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Abstract other hand, P2P systems should be able to balance the load

taking into account that capabilities are heterogeneaheat
Peer to peer (P2P) systems are moving from applica- peers EQ[H]O]. This heterogeneity has some drawbacks.

tion specific architectures to a generic service oriented de Completely decentralized P2P application, like the origi-
sign philosophy. This raises interesting problems in con- nal Gnutella[[B], suffered from congestion when applied to
nection with providing useful P2P middleware services ca- large-scale systems because nodes with a low bandwidth
pable of dealing with resource assignment and managementapability were queried. Consequently, file sharing appli-
in a large-scale, heterogeneous and unreliable envirortmen cations [1[]0] tend to request ultrapeers/supernodesgpee
The slicing service, has been proposed to allow for an au- with larger lifetime and bandwidth capabilities), moresoit
tomatic partitioning of P2P networks into groups (slices) than regular peers. P2P protocols must identify efficiently
that represent a controllable amount of some resource andand accurately peers with specific capabilities.
that are also relatively homogeneous with respect to that
resource. In this paper we propose two gossip-based al- Large scale dynamic distributed systems consist of many
gorithms to solve the distributed slicing problem. The first participants that can join and leave at will. Identifyingepe
algorithm speeds up an existing algorithm sorting a set of in such systems that have a similar level of power or ca-
uniform random numbers. The second algorithm statisti- pability (for instance, in terms of bandwidth, processing
cally approximates the rank of nodes in the ordering. The power, storage space, or uptime) in a completely decentral-
scalability, efficiency and resilience to dynamics of bdth a ized manner is a difficult task. Itis even harder to maintain
gorithms rely on their gossip-based models. These algo-this information in the presence of churn. Due to the intrin-
rithms are proved viable theoretically and experimentally sic dynamics of contemporary P2P systems it is impossi-

ble to obtain accurate information about the capabilitoes (

even the identity) of the system participants. Consequentl
Keywords: Slice, Gossip, Churn, Peer-to-Peer, Aggrega- N0 node is able to maintain accurate information about all
tion, Large Scale. the nodes. This disqualifies centralized approaches.

The slicing service|E3] enables peers to self-organize
into a partitioning, where partitions (slices) are conedct
overlay networks that represent a given percentage of some
1.1. Context and Motivations resource. The slicing is ordered in the sense that peers are

sorted according to their capabilities expressed by an at-

The peer to peer (P2P) communication paradigm hastribute value. Building upon the work on ordered slicing
now become the prevalent model to build large-scale dis- of [E], here we focus on the issueadcurateslicing. That
tributed applications. On the one hand, P2P protocols in-is, we focus on improving quality by slicing the network
tegrate into platforms on top of which several applicatjons accurately, and improving stability of slices by minimigin
with various requirements, may cohabit. This leads to the the impact of the churn. The distributed slicing problem
interesting issue of resource assignment or how to allocatewe tackle in this paper consists in ranking nodes depending
a set of nodes for a given application. Examples of appli- on their relative capability, slicing the network depengin
cations for such a service are telecommunication, testbedon these capabilities and, most importantly, readaptieg th
platform B], or desktop-grid-like applicationﬂ [2]. Onah slices continuously to cope with system dynamism.

1. Introduction



1.2. Contributions ized gathering or all-to-all exchange, which makes them un-
suitable for large-scale networks.

The paper presents two distributed algorithms to slice the Other related problems are the selection problem and the
nodes according to their capability, reflected by an atteibu  ¢-guantile search. The selection problin [7] aims at deter-
value. Theses algorithms are robust and lightweight due tomMining thei*" smallest element with as few comparisons
their gossip-based communication pattern. The first algo-aS possible. The-quantile search (withg € (0,1]) is
rithm of the paper builds upon the ordered slicing algorithm the problem to find among elements thé¢n)" element.
proposed in|ﬁ|3] that we call the JK algorithm in the sequel Even though these problems look similar to our problem,
of this paper. This algorithm speeds up the convergence ofthey aim at finding a specific node among all, while the dis-
JK by locally computing a disorder measure so that a peertributed slicing problem aims at solving a global problem
chooses the neighbor to communicate with in order to max-Where each node maintains a piece of information. Addi-
imize the chance of decreasing the global disorder measuretionally, solutions to the quantile search problem like the

