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Summary. A decentralized model structure for representing groupsafpled dynamic
agents is proposed, and the Least Squares method is usetirfgnfiodel parameters based on
observed position data. The physically motivated, difieeeequation model combines effects
from agent dynamics, interactions between agents, anchotiens between each agent and
its environment. The technique is implemented to identifgadel for a group of three cows
using GPS tracking data. The model is shown to capture dwralacteristics of the group as
well as attributes of individual group members. Applicaido surveillance, prediction, and
control of various kinds of groups of dynamical agents aggested.

1 Introduction

We wish to model groups of coupled dynamic agents, such aksfl@gvarms, and
herds, using measured data from those agents. For exangaleomid like to be able
to use the trajectories of people in a crowd to develop dyoalmiodels that capture
the behaviors of the crowd as a whole. This is a prohibitieelsnplicated problem
in general, however, we provide a practical solution byrietstg our attention to a
special model structure. We propose a difference equatimeithat is decentral-
ized and nonlinear, though it is designed to be linear-irapeters. We use the Least
Squares method to fit model parameters to position data frgmoup of agents. Such
a model may then be used, for example, to predict futuresstdtehe group, to de-
termine individual roles of agents within the group (e.@ders vs. followers), or,
ultimately, to control the group. This could help rancherstanage overgrazing by
livestock, or allow animal behavioral scientists to detemrsocial roles within ani-
mal groups. In the case of people, the ability to model greehpalvior has numerous
applications in surveillance, urban planning, and crowaticd. Also, this technique
can be used to design controllers for groups of engineeredtago mimic the be-
haviors of natural agents.
The large body of work on designing and analyzing models ak#ipswarms,

and similar decentralized dynamical systems ( [3, 7] aneresfces therein) does not
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incorporate learning from data to tune such models. Howeiber related learn-
ing problems have been investigated. For example, in [1]steqy identification
technique is used to model global properties of a swarm abtbver time using
observed data from the robots. There also has been conslieladivity in learning
behavioral models of individual natural agents. In [5] a6} fystem identification
is carried out on switching linear systems to learn modekhefhoney bee waggle
dance and human hand motion, respectively, and in [2] a tqubris used to find
Motion Description Language (MDL) codes from observed ants

Our work introduces two specific innovations. The first is pplging system
identification to learn the parameters of a decentralizeddhical system from data.
The second is in the model structure itself, which uses alnaea-gradient field
to express the interaction between each agent and its envénat. We demonstrate
the technique by fitting a model to GPS data from a group ofetliree-ranging
cows. The model is validated by testing the whiteness of és&lual error, and by
comparing global statistics of simulations verse the datata. We also show how
the resulting model can be used to control simple robotse®bg the technique has
been validated with data from ten cows, though we do not ptékese results here.

2 Model Description

We consider a linear-in-parameters model structure withethaturally distinct parts

to describe the motion of coupled physical agents moving avplane surface.
Firstly, each agent is given internal dynamics to enforeedbnstrains of Newtons
laws. Secondly, a foréds applied to each agent from its interaction with each of the
other agents in the group. Thirdly, a force is applied to esgént as a function of
its position in the environment. All remaining effects aredeled as a white noise
process.

2.1 Individual Agent Dynamics

Supposing a group ah agents, the proposed model structure for an individualtagen
i € {1,...,m} can be written in state-space, difference equation form as

104t 0 00
01 0 At 00 m
T+1 _ T
X "=1lo0a 0|8 10(

fij(pf,p})+gi(p5)+w{>. (1)
000 g 01

j=1]#

Agenti’s statex” = [eF nf uf V|7 consists of its East position, North position,
Eastern component of velocity, and Northern component tfcity after thetth
iteration, and its position is given by’ = [ef nf]T. The time stepit is given by

3 In this work the term “force” is used in a metaphoric senseeWive talk of a “force” we
are referring to the intention of the agent to accelerate pardicular way using it's own
motive mechanisms.
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t™1 —t7, and we assume it is constant for all The terma; represents damping,
a = 1 for zero damping, angh| < 1 for stable systems. The functidi (p{, p!)
determines the coupling force applied by agérib agenti. The functiongi(pi*)
represents the force applied by the environment to the agfepbint pf. Finally,
w! is a zero-mean, stationary, Gaussian white noise processnatated withp; V
used to model the unpredictable decision-motive procedseseni. Nonholonomic
constraints which are often present in mobile agents, ssigieaple, cattle, or auto-
mobiles, are neglected in this treatment, though they cbelthcorporated with an
increase in the complexity of the model structure. Note thatforce terms are only
applied to affect changes in velocity in accordance with téevg second law.

