∗ ∪ J+,∗) = ∅).

Then we have the following general error estimate:

Theorem 5.1. We suppose (H1). Let v0 be an l.s.c. function satisfying (H4) and such that
TV (v0) < ∞ (in particular v0 has a finite number of extrema).
Let ∆x > 0 and ∆t > 0 satisfy the CFL condition (13) and (33). Let V n

j be defined by
algorithm 3, V as in (16), and ϑ be the viscosity solution of (4).
(i) If v0 is piece-wise constant as in (23), with p discontinuities, and if

(H5a) ∃ε > 0, ∀x ∈ R, fm(x) + ε ≤ fM (x) and ∆x <
ε

2L
,

or

(H5b) ∀x ∈ R, fm(x) ≤ 0, fM (x) ≥ 0,

then

‖V (tn, ·) − ϑ(tn, ·)‖L1(R) ≤ (Ltn + 4p)eLtnTV (v0)∆x, ∀n ≥ 0. (46)

(ii) If

(H5c) fm = fM and is an increasing function,

then

‖V (tn, ·) − ϑ(tn, ·)‖L1(R) ≤ (1 + LtneLtn)TV (v0)∆x, ∀n ≥ 0. (47)

Remark 5.1. Assumption (H5b) is satisfied by the eikonal equation ϑt+c(x)|ϑx| = 0, where
c is a L-lipschitz positive function.

Remark 5.2. As in [7], when fM (resp. fm) changes sign, it is important to use two fluxes

V n,L

j+ 1
2

and V n,R

j+ 1
2

, which may be different on the cell’s interface containig the zero of fM (resp.

fm). The choice made for these fluxes insure the stability, consistency and TVD4 properties,
see [7, Remark 2.1].

Remark 5.3. When assumptions (H1)− (H3) hold, the discontinuities around a minimum
could only get far from each other. However, if we assume only (H1), the discontinuities
may become closer. A truncation in this feature would produce an error which is not always
controlled by the mesh size ∆x. Hence we assume one of the (H5) assumptions in order to
avoid this truncation. Indeed, with (H5) two discontinuities around a local minimum cannot
become closer than 2∆x (see Lemma 5.3).

4Total variation diminishing
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Remark 5.4. When removing assumption (H3), two successive discontinuities in a mono-
tone zone of v0 can become very close. This motivates the prediction step: if the disconti-
nuities are too close, we keep only one of them as shown in Figure 3. The algorithm then
codes correctly the exact localization of the remaining discontinuity. This prediction step is
handled only in the two critical cases explicited in figure 4, i.e. when the discontinuities are
separated by less than two entire cells.

, 

Evolution of fronts ϑS(tn+1, .)

ϑS(tn+1, .)

Initial front positions

Prediction ϑ](tn+1, .)

Figure 3: Prediction step

5.1 Preliminaries

We first prove in the following Lemma that the scheme computes the exact average values
of ϑS in some elementary cases, where truncation and prediction steps are not used.

Lemma 5.1. We assume (H1) and (13). Let a, b, α, β be real numbers, with β ≥ 0.
Let v0(x) := α + β1]a,+∞[(x) (resp. v0(x) := α + β1]−∞,b[(x)).
(i) We have ϑS(t, x) := α + β1]XM,S

a (t),+∞[(x) (resp. ϑS(t, x) := α + β1]−∞,Xm,S
b

(t)[(x)),
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case 1 case 2

Figure 4: Critical cases of prediction

(ii) ∀n ≥ 0, ∀j ∈ Z :

V n
j =

1

∆x

∫

Ij

ϑS(tn, x)dx (48)

Proof. Part (i) is obtained by direct verifications using (10). For (ii), we shall treat the
case of v0(x) = 1]a,+∞[(x) (the other cases beeing similar). We proceed as in Lemma 2.3.
We prove the statement by recursion. Let us denote by xn := XM,S(tn) the discontinuity
position at time tn. Note that it suffices to prove that

V n+1
j (νM ) =

1

∆x

∫

Ij

1]XM,S
xn (∆t),+∞[(x)dx ∀j ∈ Z. (49)

Indeed we have in the same way:

V n+1
j (νm) =

1

∆x

∫

Ij

1]Xm,S
xn (∆t),+∞[(x)dx ∀j ∈ Z.

And this will prove that V n+1
j = V n+1

j (νM ) as desired. In the case when for all j ∈ Z,

νM
j ≥ 0, (or if for all j ∈ Z, νM

j ≤ 0), the result comes from Lemma 2.3. It remains to treat

the case when (νM
j ) changes signs. We denote ν := νM for simplicity.

