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Summary. A decentralized model structure for representing groups ofcoupled dynamic
agents is proposed, and the Least Squares method is used for fitting model parameters based on
observed position data. The physically motivated, difference equation model combines effects
from agent dynamics, interactions between agents, and interactions between each agent and
its environment. The technique is implemented to identify amodel for a group of three cows
using GPS tracking data. The model is shown to capture overall characteristics of the group as
well as attributes of individual group members. Applications to surveillance, prediction, and
control of various kinds of groups of dynamical agents are suggested.

1 Introduction

We wish to model groups of coupled dynamic agents, such as flocks, swarms, and
herds, using measured data from those agents. For example, we would like to be able
to use the trajectories of people in a crowd to develop dynamical models that capture
the behaviors of the crowd as a whole. This is a prohibitivelycomplicated problem
in general, however, we provide a practical solution by restricting our attention to a
special model structure. We propose a difference equation model that is decentral-
ized and nonlinear, though it is designed to be linear-in-parameters. We use the Least
Squares method to fit model parameters to position data from agroup of agents. Such
a model may then be used, for example, to predict future states of the group, to de-
termine individual roles of agents within the group (e.g. leaders vs. followers), or,
ultimately, to control the group. This could help ranchers to manage overgrazing by
livestock, or allow animal behavioral scientists to determine social roles within ani-
mal groups. In the case of people, the ability to model group behavior has numerous
applications in surveillance, urban planning, and crowd control. Also, this technique
can be used to design controllers for groups of engineered agents to mimic the be-
haviors of natural agents.

The large body of work on designing and analyzing models of flocks, swarms,
and similar decentralized dynamical systems ( [3,7] and references therein) does not
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incorporate learning from data to tune such models. However, other related learn-
ing problems have been investigated. For example, in [1] a system identification
technique is used to model global properties of a swarm of robots over time using
observed data from the robots. There also has been considerable activity in learning
behavioral models of individual natural agents. In [5] and [6], system identification
is carried out on switching linear systems to learn models ofthe honey bee waggle
dance and human hand motion, respectively, and in [2] a technique is used to find
Motion Description Language (MDL) codes from observed ants.

Our work introduces two specific innovations. The first is in applying system
identification to learn the parameters of a decentralized dynamical system from data.
The second is in the model structure itself, which uses a novel, non-gradient field
to express the interaction between each agent and its environment. We demonstrate
the technique by fitting a model to GPS data from a group of three free-ranging
cows. The model is validated by testing the whiteness of the residual error, and by
comparing global statistics of simulations verse the actual data. We also show how
the resulting model can be used to control simple robots. Recently, the technique has
been validated with data from ten cows, though we do not present those results here.

2 Model Description

We consider a linear-in-parameters model structure with three naturally distinct parts
to describe the motion of coupled physical agents moving over a plane surface.
Firstly, each agent is given internal dynamics to enforce the constrains of Newtons
laws. Secondly, a force3 is applied to each agent from its interaction with each of the
other agents in the group. Thirdly, a force is applied to eachagent as a function of
its position in the environment. All remaining effects are modeled as a white noise
process.

2.1 Individual Agent Dynamics

Supposing a group ofmagents, the proposed model structure for an individual agent
i ∈ {1, . . . ,m} can be written in state-space, difference equation form as
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Agent i’s statexτ
i = [eτ

i nτ
i uτ

i vτ
i ]

T consists of its East position, North position,
Eastern component of velocity, and Northern component of velocity after theτth
iteration, and its position is given by,pτ

i = [eτ
i nτ

i ]
T . The time step∆ t is given by

3 In this work the term “force” is used in a metaphoric sense. When we talk of a “force” we
are referring to the intention of the agent to accelerate in aparticular way using it’s own
motive mechanisms.
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tτ+1 − tτ , and we assume it is constant for allτ. The termai represents damping,
ai = 1 for zero damping, and|ai | < 1 for stable systems. The functionfi j (pτ

i , pτ
j )

determines the coupling force applied by agentj to agenti. The functiongi(pτ
i )

represents the force applied by the environment to the agentat point pτ
i . Finally,

wτ
i is a zero-mean, stationary, Gaussian white noise process uncorrelated withp j ∀ j

used to model the unpredictable decision-motive processesof agenti. Nonholonomic
constraints which are often present in mobile agents, such as people, cattle, or auto-
mobiles, are neglected in this treatment, though they couldbe incorporated with an
increase in the complexity of the model structure. Note thatthe force terms are only
applied to affect changes in velocity in accordance with Newton’s second law.