2.2 Agent-to-Agent Interaction Force

Dropping ther superscripts for clarity, the form of the agent coupling®fi; (pi, p;)
is given by

fij (pi, pj) = <91-- - A) nij )

s "=l )

wheren;j = (pj— pi)/||p; — pil| is the unit vector along the line from to p; (hence-
forth, || - || will denote the/? norm). This is the simplest of a family of force laws com-
monly used in computational models of physical, multi-beggtems (e.g. kinetic
gas models). The important feature of this family is thatgerd is repulsed from its
neighbor at close distances and attracted to its neightdar distances. To see this
property clearly, examine the magnitude of (2) given|ly|| = 6x,; — 62 /|| pj — pill,
and shown in the left of Figure 1.

Agent-to-Agent Interaction Force Environment-to-Agent Interaction Force
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North Position (m)
-]
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0 2 4 6 8 10 1600 1700 1800 1900 2000 2100 2200
Separation Distance (m) East Position (m)
Fig. 1. The magnitude of the agent-to-agent interaction force @svghon the left for6; =
6, = 1. On the right, the vector field representing the force fglah agent at each point on
the plane is shown for an example agent trajectory. The isgigdatterns evident in the field
are made possible by a novel parameterization.

After some manipulation, the sum &f over all neighborg can be expressed as

| Pru
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where
_ [ (-8  (em—&) —(e1-8) —(em—&)
Pru = {HprpiH Tom—pill [[p1—pill Hpm*Pin}
_ [ (m=n) o (wmen) —(ng-ni) o =(Mm=;)
Prv = {HprpiH [Pm—npill [[p1—pill? Hpm*Pin} , and

efi = [elil 61im 62i1 62im]T’

permitting a slight abuse of notation since the indigesi are excluded from the
above vectors. This notation will be useful in what follows.

2.3 Environment-to-Agent Interaction Force

The agent’s preference for certain paths in the environisenbdeled as a nonlinear
mapping from each point on the plane to a force vector feltieyagent. To this end,
two networks of Gaussian basis functions are used, one ébrefawo perpendicular
force components.

In particular, the functiow;(p;) can be written

%1(pi)
} : ; (4)
@ (Pi)

gi(p) = [&_” "

(I in

where gy, (pi) = o.ik\l/ﬁexp(— Hpi;o%k“z), andk € {1,...,n}. Each Gaussian is cen-

tered atyy, with standard deviatiowj, and its strength is represented by the un-
known parameter§,, for the Eastern component, aflg, for the Northern compo-
nent. Gaussian basis functions were chosen for their faritylj the objective being
to demonstrate the modeling approach with a minimum of caafbns. A number

of other basis functions types could be used, including Vegsesigmoidal functions,
or splines.

It is important to note that a vector-field parameterizechis tvay isnot a po-
tential gradient. A potential gradient field cannot admitalation around closed
paths? We introduce a non-gradient parameterization to enabtilation, as one
can imagine agents intending to traverse closed orbits erpldne. For example,
a cow may have a routine of passing between a water sourcadadhree, and a
grassy patch in a periodic fashion.

Figure 1, on the right, shows a plot of an example force-fielchmeterized in
the above way. The arrows show the forces induced by the freddhlack dots show
the centers of the Gaussian functiogg, and the red curve shows the path of an
agent over the vector field. The swirling patterns evideih@wvector field would be
impossible if it were a gradient field.

4 proof: Let W(p) be a potential function and (p) = —grad¥) its gradient field. Then
curl(V) = curl(—grad¥)) = 0, thus by Green’s Theoren§,Vds= [, curl(V)dA= 0,
wheresis any closed curve on the plane, akgs the area enclosed lsy
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The expression in (4) can be put into a different form to matat of (3). In
particular

gi(pi) = {%ﬂ 6, (5)

where

%Ui:[%l e @y 0...]7
@y :[ 0--- @y - %n],and
egi :[euil euin 9Vi 6Vi ]T-

Although somewhat awkward, this form will become useful imat/follows.

