Differential Invariants of Conformal and Projective Surfaces

Abstract : We show that, for both the conformal and projective groups, all the differential invariants of a generic surface in three-dimensional space can be written as combinations of the invariant derivatives of a single differential invariant. The proof is based on the equivariant method of moving frames.
Type de document :
Article dans une revue
Symmetry, Integrability and Geometry : Methods and Applications, National Academy of Science of Ukraine, 2007, Proceedings of the 2007 Midwest Geometry Conference in honor of Thomas P. Branson, 3, pp.097
Liste complète des métadonnées

https://hal.inria.fr/inria-00198876
Contributeur : Evelyne Hubert <>
Soumis le : mardi 18 décembre 2007 - 09:50:29
Dernière modification le : mardi 3 juillet 2018 - 13:06:04

Identifiants

  • HAL Id : inria-00198876, version 1

Collections

Citation

Evelyne Hubert, Peter Olver. Differential Invariants of Conformal and Projective Surfaces. Symmetry, Integrability and Geometry : Methods and Applications, National Academy of Science of Ukraine, 2007, Proceedings of the 2007 Midwest Geometry Conference in honor of Thomas P. Branson, 3, pp.097. 〈inria-00198876〉

Partager

Métriques

Consultations de la notice

325