2.2 Agent-to-Agent Interaction Force

Dropping theτ superscripts for clarity, the form of the agent coupling force fi j (pi , p j)
is given by

fi j (pi , p j) =

(

θ1i j −
θ2i j

‖p j − pi‖

)

ni j , (2)

whereni j = (p j − pi)/‖p j − pi‖ is the unit vector along the line frompi to p j (hence-
forth,‖·‖ will denote thè 2 norm). This is the simplest of a family of force laws com-
monly used in computational models of physical, multi-bodysystems (e.g. kinetic
gas models). The important feature of this family is that an agent is repulsed from its
neighbor at close distances and attracted to its neighbor atfar distances. To see this
property clearly, examine the magnitude of (2) given by‖ fi j ‖= θ1i j −θ2i j /‖p j − pi‖,
and shown in the left of Figure 1.

Fig. 1. The magnitude of the agent-to-agent interaction force is shown on the left forθ1 =
θ2 = 1. On the right, the vector field representing the force felt by an agent at each point on
the plane is shown for an example agent trajectory. The swirling patterns evident in the field
are made possible by a novel parameterization.

After some manipulation, the sum offi j over all neighborsj can be expressed as

∑
j 6=i

fi j =

[

φ f ui

φ f vi

]

θ fi , (3)
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where

φ f ui =
[

(e1−ei )
‖p1−pi‖ · · · (em−ei)

‖pm−pi‖
−(e1−ei)

‖p1−pi‖2 · · · −(em−ei)

‖pm−pi‖2

]

φ f vi =
[

(n1−ni)
‖p1−pi‖ · · ·

(nm−ni)
‖pm−pi‖

−(n1−ni)
‖p1−pi‖2 · · · −(nm−ni)

‖pm−pi‖2

]

, and

θ fi =
[

θ1i1 · · · θ1im θ2i1 · · · θ2im

]T
,

permitting a slight abuse of notation since the indicesj = i are excluded from the
above vectors. This notation will be useful in what follows.

2.3 Environment-to-Agent Interaction Force

The agent’s preference for certain paths in the environmentis modeled as a nonlinear
mapping from each point on the plane to a force vector felt by the agent. To this end,
two networks of Gaussian basis functions are used, one for each of two perpendicular
force components.

In particular, the functiongi(pi) can be written

gi(pi) =

[

θui1 · · · θuin

θvi1 · · · θvin

]







φg1(pi)
...

φgn(pi)






, (4)

whereφgik (pi) = 1
σik

√
2π exp(− ‖pi−γik‖2

2σ2
ik

), andk ∈ {1, . . . ,n}. Each Gaussian is cen-

tered atγik, with standard deviationσik, and its strength is represented by the un-
known parametersθuik for the Eastern component, andθvik for the Northern compo-
nent. Gaussian basis functions were chosen for their familiarity; the objective being
to demonstrate the modeling approach with a minimum of complications. A number
of other basis functions types could be used, including wavelets, sigmoidal functions,
or splines.

It is important to note that a vector-field parameterized in this way isnot a po-
tential gradient. A potential gradient field cannot admit circulation around closed
paths.4 We introduce a non-gradient parameterization to enable circulation, as one
can imagine agents intending to traverse closed orbits on the plane. For example,
a cow may have a routine of passing between a water source, a shaded tree, and a
grassy patch in a periodic fashion.

Figure 1, on the right, shows a plot of an example force-field parameterized in
the above way. The arrows show the forces induced by the field,the black dots show
the centers of the Gaussian functions,γik, and the red curve shows the path of an
agent over the vector field. The swirling patterns evident inthe vector field would be
impossible if it were a gradient field.

4 proof: Let Ψ(p) be a potential function andV(p) = −grad(Ψ) its gradient field. Then
curl(V) = curl(−grad(Ψ )) = 0, thus by Green’s Theorem,

∮

sVds=
∫

As
curl(V)dA = 0,

wheres is any closed curve on the plane, andAs is the area enclosed bys.
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The expression in (4) can be put into a different form to matchthat of (3). In
particular

gi(pi) =

[

φgui

φgvi

]

θgi , (5)

where

φgui = [φg1 · · · φgn · · · 0 · · · ],
φgvi = [ · · · 0 · · · φg1 · · · φgn ], and

θgi = [θui1 · · · θuin θvi1 · · · θvin ]T .

Although somewhat awkward, this form will become useful in what follows.

