Differential Invariants of Conformal and Projective Surfaces

Abstract : We show that, for both the conformal and projective groups, all the differential invariants of a generic surface in three-dimensional space can be written as combinations of the invariant derivatives of a single differential invariant. The proof is based on the equivariant method of moving frames.
Type de document :
Article dans une revue
Symmetry, Integrability and Geometry: Methods and Applications (SIGMA), Institute of Mathematics of National Academy of Sciences of Ukraine, 2007, Proceedings of the 2007 Midwest Geometry Conference in honor of Thomas P. Branson, 3, pp.097
Liste complète des métadonnées

https://hal.inria.fr/inria-00198876
Contributeur : Evelyne Hubert <>
Soumis le : mardi 18 décembre 2007 - 09:50:29
Dernière modification le : jeudi 11 janvier 2018 - 16:39:45

Identifiants

  • HAL Id : inria-00198876, version 1

Collections

Citation

Evelyne Hubert, Peter Olver. Differential Invariants of Conformal and Projective Surfaces. Symmetry, Integrability and Geometry: Methods and Applications (SIGMA), Institute of Mathematics of National Academy of Sciences of Ukraine, 2007, Proceedings of the 2007 Midwest Geometry Conference in honor of Thomas P. Branson, 3, pp.097. 〈inria-00198876〉

Partager

Métriques

Consultations de la notice

82