Then, we identify two issues that prevent accurate slicing ©N€ Presented if[17] use an approximation of the system
and motivate us to find an alternative approach to this algo-SiZ€- The same holds for the algorithm n][18, which uses
rithm and JK. First, the slicing might be inaccurate. Ran- 3|m|Iar_ ideas to deterr_’nlne_ the dlstrll_)l_Jtlon_ of a utility in o
dom values are used to calculate which slice a node belong&l€r t0 isolate peers with high capability—i.e., super-peer
to. The accuracy of the slicing fully depends on the unifor-  AS far as we know, the distributed slicing problem was
mity of the random value spread between 0 and 1. (e.g., theStudied in a P2P system for the first t'me[13]- In this pa-
proportion of random values between 0.8 and 1 should beP€': €very node draws independently and uniformly a ran-
ideally 20% of the nodes). Second, the previous algorithmsdom value in the interval0, 1]. Each of these values serve
suffer from churn an dynamism when correlated with the @S @n estimate of normalized indexn for the node with
attribute values. For example, if the peers are sorted decor thek*" smallest attribute value.
ing to their connectivity potential, a portion of the attrib
space (and therefore the random value space) might be sud3. Model and Problem Statement
denly affected. The consequence is to skew the distribution
of random values towards high or low values. 3.1. System model

The second algorithm is an alternative algorithm solving
these two issues by approximating locally the rank of the  We consider a syste containing a set of, uniquely
nodes, without using random values. The basic idea is thafdentified nodes.(The valuemay vary over time.) The set
each node periodically estimates its rank along the at&ibu of identifiers is denoted by c N. Each node can leave and
axis depending on the attributes it have seen so far. Basethew nodes can join the system at any time, thus the number
on continuously aggregated information, the node can de-of nodes is a function of time. Nodes may also crash. In

termine the slice it belongs to with a decreasing error mar- this paper, we do not differentiate between a crash and a
gin. We show that this algorithm provides accurate estima- yoluntary node departure.

tion and recovery ability in presence of attributes-caed Each node maintains a fixed attribute value € N, re-

churn at the price of a slower convergence. flecting the node capability according to a specific metric.
These attribute values over the network might have an ar-

1.3. Outline bitrary skewed distribution. Initially, a node has no glbba

information neither about the structure or size of the syste

The rest of the paper is organized as follows: Sedon 2 "O' about the attribute values of the other nodes.
surveys some related work. The system model is presented W& can define a total ordering over the nodes based
in Sectiorﬂa. The first contribution of an improved ordered ON their attribute value, with the node identifier used to
slicing algorithm based on random values is presented inPreak ties. Formally, we let precede; if and only if

Sectior{}4 and the second algorithm based on dynamic rank®i < @;, Of a; = a; andi < j. We refer to this totally
ing in Sectiorﬂ5. Sectioﬂ 6 concludes the paper. ordered sequence as thttribute-based sequencgenoted
by A.sequence. The attribute-based rank of a noflede-

noted byw; € {1,...,n}, is defined as the index af; in
2. Related Work A.sequence.

Most of the solutions proposed so far for ordering nodes 3.2. Distributed Slicing Problem
come from the context of databasgks[[g, 11], where paral-
lelizing query executions is used to improve efficiency. A Let S; ., denote theslice containing every nodéwhose
large majority of the solutions in this area rely on central- normalized rank, namel§:, satisfies < < < u where



om 2m is when the distribution of the attribute values of the depar
e e YYVY YVYY e

123456 789 10 ing and arriving nodes are identical. In this case, in princi
ple, the arriving nodes must find their slices, but the nodes

yof PR Yoy that stay in the system are mostly able to keep their slice
1L > 3 2 5* 5 7 8 9 )1( assignment. Even in this case however, nodes that are close
to the border of a slice may expect frequent changes in their
Figure 1. Slicing of a population based on a slice due to the variance of the attribute values, which is
height attribute. non-zero for any non-constant distribution. If the arrgyin

and departing nodes have different attribute distribugjon
so that the distribution in the actual network of live nodes
keeps changing, then this effect is amplified. However, we
believe that this is a realistic assumption to considerttieat
churn may be correlated with some specific values (for ex-
ample if the considered attribute is uptime or connectjvity

l € [0,1) is the slice lower boundary and € (0, 1] is the

slice upper boundary so that all slices represent adjanent i

tervals (11, u1], (I2, ug]... Let us assume that we partition

the interval(0, 1] using a set of slices, and this partitioning

is known by all nodes. The distributed slicing problem re- ) .