3 System Identification with Least Squares Fitting

The model that was described in Section 2 can be manipulated into a form so that its
parameters can be fitted using the Least Squares method for system identification [4].
We assume that only position measurements,pτ

i , τ = 1, ...,N, are available to perform
the fitting. We can eliminateui andvi from the dynamics in (1) to provide a second
order equation in the position only. Notice that from (1) we can write

pτ+1
i = pτ

i + ∆ t

[

uτ
i

vτ
i

]

, (6)

and
[

uτ+1
i

vτ+1
i

]

= ai

[

uτ
i

vτ
i

]

+
m

∑
j=1, j 6=i

f τ
i j +gτ

i +wτ
i . (7)

We can solve (6) for[uτ
i vτ

i ]
T and substitute into the right hand side of (7). We

then substitute the result back into the right hand side of (6), shifting time indices
appropriately, to obtain the desired expression

pτ+2
i = pτ+1

i +(pτ+1
i − pτ

i )ai + ∆ t

(

m

∑
j=1, j 6=i

f τ
i j +gτ

i +wτ
i

)

.

We can use the above expression to formulate a one-step-ahead predictor. First, de-
fine the combined regressor vectorsφ τ

ui
= [ (eτ+1

i −eτ
i )/∆ t φ τ

f ui
φ τ

gui
], and

φ τ
vi

= [ (nτ+1
i −nτ

i )/∆ t φ τ
f vi

φ τ
gvi

], and a combined parameter vector

θi = [ai θ T
fi

θ T
gi ]

T . By taking the expectation conditioned on the positions, substi-
tuting (3) and (5) for∑ j 6=i fi j andgi , respectively, then making use of the combined
regressor and parameter vectors we get

p̂τ+2
i = pτ+1

i + ∆ t

[

φ τ
ui

φ τ
vi

]

θi , (8)
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wherep̂τ+2
i is the expected value ofpi afterτ + 2 time steps, given positions up to

τ +1, andwτ
i drops out in the conditional expectation.

The Least Squares method is now implemented to find the optimal model param-
eters. Specifically, we wish to find the parameters,θi , to minimize the mean squared
prediction error over all available time steps. The mean squared prediction error can
be writtenJi = 1/(N− 2)∑N−2

τ=1 (pτ+2
i − p̂τ+2

i )T(pτ+2
i − p̂τ+2

i ). Substituting intoJi

with (8) and (6) yields

Ji =
∆ t2

N−2
(Yi −Φiθi)

T(Yi −Φiθi), (9)

where

Yi = [u2
i . . . uN−1

i v2
i . . . vN−1

i ]T , andΦi = [φ1
ui

T
. . . φN−2

ui

T φ1
vi

T
. . . φN−2

vi

T ]T ,

anduτ
i andvτ

i are obtain from (6). The least squares problem is then formulated as
θ ∗

i = argminθi Ji(θi). Following the typical procedure for solving the least squares
problem we find that

θ ∗
i = [ΦT

i Φi ]
−1ΦT

i Yi . (10)

The right hand side of (10) consists entirely of measured data while the left hand side
is the vector which represents the optimal parameters of themodel. We assume that
the data are rich enough that the matrix inversion in (10) is possible. The deep impli-
cations of this invertibility are discussed in [4]. The myriad merits and deficiencies
of Least Squares fitting compared with other learning methods will not be discussed
in this work.

The resulting residual error in the fitting process is now used to define ˆwi , so that

wτ
i =

[

uτ+1
i

vτ+1
i

]

−
[

φ τ
ui

θ ∗
i

φ τ
vi

θ ∗
i

]

.

If the “true” system dynamics are represented by the fitted model, we expect to find
thatwi is zero-mean, stationary, Gaussian white noise. Specifically, for perfect fitting,
E[wi(t)wT

i (t + τ)] = δ (τ)Qi , whereδ (τ) is the Kronecker delta function. Therefore,
the “whiteness” ofwi can be used as an indicator of the goodness of fit that has been
achieved. For simulation purposes, we would assumewi is white noise and designQi

to be equal to the empirical covariance ofwi .

4 Modeling a Group of Cows

The method presented above was used to model the dynamics of aherd of cows.
Data collected from actual cows were used for fitting the model parameters and for
evaluating the resulting model.

Data were collected in a single trial from three cows wearingGPS devices. For
each cow, data consisted of approximately 3100 GPS positionentries collected at
1Hz. The data for all animals were artificially synchronizedto a common clock us-
ing a standard linear interpolation. The characteristic time scale of cow dynamics is
considerably longer than 1 second, thus such an interpolation is expected to have a
negligible effect on modeling results.
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Fig. 2. The agent-to-agent interaction forces are shown for the three cows. Each curve repre-
sents the size of the force imposed by one cow on another as a function of the distance between
the cows. A positive value is attractive while a negative value is repulsive.