Assume that xn ∈]xj− 1
2
, xj+ 1

2
] (i.e., V n

k = 0 for k < j, V n
j ∈ [0, 1[, and V n

k = 1 for

k > j). We furthermore assume that xn 6= xj+ 1
2

(the case of xn = xj+ 1
2

can be treated in

a similar way). In particular we have V n
j−1 = V n

j−2 and Vj+1 = Vj+2. Let us show that the

values (V n+1
k (ν))k=j−1,j,j+1 are correctly computed by the modified UltraBee scheme. We

first state the following Lemma:

Lemma 5.2. (i) V
n,L/R

j+ 1
2

∈ [min(V n
j , V n

j+1), max(V n
j , V n

j+1)] (Consistency).

(ii) (Stability) V n
j = V n

j−1 and νj ≥ 0 ⇒ V n+1
j = V n

j .

(iii) (Stability) V n
j = V n

j+1 and νj ≤ 0 ⇒ V n+1
j = V n

j .

Proof of Lemma 5.2 Assertion (i) can be obtained as in [7].
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(ii) If νj = 0, is immediate. If νj > 0, we notice that V n,L

j+ 1
2

= V n
j because b+

j = B+
j = V n

j .

On the other hand, if νj−1 > 0, then V n,R

j+ 1
2

= V n,L

j− 1
2

= V n
j (using V n

j−1 = V n
j and the

consistency property). If otherwise νj−1 ≤ 0, then V n,R

j+ 1
2

∈ {V n
j , V n

j−1 (see definition), hence

V n,R

j+ 1
2

= V n
j .

(iii) the proof of this assertion is similar to (ii). 2

We come back to the proof of Lemma 5.1.
In the case νj = 0, we have V n+1

j (ν) = V n
j , which is the correct value (the characteristics

does not evolve in Ij). If νj+1 > 0, we already know from Section 2 that V n+1
j+1 (ν) is correctly

computed (we are in a subcase of νj ≥ 0, νj+1 ≥ 0). The case when νj+1 < 0 is similar. We
can use the same arguments to see that V n+1

j−1 (ν) is also correctly computed.
Now we assume that νj > 0 (the case when νj < 0 can be treated in a similar way), and

study the different remaining cases.
1) Case νj−1 > 0. We can also suppose that νj+1 ≤ 0 (otherwise, (νk)k=j−1,j,j+1 ≥ 0

and this has already been treated).
We first have V n+1

j−1 = V n
j−1 (using Lemma 5.2(i)), the correct expected value.

Also V n+1
j = V n

j −νj(V
n,L

j+ 1
2

−V n,R

j− 1
2

), where V n,L

j+ 1
2

is computed as in Algorithm 1 (Section

2) for positive velocities, and where V n,R

j− 1
2

= V n,L

j− 1
2

= V n
j−1. Hence the computation of V n+1

j

is as in the case of positive velocities, and gives the correct expected value.
Finaly, V n+1

j+1 = V n
j+1 using Lemma (iii).

2) Case νj−1 < 0. First, V n+1
j−1 = V n

j−1 − νj−1(V
n,L

j− 1
2

− V n,R

j− 3
2

), where V n,L

j− 1
2

= V n
j−1 (by

definition in Algorithm 3), V n,R

j− 3
2

∈ [V n
j−1; V

n
j−2] = {V n

j−1} (by consistency), hence V n+1
j−1 =

V n
j−1. Then, V n+1

j = V n
j − νj(V

n,L

j+ 1
2

− V n,R

j− 1
2

) where V n,L

j+ 1
2

has the flux definition with νj > 0,

and V n,R

j− 1
2

takes the value V n
j−1 (since V n

j 6= V n
j+1 using the fact that xn 6= xj− 1

2
). Hence in

the interval Ij , the estimate of the fluxes are the same as in the case of positive velocities,
and are thus correct (exact evolution of the average values locating the discontinuity position
in Ij or Ij+1. Finaly, we have only to check the value of V n+1

j+1 in the case νj+1 < 0. In

this case, V n,R

j+ 1
2

= V n
j+1 (by Lemma 5.2(ii)), and V n,L

j+ 3
2

= V n
j+1 (by Lemma 5.2(i)), hence

V n+1
j+1 = V n

j+1.

3) Case νj−1 = 0. We first obtain V n+1
j−1 = V n

j−1. Then V n+1
j and V n+1

j+1 are computed as

in the case νj−1 < 0 (proof is left to the reader). This concludes the proof of Lemma 5.1 2

Remark 5.5. Indeed we have proved a more precise result: if at some time tn we have that
ϑS(tn, .) is a step-wise constant fonction with all successive discontinuities separated by at
least two entire intervals, and if (48) holds for j ∈ Z, then also we have

V n+1
j =

1

∆x

∫

Ij

ϑS(tn+1, x)dx ∀j ∈ Z.
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Remark 5.6. Several estimates of Section 2 can be extended here. In particuar, under
assumption (H1) only, the estimates of Lemma 2.1(i),(ii) and (v) also hold (in particular
for changing sign velocities). Proof is left to the reader.