3 System Identification with Least Squares Fitting

The model that was described in Section 2 can be manipulatied iform so that its
parameters can be fitted using the Least Squares methodftensidentification [4].
We assume that only position measuremepftst =1, ..., N, are available to perform
the fitting. We can eliminate; andv; from the dynamics in (1) to provide a second
order equation in the position only. Notice that from (1) vem evrite

1 uf
ot . ©)
|
and
WilcalU]e S megew )
ViT+1 =g ViT j:%#i ij gi (I

We can solve (6) fofu? vf]T and substitute into the right hand side of (7). We
then substitute the result back into the right hand side pfdfifting time indices
appropriately, to obtain the desired expression

m
P2 =p (P - phai+ At ( > fﬁ+9f+W¥> :
i=1)#

We can use the above expression to formulate a one-step-phegictor. First, de-
fine the combined regressor vectgs= [(eFtt —ef)/At ®fy, @y ), and

@ = [(nf** —nl)/At @f, @}, ], and a combined parameter vector

6 = [a 6 65 ]T. By taking the expectation conditioned on the positions stitib
tuting (3) and (5) fory ;; fij andg;, respectively, then making use of the combined
regressor and parameter vectors we get

ﬁ”zp-”lJrAt[qﬁi} 6 8)
1 - M (R}' (B
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where p‘ir+2 is the expected value qf aftert + 2 time steps, given positions up to
T+ 1, andw! drops out in the conditional expectation.

The Least Squares method is now implemented to find the olptiodel param-
eters. Specifically, we wish to find the parametéysto minimize the mean squared
prediction error over all available time steps. The mearasegiprediction error can
be writtenJi = 1/(N —2) N -2(pF*2 — pr+2)T(pf 2 — pT2). Substituting intaJ
with (8) and (6) yields

At? T
3= 55— @8)T (¥ - @), (©)
where

Y= TN ando = [T T

andu andv{ are obtain from (6). The least squares problem is then fatedlas
8* = argmiry, Ji(6). Following the typical procedure for solving the least sgsa
problem we find that
6 =[of @] 'Y (10)

The right hand side of (10) consists entirely of measured ddile the left hand side
is the vector which represents the optimal parameters ahibdel. We assume that
the data are rich enough that the matrix inversion in (10p&sible. The deep impli-
cations of this invertibility are discussed in [4]. The nadimerits and deficiencies
of Least Squares fitting compared with other learning mettvad not be discussed
in this work.

The resulting residual error in the fitting process is nowdusedefineni, so that

utt L g*
=[] [ ]

If the “true” system dynamics are represented by the fittedehave expect to find
thatw; is zero-mean, stationary, Gaussian white noise. Spedyfiéal perfect fitting,
E[wi(tH)w] (t+1)] = &(1)Qi, whered(T) is the Kronecker delta function. Therefore,
the “whiteness” ofy; can be used as an indicator of the goodness of fit that has been
achieved. For simulation purposes, we would asswnigwhite noise and desigp;
to be equal to the empirical covariancemf

4 Modeling a Group of Cows

The method presented above was used to model the dynamickestiaof cows.
Data collected from actual cows were used for fitting the rhpdeameters and for
evaluating the resulting model.

Data were collected in a single trial from three cows weaf@RfS devices. For
each cow, data consisted of approximately 3100 GPS posgtibries collected at
1Hz. The data for all animals were artificially synchronizeé common clock us-
ing a standard linear interpolation. The characteristietscale of cow dynamics is
considerably longer than 1 second, thus such an interpal@&iexpected to have a
negligible effect on modeling results.
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Cow 1 Cow 2 Cow 3

0.05, —Cow 2 0.05 —Cow 1| 0.05 —Cow 1
—Cow 3 — Cow 3| —Cow 2
0.025] 0.025 //’— 0.025|

0 0 0

Force Coefficient (N)

-0.025 -0.025 -0.025
—0.0% 10 20 0 0% 10 20 30 0% 10 20 30

Separation Distance (m)

Fig. 2. The agent-to-agent interaction forces are shown for threethows. Each curve repre-
sents the size of the force imposed by one cow on another astidn of the distance between
the cows. A positive value is attractive while a negativaigas repulsive.
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Fig. 3. The environment-to-agent force field is shown for the thmesc The black dots are
the centers of the Gaussian functions and the red curve sti@adata used for regression,
marking the cow’s path over the region.

4.1 Least Square Results

The data were used to find model parameters as describedims@cThe panels in
Figure 2 show the force coefficierftg (pj, pj) for the three cows. For each cow the
two plots show the interaction force with each of the two ottwevs in the herd. Note
that the forces are not necessarily pair-wise symmetrét,ighF; # Fji in general.

