Smooth and Algebraic Invariants of a Group Action: Local and Global Constructions

Abstract : We provide an algebraic formulation of the moving frame method for constructing local smooth invariants on a manifold under an action of a Lie group. This formulation gives rise to algorithms for constructing rational and replacement invariants. The latter are algebraic over the field of rational invariants and play a role analogous to Cartan's normalized invariants in the smooth theory. The algebraic algorithms can be used for computing fundamental sets of differential invariants.
Type de document :
Article dans une revue
Foundations of Computational Mathematics, Springer Verlag, 2007, 7 (4), pp.455-493. 〈10.1007/s10208-006-0219-0〉
Liste complète des métadonnées

https://hal.inria.fr/inria-00198857
Contributeur : Evelyne Hubert <>
Soumis le : mardi 18 décembre 2007 - 09:30:53
Dernière modification le : samedi 27 janvier 2018 - 01:32:19

Lien texte intégral

Identifiants

Collections

Citation

Evelyne Hubert, Irina Kogan. Smooth and Algebraic Invariants of a Group Action: Local and Global Constructions. Foundations of Computational Mathematics, Springer Verlag, 2007, 7 (4), pp.455-493. 〈10.1007/s10208-006-0219-0〉. 〈inria-00198857〉

Partager

Métriques

Consultations de la notice

141