Lemma 5.3. We assume (H1) and one of the (H5) assumptions. Let a, b ∈ R be such that

b − a ≥ 2∆x. Then for all t ≥ 0, XM,S
b (t) − Xm,S

a (t) ≥ 2∆x.

Proof. If we assume (H5b) or (H5c) it is easy to see that d
dt(X

M,S
b (t) − Xm,S

a (t)) ≥ 0,
for a.e. t ≥ 0, hence the result. Now assume (H5a). Suppose there exists θ ≥ 0 such that

XM,S
b (θ)−Xm,S

a (θ) < 2∆x. By continuity there exists τ ≥ 0 such that XM,S
b (τ)−Xm,S

a (τ) =
2∆x and

XM,S
b (t) − Xm,S

a (t) < 2∆x, for t in a neighborhood V(τ+) of τ+.

Case 1. We first suppose that Xm,S
a (τ) ∈ Ij−1 for some j ∈ Z (i.e., Xm,S

a (τ) belongs

to the interior of a mesh interval) and thus also XM,S
b (τ) ∈ Ij+1. In particular δ : t →

XM,S
b (t) − Xm,S

a (t) is differentiable at t = τ and necessarily we have δ̇(τ) ≤ 0. Hence
fm(xj−1) ≥ fM (xj+1). Then

fM (xj−1) − 2L∆x ≤ fM (xj+1) ≤ fm(xj−1) ≤ fM (xj−1) − ε,

and we get 2L∆x ≥ ε which contradicts (H5a). Thus this case cannot occur.

Case 2. Now we suppose that Xm,S
a (τ) = xj− 1

2
for some j ∈ Z (and thus XM,S

b (τ) =

xj+1+ 1
2
). If the two characteristics Xm,S

a (θ) and XM,S
b (θ) move such that Xm,S

a (θ) ∈ Ij and

XM,S
b (θ) ∈ Ij+1 for θ ∈ V(τ+), then using (H5a) we get

fM (xj+1) ≤ fm(xj) ≤ fM (xj) − ε.

Since we also have fM (xj+1) ≥ fM (xj) − L∆x, we obtain

fM (xj) − L∆x ≤ fM (xj) − ε ≤ fM (xj) − 2L∆x

which leads to 2L ≤ L, a contradiction. Otherwise, if the two characteristics move in the
same direction, we obtain a contradiction in the same way as in Case 1. 2

5.2 Proof of Theorem 5.1

We first define a prediction operator as follows. Let w be a real piece-wise constant and l.s.c.
function. For x ∈ R, set

zx
1 := sup{z, z ≤ x, w(z) 6= w(x)} ∈ [−∞, ∞[,

zx
2 := inf{z, z ≥ x, w(z) 6= w(x)} ∈ ] −∞, ∞]

i.e. the closest left and right discontinuities of w to a given x. Let j and k be such that

zx
1 ∈]xj− 1

2
, xj+ 1

2
] and zx

2 ∈ [xk− 1
2
, xk+ 1

2
[.
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Let us denote w(x−) := limy→x, y<x w(y) and w(x+) := limy→x, y>x w(y). Then set

Pred(w)(x) :=



























w((zx
1 )−) if w((zx

1 )−) > w(x) > w((zx
2 )+), k ∈ {j + 1, j + 2},

and z
zx
2

2 /∈]xk+2− 1
2
, xk+2+ 1

2
[

w((zx
2 )+) if w((zx

1 )−) < w(x) < w((zx
2 )+), k ∈ {j + 1, j + 2},

and z
zx
1

1 /∈]xj−2− 1
2
, xj−2+ 1

2
[

w(x) otherwise.

(50)

Remark 5.7. The above definition means that we set Pred(w)(x) = w((zx
1 )−) in the case

x belongs to a decreasing zone of w (for instance), surrounded by two discontinuities of w

that are separated at most by one cell, but also such that the next right discontinuity z
zx
2

2 is
at least separated by two cells from the right discontinuity zx

2 (see Fig. 3).

Then we define ϑ](tn, .) for all n ≥ 0 by :

� ϑ](0, .) := vP
0 ,

� ∀n ≥ 0, ϑ](tn+1, .) = Pred(Trunc(wn+1)) where wn+1 is as in (30).

We also define ϑS as in (10) but starting from vP
0 , i.e.:

ϑS(t, x) := min
y∈[XM,S

x (−t),Xm,S
x (−t)]

vP
0 (y), ∀t > 0, x ∈ R. (51)

Now, we focus on the proof of Theorem 5.1 (i) (in particular we have vP
0 ≡ v0 here).

We follow the proofs of Theorem 3.1 and 4.1. For a given piece-wise constant initial data v0

(with discontinuities separated by at least 3∆x), it remains to prove that the following still
holds - in a similar way as in Lemma 3.2.