The environment-to-agent vector fields are shown in the Ipasfd=igure 3 for
the three cows. The black dots show the centers of the Gaubagis functions,
Wi, the blue arrows show the direction and magnitude of theeféett by a cow at
each point, and the red dots show the position data usedgmssion. The Gaussian
centers were spaced over an even grid containing the tayeof the cow. If the
trajectory did not enter the grid region of a Gaussian funmctit was dropped from
the network. This primitive pruning algorithm was used fiomglicity; more complex
algorithms could be employed. The Gaussian widths weresthimsbe 2/3 the length
of the grid space occupied by the Gaussian.

The ability of the model to capture the relevant qualitiethef data was investi-
gated by examining the covariance function of the residurakgw;, in comparison
with the covariance function of the velocity as calculatgd(®). The top of Fig-
ure 4 shows the empirically calculated auto-covariancénefEastern component
of the velocity for Cow 1, and the bottom figure shows the eroaglily calculated
auto-covariance of the corresponding residual error. Tteed lines indicate a 90%
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whiteness confidence interval. This means that, for eaatt paithe auto-covariance
function, a stationary Gaussian white noise process waoale produced an empiri-
cal auto-covariance within the dotted lines with probapi®. Notice that the strong
temporal correlation in the velocity has been greatly redun the residual, indicat-
ing that the model has captured a good deal of the predictplalkities of the data.
Furthermore, a large majority of the residual auto-covaréapoints lie inside the
confidence interval, giving good reason to believe that & feearly white” signal.
The plots for the other cows are excluded in the interestpada, though the results
are similar.

Empirical Velocity Auto-Covariance

0.15

0.1 == =90% Whitness Confidence Interval |

« 005
@ 0l::====:===============:==== _______________ -
5_0_05 L L L L L L L L L
8 50 100 150 200 250 300 350 400 450 500
.E x 107 Empirical Residual Auto-Covariance
]
>
]
8]

50 100 150 200 250 300 350 400 450 500
Time Separation (s)

Fig. 4. The empirical covariance function for the Eastern compboéthe velocity is shown

in the top plot, and for the error residual in the bottom pldte dotted lines indicate a 90%

whiteness confidence interval, meaning that a Gaussiare wbise process would have gener-

ated an empirical auto-covariance inside the interval witibability .9 at each point. Clearly

the residual error is “more white” than the original velgcit

4.2 Herd Simulation

Simulation experiments were carried out with the modelsdiih Section 4.1. We
simulated a group of three simple mobile robots controleddve the dynamics in
(1) with the parameters found in section 4.1. The differesgueations were numeri-
cally solved in a Matlab environment.

The trajectories of the robots from a typical simulation ah®wn in the left
side of Figure 5 laid over a schematic showing the fences @fpiddock where
the actual cow data were recorded. The trajectories of thalation are similar to
those of the real cows. What is perhaps more surprising tshlessimulated robots
track the fence lines, as did the real cows. This tendencgpsuced solely through
the agent-to-environment force field (described in seci@), as the model has no
direct knowledge of where fence lines may lie. Furthermstiajstics were gathered
for the simulated robots and compared with those from thed=a. Figure 6 shows
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\ 3000

2500

3000

2500

2000 2000

1500 1500
500 1000 1500 2000 500 1000 1500 2000

Fig. 5. The left picture shows trajectories of a team of simulatdzbte controlled to behave
like a herd of cows. The robots use dynamical laws generabed the procedure described in
this work. Their positions are laid over the fence lines & paddock where the original data
were collected, though they have no direct knowledge ofdgmasitions. The right picture
shows the actual cow data over the same time window.
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Fig. 6. The bar charts compare various statistics for the actualdzta and the simulated
robots. The top charts show the mean and standard devidttbe distance from one cow to
the other two cows in the group. The bottom charts show thenragd standard deviation of

the speed of each cow.

a comparison of the two sets of statistics. Notice that dlph@perties as measured
by these statistics are preserved by the model.

5 Conclusions

In this paper we presented a method to generate models opgmudynamical
agents (e.g. flocks, herds, and swarms) using observatfdhs agents’ positions
over time. We formulated a physically motivated differersguation model, and
used the Least Squares system identification method to fintidel to data from a
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herd of three cows. Many avenues remain open for the exten$ithis work. Most
importantly, the method should be tested on data from mugetagroups, though
such data is difficult to collect. Recently, we have validatee technique with data
from ten cows with results very similar to those presented Heowever data from an
order of magnitude more animals would likely reveal collecbehaviors not seen
in smaller herds. It would also be interesting to compare thodel structure with
others, to use different learning algorithms, to exploirsive learning algorithms
for on-line learning, or to examine analytical propertiéthe learned models.
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