Fig. 3. The environment-to-agent force field is shown for the three cows. The black dots are
the centers of the Gaussian functions and the red curve showsthe data used for regression,
marking the cow’s path over the region.

4.1 Least Square Results

The data were used to find model parameters as described in section 3. The panels in
Figure 2 show the force coefficientsFi j (pi , p j) for the three cows. For each cow the
two plots show the interaction force with each of the two other cows in the herd. Note
that the forces are not necessarily pair-wise symmetric, that is,Fi j 6= Fji in general.

The environment-to-agent vector fields are shown in the panels of Figure 3 for
the three cows. The black dots show the centers of the Gaussian basis functions,
γki, the blue arrows show the direction and magnitude of the force felt by a cow at
each point, and the red dots show the position data used for regression. The Gaussian
centers were spaced over an even grid containing the trajectory of the cow. If the
trajectory did not enter the grid region of a Gaussian function, it was dropped from
the network. This primitive pruning algorithm was used for simplicity; more complex
algorithms could be employed. The Gaussian widths were chosen to be 2/3 the length
of the grid space occupied by the Gaussian.

The ability of the model to capture the relevant qualities ofthe data was investi-
gated by examining the covariance function of the residual error, wi , in comparison
with the covariance function of the velocity as calculated by (6). The top of Fig-
ure 4 shows the empirically calculated auto-covariance of the Eastern component
of the velocity for Cow 1, and the bottom figure shows the empirically calculated
auto-covariance of the corresponding residual error. The dotted lines indicate a 90%
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whiteness confidence interval. This means that, for each point on the auto-covariance
function, a stationary Gaussian white noise process would have produced an empiri-
cal auto-covariance within the dotted lines with probability .9. Notice that the strong
temporal correlation in the velocity has been greatly reduced in the residual, indicat-
ing that the model has captured a good deal of the predictablequalities of the data.
Furthermore, a large majority of the residual auto-covariance points lie inside the
confidence interval, giving good reason to believe that it isa “nearly white” signal.
The plots for the other cows are excluded in the interests of space, though the results
are similar.

Fig. 4. The empirical covariance function for the Eastern component of the velocity is shown
in the top plot, and for the error residual in the bottom plot.The dotted lines indicate a 90%
whiteness confidence interval, meaning that a Gaussian white noise process would have gener-
ated an empirical auto-covariance inside the interval withprobability .9 at each point. Clearly
the residual error is “more white” than the original velocity.

4.2 Herd Simulation

Simulation experiments were carried out with the models fitted in Section 4.1. We
simulated a group of three simple mobile robots controlled to have the dynamics in
(1) with the parameters found in section 4.1. The differenceequations were numeri-
cally solved in a Matlab environment.

The trajectories of the robots from a typical simulation areshown in the left
side of Figure 5 laid over a schematic showing the fences of the paddock where
the actual cow data were recorded. The trajectories of the simulation are similar to
those of the real cows. What is perhaps more surprising is that the simulated robots
track the fence lines, as did the real cows. This tendency is captured solely through
the agent-to-environment force field (described in section2.3), as the model has no
direct knowledge of where fence lines may lie. Furthermore,statistics were gathered
for the simulated robots and compared with those from the cowdata. Figure 6 shows
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Fig. 5. The left picture shows trajectories of a team of simulated robots controlled to behave
like a herd of cows. The robots use dynamical laws generated from the procedure described in
this work. Their positions are laid over the fence lines of the paddock where the original data
were collected, though they have no direct knowledge of fence positions. The right picture
shows the actual cow data over the same time window.

Fig. 6. The bar charts compare various statistics for the actual cowdata and the simulated
robots. The top charts show the mean and standard deviation of the distance from one cow to
the other two cows in the group. The bottom charts show the mean and standard deviation of
the speed of each cow.

a comparison of the two sets of statistics. Notice that global properties as measured
by these statistics are preserved by the model.

5 Conclusions

In this paper we presented a method to generate models of groups of dynamical
agents (e.g. flocks, herds, and swarms) using observations of the agents’ positions
over time. We formulated a physically motivated differenceequation model, and
used the Least Squares system identification method to fit themodel to data from a
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herd of three cows. Many avenues remain open for the extension of this work. Most
importantly, the method should be tested on data from much larger groups, though
such data is difficult to collect. Recently, we have validated the technique with data
from ten cows with results very similar to those presented here, however data from an
order of magnitude more animals would likely reveal collective behaviors not seen
in smaller herds. It would also be interesting to compare this model structure with
others, to use different learning algorithms, to explore recursive learning algorithms
for on-line learning, or to examine analytical properties of the learned models.
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