Lemma 5.4. Under the assumptions of Theorem 5.1(i), we have
(i)

∀n ≥ 0, ‖ϑS(tn, .) − ϑ](tn, .)‖L1(R) ≤ p(4eLtn − 1)TV (v0) ∆x (52)

(ii)

∀j ∈ Z, ∀n ≥ 0, V n
j =

1

∆x

∫

Ij

ϑ](tn, x) dx. (53)

Proof of Theorem 5.1. The proof of (i) follows by using (52) and previous estimates :

‖V (tn, .) − ϑ(tn, .)‖L1(R)

≤ ‖V (tn, .) − ϑ](tn, .)‖L1(R) + ‖ϑ](tn, .) − ϑS(tn, .)‖L1(R) + ‖ϑS(tn, .) − ϑ(tn, .)‖L1(R)

≤ TV (v0)∆x + p(4eLtn − 1)TV (v0)∆x + LtneLtnTV (v0)∆x

≤ (Ltn + 4p)eLtn TV (v0)∆x.
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Now to prove (ii), notice that under assumption (H5c), equation (4a) is reduced to an
advection equation. In particular, as fM is increasing then the discontinuities never meet:
we do not need any truncation or prediction step in the scheme. The proof of Theorem 5.1(ii)
is similar to the proof of Theorem 2.1.

2

In order to prove Lemma 5.4, we first establish the following.

Lemma 5.5. Assume that v0 satisfies assumption (H4) (with (Ai)i=2,...,q local minima).
(i) for all interval I ⊂ R,

{

ϑS ↗ on I ⇒ ϑ] ↗ on I,
ϑS ↘ on I ⇒ ϑ] ↘ on I,

(ii) If XM,S
Ai

(tn) is a local minima of ϑS(tn, .) (i = 2, . . . , q), then it is also a local minima of

ϑ](tn, .), and we have ϑ](tn, y) = ϑS(tn, y) (= ϑS(tn, XM,S
Ai

(tn))) for all y ∈ [Xm,S
Ai

(tn), XM,S
Ai

(tn)].

Proof. By Lemma 5.3, two discontinuities positions ai and bi limiting a given minimum Ai

in v0, initially separated by at least 3∆x, stay at more than 3∆x in ϑS(tn, .) and thus stay
separated at least by two cell intervals. In particular they cannot meet with our assumption.

Also since the operators Pred and Trunc do not modify the monotonicity and keep the
minima values, we obtain that ϑ](tn, .) will keep the monotonicity regions of ϑS(tn, .) (as
well as the minima regions of ϑS(tn, .)). This proves both (i) and (ii). 2

Remark 5.8. Note that a minima zone of ϑS(tn, .) can disappear. This happens only in the
case the neighboring left or right maxima zones disappear. By the previous Lemma ϑ](tn, .)
will have a similar property.

Proof of Lemma 5.4(i). Let Ji := [XM,S
Ai

(tn), Xm,S
Ai+1

(tn)]. To show (52), by using

Lemma 5.5(ii), it is sufficient to obtain the following bound

‖ϑS(tn, .) − ϑ](tn, .)‖L1(Ji) ≤ p(4eLtn − 1)TV (v0, [Ai, Ai+1]) ∆x (54)

(the result will then follow by summation on i). It means that we need to show (52) in the
particular case when v0 ↗ on [A1, B1] and v0 ↘ on [B1, A2]. We can assume A1 = −∞ and
A2 = ∞ to simplify.

Let ϑ],0(tn, .) := ϑS(tn, .). We define recursively the function ϑ],k for k ≥ 0 as follows.
Let tnk

be the first time where a prediction should be performed in the function ϑ],k−1(tnk
, .)

(i.e., two successive discontinuities in a decreasing or in an increasing region of ϑ],k−1(tnk
, .)

are separated by less than two entire cell intervals). Then set

ϑ],k(t, .) := ϑ],k−1(t, .) for t < tnk
,

ϑ],k(tnk
, .) := Pred(ϑ],k−1(t−nk

, .)),

ϑ],k(t, x) := min
y∈[XM,S

x (t−tnk
),Xm,S

x (t−tnk
)]

ϑ],k(tnk
, y) for t ≥ tnk

and x ∈ R.
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This means that ϑ],1(tn, .) is the function where only the first occuring prediction in ϑ],0 =
ϑS is taken into account, ϑ],2(tn, .) is the function where only the first prediction in ϑ],1 is
taken into account, etc.

We obtain for k = 1, . . . , p,

‖ϑ],k(tn, .) − ϑ],k−1(tn, .)‖L1 ≤ (4eLtn − 1)TV (v0) ∆x (55)

Indeed, if tn < tnk
, ||ϑ],k(tn, .) − ϑ],k−1(tn, .)||L1 = 0, and if tn ≥ tnk

, we obtain the bound
(55) by using similar arguments as in the proof of Lemma 3.2(i).

