Combined Visual and Inertial Navigation for an Unmanned Aerial Vehicle

Abstract : We describe an UAV navigation system which combines stereo visual odometry with inertial measurements from an IMU. Our approach fuses the motion estimates from both sensors in an extended Kalman filter to determine vehicle position and attitude. We present results using data from a robotic helicopter, in which the visual and inertial system produced a final position estimate within 1% of the measured GPS position, over a flight distance of more than 400 meters. Our results show that the combination of visual and inertial sensing reduced overall positioning error by nearly an order of magnitude compared to visual odometry alone.
Type de document :
Communication dans un congrès
6th International Conference on Field and Service Robotics - FSR 2007, Jul 2007, Chamonix, France. Springer, 42, 2007, Springer Tracts in Advanced Robotics
Liste complète des métadonnées

Littérature citée [13 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/inria-00199634
Contributeur : Inria Rhône-Alpes Documentation <>
Soumis le : mercredi 19 décembre 2007 - 11:39:26
Dernière modification le : dimanche 17 décembre 2017 - 07:04:03
Document(s) archivé(s) le : jeudi 27 septembre 2012 - 11:55:23

Fichier

fsr_83.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : inria-00199634, version 1

Collections

Citation

Jonathan Kelly, Srikanth Saripalli, Gaurav Sukhatme. Combined Visual and Inertial Navigation for an Unmanned Aerial Vehicle. 6th International Conference on Field and Service Robotics - FSR 2007, Jul 2007, Chamonix, France. Springer, 42, 2007, Springer Tracts in Advanced Robotics. 〈inria-00199634〉

Partager

Métriques

Consultations de la notice

122

Téléchargements de fichiers

572