
HAL Id: inria-00201066
https://inria.hal.science/inria-00201066

Submitted on 22 Dec 2007

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Universal Timed Concurrent Constraint Programming
Carlos Olarte, Catuscia Palamidessi, Frank D. Valencia

To cite this version:
Carlos Olarte, Catuscia Palamidessi, Frank D. Valencia. Universal Timed Concurrent Constraint
Programming. 23rd International Conference in Logic Programming (ICLP’07), Sep 2007, Porto,
Portugal. pp.464-465, �10.1007/978-3-540-74610-2_47�. �inria-00201066�

https://inria.hal.science/inria-00201066
https://hal.archives-ouvertes.fr


Universal Timed Concurrent Constraint
Programming

Carlos Olarte1,3, Catuscia Palamidessi1, and Frank Valencia2

1 INRIA Futurs, LIX, École Polytechnique, France.
2 CNRS LIX, École Polytechnique, France.

3 Department of Computer Science, Javeriana University Cali, Colombia.
{carlos.olarte, catuscia, frank.valencia}@lix.polytechnique.fr.

Abstract In this doctoral work we aim at developing a rich timed con-
current constraint (tcc) based language with strong ties to logic. The new
calculus called Universal Timed Concurrent Constraint (utcc) increases
the expressiveness of tcc languages allowing infinite behaviour and mo-
bility. We introduce a constructor of the form (abs x, c)P (Abstraction

in P) that can be viewed as a dual operator of the hidden operator
local x inP . i.e. the later can be viewed as an existential quantification
on the variable x and the former as an universal quantification of x, exe-
cuting P [t/x] for all t s.t. the current store entails c[t/x]. As a compelling
application, we applied this calculus to verify security protocols.

1 Introduction

Concurrent Constraint Programming (ccp) [3] is a well-established and mature
model for concurrency with several reasoning techniques and strong ties to logic.
ccp agents can alternatively be viewed as logic formulae, algebraic terms and
computational processes. ccp is based on a monotonic shared-memory model
and parametric in an information system. Processes interact by communicating
through the shared store posting new constraints (tell(c) operator) or testing
the structure of the store (ask c then P ) for synchronisation purposes.

Timed Concurrent Constraint (tcc) [2] is a temporal extension of ccp aimed
at specifying reactive systems. In tcc time is conceptually divided into discrete
intervals and computation occurs in bursts of activity. When an stimulus (i.e. a
constraint) is received from the environment, a tcc process is executed with that
constraint as the initial store. When the resting point is reached, the environment
can observe the store produced and a residual process is computed to be executed
in the next time interval. As is shown in [2], tcc programs can be compiled into
finite state automata.

Motivated in models for the analysis of security protocols where it is necessary
to deal with the unbounded capabilities of the spy, in this doctoral work we are
interested in increasing the expressiveness of tcc by adding two distinguished
capabilities: (1) ability to express infinite behavior and (2) mobility. (1) will allow
us to model complex systems such as those emerging e.g. in systemic biology and
security and (2) will lead us to a name passing discipline in the tcc model. We
have demonstrated that this new language is Turing complete.



2 An universal binder (Abstractions)

utcc is a derived language from tcc adding a new construct for process ab-
straction. This construct takes the form (abs x, c) P where intuitively P [t/x] is
executed for every possible term t s.t. the current store can entail the constraint
c[t/x]. This operator is dual w.r.t. the hiding operator (local x , c)P where the
former can be viewed as forall x s.t. c(x) do P and the latter as there exists x
s.t. c(x) and P .

Formalising this new construct has challenging technical problems. In tcc,
operational semantics requires that processes quiesce in a finite number of in-
ternal reductions to guarantee instantaneous responses[2]. Nevertheless, abstrac-
tions can easily generate infinite behaviour within a time unit. For example, con-
sider the ability of composing messages posted in the network, i.e. given two mes-
sages m1 and m2, the spy can build a new compounded message {m1, m2}. An
abstraction modelling this fact could be (abs x, out(x))(abs y, out(y))out({x, y})
where out is an uninterpreted predicate in the constraint system. Given the out-
put of the messages m1 and m2, this process generates a new one (out({m1, m2}))
and with this, a new reduction can take place producing out({m1, {m1, m2}})
and so on. Thus the resting point will never be reached.

Inspired in works such as [1], we propose a symbolic semantics for utcc

able to compute in a single symbolic step a possible infinite number of internal
reductions in the operational semantics. The key point in this approach is to find
a constraint representing the possible infinite number of constraints generated
by reductions in the operational semantics.

We believe that utcc has much to offer to the concurrency theory community.
In particular, to reason about security protocols. The underlying assumptions of
utcc are reminiscent of those process calculi used for security. The protocols can
be represented in a declarative way and reasoned about using the techniques utcc
enjoys. Namely, operational, symbolic and denotational semantics. Furthermore,
utcc allows for verification of reachability properties using a proof system based
on Linear Temporal Logic.

References

1. M. Boreale. Symbolic trace analysis of cryptographic protocols. Lecture Notes in

Computer Science, 2076, 2001.
2. V. Saraswat, R. Jagadeesan, and V. Gupta. Foundations of timed concurrent con-

straint programming. In Samson Abramsky, editor, Proceedings of the 9th Annual

IEEE Symp. on Logic in Computer Science, LICS, 1994.
3. V.A. Saraswat, M. Rinard, and P. Panangadnen. Semantic foundation of Concurrent

Constraint Programming. In Proc. of 18th Annual ACM Symp. on Principles of

Programming Languages. ACM, 1991.