Also we note that ϑ],p(tn, .) ≡ ϑ](tn, .), because there are at most p prediction steps
that can be done in ϑ](tn, .). Summing these bounds for k = 1, . . . , p and by a triangular
inequality this proves (54). 2

Proof of Lemma 5.4(ii). The proof is obtained by a recursion argument on n ≥ 0.
Lemma 5.1 shows that an isolated discontinuity of ϑS(tn, .), as long as it keeps separated

from other discontinuity positions by at least two cell intervals, has its evolution correctly
coded by algorithm 3 for one time step. Also Lemma 5.3 implies that two discontinuities
positions ai and bi limiting a given minimum Ai in v0 (and evolving as Xm,S

ai
(t) and XM,S

bi
(t))

stay at more than 3∆x, and thus are separated at least by two cell intervals. Hence the
problem of having discontinuity positions in ϑS no more separated by two cell intervals can
only come from maxima regions or monotonous regions of ϑS .

Then as in Lemma 3.2(ii) we can show that the cell averages of Trunc(wn+1) are well
coded by the scheme values V n+1,2

j after Step A) and Step B).
Finally it remains to prove that the prediction step C) corresponds to the application

of prediction operator Pred on the function Trunc(wn+1). The proof is very similar to the
proof of Lemma 3.2(ii) for the truncation step (i.e. a discontinuity position vanishes and
the remaining discontinuity leads to a recomputation of average values). 2

6 Numerical tests

In this section, we apply algorithm 2 and 3 to some examples. These tests show the numerical
relevance of the method especially for the truncation step. The L1-error is computed by the
formula:

error ≡
∑

j

∆x

∣

∣

∣

∣

V n
j −

1

∆x

∫

Ij

ϑ(tn, x)dx

∣

∣

∣

∣

,

where (V n
j ) are the numerical values and ϑ is the exact viscosity solution (4).

Example 1: piece-wise constant initial data. We consider the following Eikonal equa-
tion:

ϑt(t, x) + |ϑx(t, x)| = 0, t ≥ 0, (56)
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for x ∈ (−2, 2) and with periodic boundary conditions. Notice that we can take fM = 1
and fm = −1. The CFL condition is ∆t

∆x ≤ 1 (here we have choosen the CFL number to be
∆t
∆x = 0.9). The initial condition is defined as follows:

ϑ(0, x) =































2 if x ∈] − 1.6,−1[,
1.7 if x ∈ [−1, 0.1[,
0.2 if x ∈ [0.1, 0.6],
1.2 if x ∈]0.6, 1.2[,
0.7 if x ∈ [1.2, 1.6[,
0 otherwise.

In Figure 5, we show the exact solution (black line) and the numerical values of algorithm
2 (cross) at different times.

We follow the evolution of two local maxima until they disappear, in particular in the
last two time steps: just before they disappear (c) and then just after (d). Notice that the
scheme computes exactly the mean value of the solution far from critical situations. In fact
the dynamics fm and fM are constant here, and the approximated characteristics XM,S

x and
Xm,S

x coincide with XM
x and Xm

x respectively. This leads to an exact computation of the
average values of ϑ ≡ ϑS by the scheme (except when discontinuities are too close)

Example 2: piece-wise continuous initial data.
The initial condition is given by

ϑ(0, x) =

{

−x2 + 1.5 if x ∈ [−1, 1],
0 otherwise.

The results are shown in Figure 6.

Example 3: two local maxima.
Here we consider a piece-wise continuous initial data with two local maxima :

ϑ(0, x) =

{

x2 + 0.7 if x ∈ [−1, 1],
0 otherwise.

The results are shown in Figure 7.

Remark 6.1. In pratice, numerical tests show that when the initialization of the algorithm
is done with a projection with mesh size ∆x (instead of 3∆x), the error gets smaller (up to
10 times smaller).

Example 4: We consider the eikonal equation (56) on (−1, 1) but now with an initial
condition composed of two discontinuities, as follows:

ϑ(0, x) =

{

1 if x ∈] − 0.7, 0.9[,
0 otherwise.
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(a) error=0, t = 0 (b) error=0, t = 0.20
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(c) error=0.06, t = 0.26 (d) error=0, t = 0.3

Figure 5: (Example 1) Piece-wise constant function, #cells=70.
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(a) error=0.076, t = 0 (b) error=0.047, t = 0.55
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(c) error=0.020, t = 0.85 (d) error=0.055, t = 0.95

Figure 6: (Example 2) Evolution of a piece wise continuous function with one maximum, #
cells=72, initialization of the algorithm using vP

0 .
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(a) error=0, t = 0 (b) error=0.12, t = 0.25 (c) error=0.09, t = 0.45

Figure 7: (Example 3) Piece wise continuous function with two maxima, # cells=70.