quires each node to determine the slice it currently belongs#- Dynamic Ordering by Exchange of Random

to. Note that the problem stated this way is similar to the or- Values

dering problem, where each node has to determine its own

index in A.sequence. However, the reference to slices in- This section proposes an algorithm for the distributed

troduces special requirements related to stability antt fau slicing problem improving upon the original JK algorithm

tolerance, besides, it allows for future generalizationsmw  [fL3], by considering a local measure of the global disorder

one considers different types of categorizations. function. In this section we present the algorithm alondpwit
Figure[ll illustrates an example of a population of 10 per- the corresponding analysis and simulation results.

sons, to be sorted against their height. A partition of this

population could be defined by two slices of the same size:4.1. On Using Random Numbers to Sort

the group of short persons, and the group of tall persons. Nodes

This is clearly an example where the distribution of attréou

values is skewed towards 2 meters. The rank of each person This Section presents the algorithm built upon JK. We re-

in the population and the two slices are represented on thefer to this algorithm asnod-JK(standing for modified JK).

bottom axis. Each person is represented as a small cross ofh JK, each nodeé generates a real number e (0,1] in-

these axe$.Each slice is represented as an oval. The slice dependently and uniformly at random. The key idea is to

S1 = &1 contains the five shortest persons and the slice sort these random numbers with respect to the attribute val-

Sz = 81 ; contains the five tallest persons. ues by swapping (i.e., exchanging) these random numbers
Since the distribution of attribute values is unknown and petween nodes, so thatdf < a; thenr; < r;. Even-

hard to predict, defining relevant groups is a difficult task. tually, the attribute values (that are fixed) and the random

For example, if the distribution of the human heights were values (that are exchanged) should be sorted in the same or-

unknown, then the persons taller tham could be consid-  der. That is, each node would like to obtain tH& largest

ered as tall and the persons shorter thancould be con-  random number if it owns the'” largest attribute value.

sidered as short. In this case, the first of the two groupsLet R.sequence denote theandom sequencebtained by

would be empty, while the second of the two groups would ordering all nodes according to their random number. Let

be as big as the whole system. Conversely, slices partitionpi(ﬁ) denote the index of nodein R.sequence at timet.

the population into subsets representing a predefined porwhen not required, the time parameter is omitted.

tion of this population. Therefore, in the rest of the paper,  Once sorted, the random values are used to determine the

we consider slices as defined as a proportion of the network portion of the network a peer belongs to.

3.3. Facing Churn 4.2. Definitions

Node churn, that is, the continuous arrival and depar-  Every nodei keeps track of some neighbors and their
ture of nodes is an intrinsic characteristic of P2P systemsage. Theage of neighborj is a timestamp¢;, set to 0
and may significantly impact the outcome, and more specif-when j; becomes a neighbor éf Thus, node maintains
ically the accuracy of the slicing algorithm. The easieecas an array containing the id, the age, the attribute value, and

INote that the shortest (resp. largest) rank is representedcboss at _the random v_alue of its neighbors_. This array, dendigd
the extreme left (resp. right) of the bottom axis. is called theview of nodei. The views of all nodes have




the same size, denoted by A node: participates in the
algorithm by exchanging its rank with raisplacedneigh-
bor in its view. Neighbor; is misplaced if and only if
(a; — a;)(r; —r;) < 0. In [L3], a measure of the rela-
tive disorder of sequencRB.sequence with respect to se-
guenceA.sequence was introduced. We call it thglobal

Initial state of node

(1) period;, initially set to a constant;

r;, a random value chosen {0, 1]; a;, the attribute value;

slice; «+ L, the slicei belongs to\;, the view;

gainj,, areal value indicating the gain achieved by
exchanging withj’;

gain-mazx = 0, areal.

