
A High-Level, Open-Ended Architecture For SIP-based Services

Laurent Burgy Charles Consel Fabien Latry Nicolas Palix Laurent Réveillère

E-mail : {burgy,consel,latry,palix,reveillere}@labri.fr
INRIA / LaBRI / ENSEIRB

Department of Telecommunications - 1, Avenue du Docteur Albert Schweitzer,
Domaine universitaire - BP 99; F-33402 Talence Cedex, France

1 Introduction

Now that Internet Telephony can interact with
systems such as databases, e-mail facilities and Web
services, it can offer a host of new functionalities.
However, developing enriched, real-size services is
quite a challenge considering the requirements that must
be fulfilled by the service developer. Such developer
must (1) have an extensive knowledge on network
protocols and distributed systems; (2) be familiar with
often large and complex platform APIs (e.g., JAIN [6]);
and (3) fully understand the signaling protocol (e.g.,
SIP [5]) to develop services that do not compromise the
processing of the calls, nor the platform.

All these areas of expertise are required by most
existing platforms. They offer unrestricted APIs and
support mainstream programming languages such as C,
C# and Java. They provide little abstraction, and thus
rely on the programmer to manage the intricacies of the
underlying technologies (protocols, network layers, and
signaling). Other platforms enable service creation
through a scripting language, such as CPL [3, 4] and
LESS [7], that offers a restricted expressiveness and
mostly targets the creation of individual user services.

We present a high-level architecture of an Application
Server for SIP-based services. Our architecture abstracts
over the intricacies of the underlying technologies and
facilitates both the development and the management of
services.

By revolving around an Application Server, our
approach allows a uniform and coherent basis of
telephony services to be offered to the platform users,
regardless of the heterogeneity of their end systems.

2 Requirements

Because availability of services critically relies on an
Application Server (AS), it must fulfill stringent
requirements. This section lists these requirements and
discusses potential problems if they are not fulfilled.

Service Management. An important issue for a
telephony platform is to provide a powerful mechanism
to deploy and manage services.

Feature Interactions. Many services can be deployed
in an Application Server and associated to the same user
or group of users. A key issue is to determine which
services to trigger and in what order, when a SIP request
is received.

Abstraction level. Service creation usually requires a
detailed understanding of the underlying platform and
protocols to overcome the intricacies and pitfalls of such
development. Insufficiently abstract API results in
services that are hard to develop, understand and
maintain.

State Management. The implementation of a service is
typically split into various processing components. If a
state is required during the life-cycle of the service, it
must be explicitly handled by the service developer
making programming laborious and error prone.

Open-ended. The ability of Internet telephony services
to interact with systems such as databases is a major
factor to the success of ToIP. This ability critically
relies on the open-ended nature of the AS, permitting
new functionalities to be interfaced to the services.

3 Application Server

To address the needs of telephony services in a SIP
platform, we have developed a new Application Server
architecture. The overall view of our architecture and its
main components are displayed in Figure 1. Let us
present each of these components in turn.

SIP stack

Protocol Abstraction
Layer – (PAL)

Module n MRC

Service Abstraction
Layer – (SAL)

Service Logic Execution Environment – (SLEE)

(SMA)

Service

Module 1

Service Moderator
(SMO) Manager

Figure 1. AS architecture

Service MAnager (SMA). The SMA provides an
interface to control the life-cycle of services. Services
are stored in a local repository in their executable form.
Once deployed, a service can be associated to a specific
user or group of users. Additionally, the SMA analyses
services and estimates their resource usage. This
information is used as an input of an admission control
mechanism to new services.

Service Abstraction Layer (SAL). When a service is
activated by the SMA for a specific user, a platform
event, named deploy, is raised. This event can be
handled by the service, which may have defined a
specific treatment for this stage. Similarly, when a
service is de-activated, the undeploy event is raised
and the corresponding handler invoked, if it is defined
by the service. Although these two events are generated
by the SAL, both SIP requests and platform events can
be uniformly handled by the programmer.

The SAL also provides the programmer with support
to manage the state used during the service life-cycle.

Service MOderator (SMO). When a SIP request is
received, the SMO triggers the appropriate services. To
do so, it evaluates a set of triggering criteria that
produces an ordered list of services. When a service has
been executed, the SMO decides which subsequent
service should be executed.

Protocol Abstraction Layer (PAL). Some SIP requests
are ambiguous and require some interpretation. For
example, the INVITE request either initiates a dialog
or, if used in the context of an existing dialog, re-
configures the dialog. The aim of the PAL is to classify
requests according to the stage at which they occur in
the life-cycle of a dialog: initial (creation), medial
(confirmation and modification), and final
(termination). We call this notion of a dialog a session.
For each kind of request, the PAL raises a specific
event. For example, a SIP INVITE request is refined
into a REINVITE event, when it refers to an existing
session. The PAL introduces three kinds of sessions to
organize various requests: the registration
(REGISTER), the event (SUBSCRIBE) and the dialog
(INVITE). Platform events are raised by the PAL to
enable the service to react to a timeout session
termination

Like the SAL, the PAL also provides operations to
attach a state to a session and to manage this state
during the life-cycle of the session.

Service Logic Execution Environment (SLEE). The
SLEE reacts to events from the PAL and the SAL. It
provides the service with a high-level and unified view
of events. The SLEE also organizes sessions exposed by
the PAL and the SAL as a hierarchy, providing a way to
easily manipulate states.

Modules. Modules allow to extend the AS
functionalities, as is done by other platforms such as
Apache [1]. In the case of SIP-based services, every
Internet services can potentially become a resource and
be needed in a telephony service.

Modules are used to access a large spectrum of
resources from local services (e.g., accounting
information) to Internet services (e.g., databases).

4 Conclusion and Future Work

In this paper, we have described an Application
Server for SIP-based telephony services. The
requirements to create services and to manage them
have been used to design this Application Server.

At ENSEIRB, an engineering school to which the
authors are affiliated, a VoIP infrastructure, TelIP, has
been deployed based on the SIP Express Router
(SER) [2].

To enable customization for ever demanding users, a
dedicated AS, based on the JAIN SIP stack, was added
in the TelIP infrastructure. The AS activation only
required a few lines of configuration in SER.

The AS has been extended with a Multimedia
Resource Controller (MRC) module to drive a
Multimedia Resource Processor (MRP), which allows
management of RTP sessions. This MRC allows the
deployment of a hotline service that requires an MRP to
play audio messages. Our implementation of the MRP
currently supports playing audio messages and bridging
of two RTP sessions... Furthermore, this MRP can be
used to implement voice-mail server or virtual
switchboard for example.

We are now investigating a more elaborate SMO
based on the analysis of services to handle complex
feature interactions. Finally, we are studying models of
capabilities to ease service management for an
administrator, and to control user resource consumption
such as PSTN lines.

References

[1] Apache HTTP server project. http://www.apache.org/.
[2] iptel.org. SER Developer’s guide, Sep. 2003.
[3] J. Lennox and H. Schulzrinne. Call processing language

framework and requirements. RFC 2824, May 2000.
[4] J. Lennox and H. Schulzrinne. CPL: A language for user

control of internet telephony services. IETF, IPTEL WG,
Nov. 2000.

[5] Rosenberg, J. et al. SIP: Session Initiation Protocol, Jun.
2002.

[6] Sun Microsystems. The JAIN SIP API specification v1.1.
Technical report, Sun Microsystems, June 2003.

[7] X. Wu and H. Schulzrinne. Programmable end system
services using SIP. In Proceedings of the International
Conference on Communications 2002.