∆x error Truncation Time # cells

0.1 0.16 0.72 20
0.05 0.07 0.76 40
0.025 0.025 0.79 80
0.0125 0.0025 0.8 160

Table 1: (Example 4) Evolution of the error with the mesh size ∆x, CFL = 0.9

We see in Table 1 that the error is bounded by 2∆x.

Example 5: Eikonal equation with varying velocity
In this example we deal with algorithm 3 in order to illustrate the prediction step. We
consider the following Eikonal equation:

ϑt(t, x) + |x| · |ϑx(t, x)| = 0, x ∈ (−1, 1),

with periodic boundary conditions. Here we take fM (x) = |x| and fm(x) = −|x|. The initial
condition is given by

ϑ(0, x) =























0.4 if x ∈] − 0.8,−0.5],
1 if x ∈ [−0.5, 0.6],
0.7 if x ∈ [0.6, 0.7[,
0.2 if x ∈ [0.7, 0.8[,
0 otherwise.

Since fm and fM are not constant, ϑ and ϑS will differ. Results are shown in Figure 8.
In Fig.8(a), two critical cases of prediction appear simultaneously in the decreasing zone.
The algorithm handles only a prediction for the right discontinuity (Fig.8(b)). In Fig.8(c),
a prediction step is again needed, and so on.
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(a) error=0.095, t = 0.045
(before prediction step)

(b) error=0.0487, t = 0.045
(after prediction step)
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(c) error=0.035, t = 0.4
(before prediction step)

(d) error=0.074, t = 0.4
(after prediction step)
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(e) error=0.12, t = 0.855 (f) error=0.027, t = 2.52

Figure 8: (Example 5) Prediction steps in Algorithm 3, # cells=40
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A Definition of the approximated characteristics

We prove existence and uniqueness of the absolutely continuous solution XM,S
a (t) of the

differential equation:

ẊM,S
a (t) = fS

M (XM,S
a (t)) a.e t ≥ 0, XM,S

a (0) = a, (57a)

if ∃t∗ ≥ 0 s.t.

{

XM,S
a (t∗) = xj+ 1

2
,

and fM (xj)f
M (xj+1) ≤ 0

then XM,S
a (t) = xj+ 1

2
∀t ≥ t∗.(57b)

We define recursively the caracteristic as follows. Assume that a ∈]xj0−
1
2
, xj0+ 1

2
] for some

index j0. We consider the case fM (xj0) ≥ 0 (the case fM (xj0 ) < 0 beeing similar). We
define τ0 := 0,

τ1 := τ0 +
xj0+ 1

2
− a

fM (xj0 )
, if fM (xj0 ) > 0,

and for k ≥ 1,

τk+1 := τk +
∆x

fM (xj0+k)
, if fM (xj0+k) > 0

(i.e., ∆x
fM (xj0+k) is the time needed for a caracteristic to cross the interval Ij0+k). Otherwise,

if there exists a first index k∗ such that fM (xj0+k∗) ≤ 0, then we define τk∗+1 := +∞ and
stop the iterations. Note that since fM is Lipschitz, we have either limk→∞ τk = +∞ (in
this case set k∗ = +∞), or there exists k∗ < +∞ such that τk∗+1 := +∞.

Now, t ∈ [τk, τk+1[ and k < k∗, we set

χ(t) := χ(τk) + (t − τk)fM (xj0+k)

(where χ(τ0) = a and χ(τk) = xj0+k− 1
2

for k ≥ 1), and if t ≥ τk∗ , we set

χ(t) = χ(τk∗).

Then χ(t) is a solution of (57).
In order to show the unicity of the solution of (57), we first notice that the first time

t∗ when two solutions may differ must be such that χ(t∗) be on an interface: ∃j ∈ Z,
χ(t∗) = xj+ 1

2
. In the case fM (xj)fM (xj+1) ≤ 0, by definition we have χ(t) = xj+ 1

2
for

all t ≥ t∗, and unicity. Otherwise, in the case fM (xj)fM (xj+1) > 0, we have necessarily
fM (xj) > 0 (we assume here that fM (xj0 ) > 0). Then the only solution for t > t∗ in a
neighborhood of t∗, is given by

χ(t) = χ(t∗) + (t − t∗)fM (xj+1).

This shows unicity.
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B TV bounds

Lemma B.1. Let v0 be an l.s.c. function such that TV (v0) < ∞. For j = 1, 2, let x → aj
x

and x → bj
x be non-decreasing, one-to-one functions from R onto R. We assume that

(i) x → aj
x and x → bj

x are non-decreasing, one-to-one functions from R onto R (for
j = 1, 2).
(ii) aj

x ≤ bj
x for j = 1, 2 and x ∈ R.