disorder measure (GDMand it is defined, for any timeg Active thread at node

asGDM (t) = L3 (a; — p(t);)?. The minimal value of @) wait(period,)
GDM is 0, which is obtained whepn(t); = «; for all nodes (3) recompute-view();
i. In this case the attribute-based index of a node is equal @) forjeN:
. . s (5) if gain;, > gain-maz then
to its random value index, indicating that random values are - ,
(6) gain-maz < gain
ordered. @) G i
(8) end for

(9) send(REQ,r;,a;)toj
(10) recv(ACK, 7"3) from j
(11) rj 1}

In this algorithm, each nodisearches its own view/; (12) if (aj — a;)(rj —r;) < O then
for misplaced neighbors. Then, one of them is chosen to (13) i =7y
swap random value with. This process is repeated until (14)  stice; — Sy suchthal <r; < u
there is no global disorder. In this version of the algorithm
we provide each node with the capability of measuring dis-
order locally. This leads to a new heuristic for each node to _
determine the neighbor to exchange with which decreases gg i (T‘”; f?)(” —ri) <Othen
most the disorder. Referring to this disorder measure as a (19) s;icei ha Siusuchthat < r; <u
criterion, the decrease of the global criterion is relateithe
decrease of local criteria, similarly tJ [1].

For a node to evaluate the gain of exchanging with a
node; of its current view\;, we define itslocal disor-
der measurgabbreviated DM;). Let LA.sequence, and Nevertheless, as the system gets ordered, it becomes more
LR.sequence, be the local attribute sequence and the local unlikely for a nodei to have misplaced neighbors. In this
random sequence of noderespectively. These sequences Stage the way the view is composed plays a crucial role: if
are computed locally by using the informationV; U {i}. fresh samples from the network are not available, conver-
Similarly to A.sequence and R.sequence, these are the se- gence can be slower than optimal.
quences of neighbors where each node is ordered according Several protocols may be used to provide a random and
to its attribute value and random number, respectively, Let dynamic sampling in a P2P system such as NewsEast [15],
for anyj € N; U {i}, £p,(t) and/a;(t) be the indices of ~ Cyclon [21] or Lpbcast[[12]. They differ mainly by their
r; anda; in sequenceg R.sequence; and LA.sequence;, closenesto the uniform random sampling of the neighbors
respectively, at timét). At any timet, the local disorder ~ and the way they handle churn. In this paper, we chose to
measure of nodgeis defined as: use a variant of the Cyclon protocol, to construct and update

the views, as it is reportedly the best approach to achieve a
b Z uniform random neighbor set for all nod[lO].
1 enmu

4.3. Improved Ordering Algorithm

Passive thread at node 7 activated upon reception
(15) recv(REQ, rj, a;) from j
(16) send(ACK,r;) toj

Figure 2. Dynamic ordering algorithm.

LDM;(t) = (Laj(t) — £p;(t)* (1)
Description of thealgorithm. The algorithm is presented

in Figure[}. The active thread at nodeuns the member-
ship (gossiping) procedurestompute-view();) and the ex-
change of random values periodically. As motivated above,
the membership procedure is similar to the Cyclon algo-
rithm. This variant of Cyclon exchanges all entries of the
view at each step and uses two additional parameters: the
Sampling uniformly at random. The algorithmrelieson  attribute value and the random value. For the detailed pseu-
the fact that potential misplaced nodes are found so that the docode, please refer to the full version of this pajkr [6].

can swap their random numbers thereby increasing order. If  The algorithm for exchanging random values from node
the global disorder is high, it is very likely that any given i starts by measuring the ordering that can be gained by
node has misplaced neighbors in its view to exchange with.swapping with each neighbor (Linﬂsﬂl—8). Théohooses

We denote by, ;(t+1) = LDM,(t) — LDM,(t+ 1), the
reduction on this measure thatbtains after exchanging its
random value with nod¢ between time andt + 1.

The heuristic used chooses for noflehe misplaced
neighborj that maximizess; ;(¢t + 1).



the neighborj € N; that maximizes gairiz; j for any of bounds, with high probability, the number of nodes that can
its neighbork. Formally,: findsj € N such that for any  be misplaced in the system. For the proof of Le 4.1
k € N;, we have please refer to the full version of this papfr [6].