(iii) there exists δ ≥ 0, such that,

∀x ∈ R, max(|(a2)−1(x) − (a1)−1(x)|, |(b2)−1(x) − (b1)−1(x)|) ≤ δ.

(where (aj)−1 and (bj)−1 denotes the reciprocical functions of aj and bj resp.).
Let also

vj(x) := min
y∈[aj

x,bj
x]

v0(y).

Then

||v1 − v2||L1(R) ≤ 2δ TV (v0). (58)

Proof. We first assume that a2
x = a1

x, ∀x. Then we notice that:

|v2(x) − v1(x)| ≤ TV (v0; [b
1
x; b2

x]) (59)

where [α; β] denotes the interval [min(α, β), max(α, β)]. (To prove (59), assume for instance
the case b1

x ≤ b2
x. Consider z1 ∈ [a1

x, b1
x] such that v1(x) = v0(z1) and z2 ∈ [a1

x, b2
x] such

that v2(x) = v0(z2). If the minimum for v2 can be reached in [a1
x, b1

x] then v1(x) = v2(x).
Otherwise we have z2 ∈ [b1

x, b2
x] and v2(x) = v0(z2) < v0(z1) = v1(x). Hence

|v2(x) − v1(x)| = v0(z1) − v0(z2)

= v0(z1) − v0(b
1
x) + v0(b

1
x) − v0(z2)

≤ v0(b
1
x) − v0(z2) ≤ TV (v0; [b

1
x, b2

x]).

The case when b2
x ≤ b1

x is similar.)
Now we establish the following.

Lemma B.2. There exists a positive real measure µ such that µ(R) = TV (v0) and TV (v0; ]−
∞, β[) =

∫

y∈]−∞,β[
dµ(y), for a.e β ∈ R.

Proof. Let ṽ0 be defined by ṽ0(x) := limy→x,y<x v0(y) for every x ∈ R (i.e, ṽ0(x) = v0(x
−).

Then ṽ0 is left-continuous, and there exists a positive measure µ̃ such that TV (ṽ0, ]−∞, x[) =
µ̃(] − ∞, x[) for every x ∈ R. (This can be deduced for instance from [14]). We have also
µ̃({x}) = |v0(x

−) − v0(x
+)|, for every x ∈ R.
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Also, since TV (v0) < ∞, v0 admits at most a countable set of discontinuity points
denoted (an)n≥0. Let

qn := |v0(a
−
n ) − v0(an)| + |v0(an) − v0(a

+
n )| − |v0(a

−
n ) − v0(a

+
n )|

(qn ≥ 0) and

µ := µ̃ +
∑

n∈N

qnδx=an

where δx=an
is the dirac measure centered in an. Then for x /∈ {an, n ∈ N}, we have

µ(]−∞, x[) = µ̃(]−∞, x[) +
∑

an<x qn = TV (v0, ]−∞, x[). Passing to the limit x → ∞ we
obtain µ(R) = TV (v0). 2

We know come back to the proof of Lemma B.1 In particular we obtain from (59)

|v2(x) − v1(x)| ≤ µ([b1
x; b2

x[), a.e. x ∈ R.

Then we have, using the Fubini Theorem :

∫

R

|v2(x) − v1(x)|dx ≤

∫

x∈R

(
∫

y∈R

1y∈[b1x;b2x[dµ(y)

)

dx

=

∫

y∈R

(
∫

x∈R

1y∈[b1x;b2x[dx)

)

dµ(y)

=

∫

y∈R

|(b2)−1(y) − (b1)−1(y)|dµ(y)

≤

∫

y∈R

δ dµ(y) ≤ δ TV (v0).

Now in the general case when a2
x 6= a1

x, we have

|v2(x) − v1(x)| ≤ TV (v0; [a
1
x; a2

x]) + TV (v0; [b
1
x; b2

x]) (60)

(the proof is analogous to (59)). Then both parts of the R.H.S. of (60) can be handled as
before and we deduce (58). 2

Lemma B.3. Let v0 be an l.s.c. function with TV (v0) < ∞. We assume that for all x ∈ R,
ax ≤ bx, and x → ax, x → bx are non-decreasing functions, and consider

w(x) := min
y∈[ax,bx]

v0(y).

We have

TV (w) ≤ TV (v0).
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Proof. Let x0 < x1, · · · < xp be real numbers. We want to estimate

δ :=
∑

j=1,...,p

|w(xj) − w(xj−1)|

For all j, we define yj as the smallest real number of [axj
, bxj

] such that w(xj ) := min[axj
,bxj

] v0(y) =

v0(yj). Let us prove that (yj) is a non-decreasing sequence. It suffices to check that x0 ≤ x1

⇒ y0 ≤ y1.
a) In the case bx0

≤ ax1
, we obtain y0 ≤ y1 trivially.

b) Otherwise, if min[ax0
,bx0

] v0 = min[ax0
,ax1

] v0, then y0 ∈ [ax0
, ax1

] and thus y0 ≤ y1.
c) Otherwise, we have min[ax0

,bx0
] v0 = min[ax1

,bx0
] v0. If the minimum w(y1) = min[ax1

,bx1
] v0

is reached on [bx0
, bx1

], then y0 ≤ bx0
≤ y1. If w(y1) is reached on [ax1

, bx0
], then y0 = y1.

Hence we have proved that y0 ≤ y1 in all cases.
Then, by definition of TV (v0),

δ =
∑

j=1,...,p

|v0(yj) − v0(yj−1)| ≤ TV (v0).

Taking the supremum over all non-decreasing sequences (xj), we obtain the desired result.
2

Lemma B.4. Let v0 be a real valued function such that TV (v0) < ∞, then

TV (vP
0 ) ≤ TV (v0).

Proof. : The number of discontinuity points of v0 is of zero measure as TV (v0) < ∞. It is
clear that |v0(x + ∆x) − v0(x)| ≤ TV (v0; [x, x + ∆x[) for almost every x ∈ R. Then we can
write

TV (vP
0 ) =

∑

j∈Z

|V 0
j+1 − V 0

j |

≤
1

∆x

∑

j∈Z

∫

Ij

|v0(x + ∆x) − v0(x)| dx

≤
1

∆x

∑

j∈Z

∫

Ij

TV (v0, [x, x + ∆x[) dx

=
1

∆x

∑

j∈Z

∫

[− 1
2
, 1
2
[

TV (v0, [y∆x + xj , y∆x + xj+1[)∆xdy

=

∫

[− 1
2
, 1
2
[

TV (v0) dy = TV (v0)

(we recall that xj = j∆x here). To invert the sum and the integral, we have used that a.e
x ∈ R, v0 is continuous at the points (x + xj)j∈Z. 2
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C Representation Lemma

In this section we denote by ϑ∗ the upper semi continuous (u.s.c.) envelope of a real valued
function ϑ. We also denote

ϑ(B−) := lim
y→B, y<B

ϑ(y), ϑ(B+) := lim
y→B, y>B

ϑ(y).

We start with an elementary result related to the minimum of two viscosity solutions.

Lemma C.1. Let v0, v01 and v02 : R → R be l.s.c. functions. Let ϑ, ϑ1 and ϑ2 be the l.s.c
solutions of (4a) with initial data v0, v01 and v02 respectively. If v0 = min(v01, v02) then for
all t ≥ 0, x ∈ R, ϑ(t, x) = min(ϑ1(t, x), ϑ2(t, x)).

Proof. Let w = min(ϑ1, ϑ2). It is easy to check that the function w is l.s.c, and satisfies
the initial condition w(0, x) = v0(x) in the sense of Definition 2.1 ii). Let φ be C1-regular
and (t, x) ∈ R

+ ×R a minimum of w − φ with w(t, x) = ϑ1(t, x) (the case w(t, x) = ϑ2(t, x)
being similar). Then ϑ1 − φ has also a minimum at (t, x). Since ϑ1 is a viscosity solution,
we obtain that φ satisfies (4a). Hence w is a l.s.c. viscosity solution of (4a). By uniqueness
of ϑ, we obtain w = ϑ. 2

Notice that the same arguments would not work for the maximum of two viscosity
solutions instead of the minimum.

We now give a representation formula for a viscosity solution in a particular case.

Lemma C.2. Let v0 : R → R be a l.s.c function. We assume that there exists B1 such that
v0 ↗ for x < B1, and v0 ↘ for x > B1, and v0(B1) = min(v0(B

−
1 ), v0(B

+
1 )). We define the

functions:

v01(x) :=







v0(x) if x < B1,
v0(B

−
1 ) if x = B1,

v∗0(B1) if x > B1,
and v02(x) :=







v∗0(B1) if x < B1,
v0(B

+
1 ) if x = B1,

v0(x) if x > B1.

Let ϑ1 (respectively ϑ2) be the l.s.c. viscosity solution of (4a) with initial condition v01

(respectively v02). Then v0 = min(v01, v02) and

ϑ(t, x) := min(ϑ1(t, x), ϑ2(t, x)), t ≥ 0, x ∈ R

is the l.s.c. viscosity solution of (4a)-(4b). In particular, we have

ϑ(t, x) = min

(

v01(X
M
x (−t)), v02(X

m
x (−t))

)

.

Proof. : It is easy to check that v0 = min(v01, v02). Then we apply Lemma C.1 to obtain
ϑ = min(ϑ1, ϑ2). Let It

x := [XM
x (−t), Xm

x (−t)]. We also have ϑ1(t, x) = infy∈It
x
v01(y) =

v01(X
M
x (−t)) as v01 is an increasing function, and similarily ϑ2(t, x) = v02(X

m
x (−t)) as v02

is decreasing. 2
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