Gij(t+1) > Gig(t+1). Lemma4.1 For any3 € (0,1], a slice S, of lengthp
(0,1] has a number of pee® < [(1 — B)np, (1 + B)np]

In Figure[} of nodei, we refer togain; as the value of . probability at least — e as long agp > 55 3 In(2/e).

Lo (t)lp; (t)+La; (t)Lpi(t) — Lo (t)lp;(t). This expression
is directly obtained from equati(_)rﬂ(l), see the full version 15 measure the effect discussed above during the simu-
of this pape_r[[b] for furthter details. lation experiments, we introduce the slice disorder measur
_From this point on,i exchanges its random valug (SDM) as the sum over all nodesf the distance between
with the random value; of node; (Line B]). The pas- e slices actually belongs to and the sli¢éelieves it be-
sive threads are executed upon reception of a message. Ijyngs to. For example (in the case where all slices have the
Figure[2, wheny receives the random value of node, same size), if nodé belongs to the s’ slice (according to
it sends back its own random valug for the exchange 10 s attribute value) while it thinks it belongs to tBe? slice
occur (Line 15136). Observe that the attribute value of (according to its rank estimate) then the distance for riode
is also sent tgj, so thatj can check if it is correct to ex- g 11— 3| = 2. Formally, for any node, let S,,, ;. be the
change before updating its own random number (Linés 17—,c4) correct slice of nodieand letS,. ; (t) be the slice

@)._ Nodei does not need to receive attribute valyeof  egtimates as its slice at timeThe slice disorder measure is
J, sincei already has this information in its view and the 4efined as:

attribute value of a node never changes over time.

4.4. Analysis of Slice Inaccuracy SDM(t) = Z w1 2 2
In mod-JK, as in JK, the current random numbgmof SDM (t) is minimal (equals 0) if for all nodes we have

a node: determines the slice; of the node. The objec- ¢ 7 () = Sui 1,
tive of both algorithms is to reduce the global disorder as “*"" '
quickly as possible. Algorithm mod-JK consists in choos-
ing one neighbor among the possible neighbors that would
have been chosen in JK, plus the GDM of JK has been . . )
shown to fit an exponential decrease. Consequently mod- V& Present simulation results using Peersin} [14], us-

JK experiences also an exponential decrease of the globalng a simplified cycle-based simulation model, where all
disorder. Eventually, JK and mod-JK ensure that the disor- messages exchanges are atomic, so messages never over-

der has fully disappeared. For further information, please [2P- First, we compare the performance of the two algo-

refer to ]_ rithms: JK and mod-JK. Second, we study the impact of
concurrency that is ignored by the cycle-based simulations

4.5. Simulation Results

However, the accuracy of the slices heavily depends on
the uniformity of the random value spread between 0 and
1. It may happen, that the distribution of the random values Performance comparison. We compare the time taken
is such that some peers decide upon a wrong slice. Everby these algorithms to sort the random values according to
more problematic is the fact that this situation is unrecov- the attribute values (i.e., the node with t}i¢ largest at-
erable unless a new random value is drawn for all nodes.tribute value of the system value obtains tji& random
This may be considered as an inherent limitation of the ap-value). In order to evaluate the convergence speed of each
proach. For example, consider a system of size 2, wherealgorithm, we use the slice disorder measure as defined in
nodes 1 and 2 have the random valugs= 0.1, ro = 0.4. Sectior[ 4.

If we are interested in creating two slicésandS- of equal We simulated 0* participants in 100 equally sized slices
size (51 = &y 1 andS; = S, ), both nodes will wrongly (when unspecified), each with a view size= 20. Fig-
believe to beIong to the same slisg, sincer; andry be- ure' presents the evolution of the slice disorder measure
long to (0, ] This wrong estimate holds even after perfect over time for JK, and mod-JK.

ordering of the random values. F|gure‘ shows the slice disorder measure to compare

Therefore, an important step is to characterize the inac-the convergence speed of our algorithm to that of JK with 10
curacy of slice assignment and how likely it may happen. equally sized slices. Our algorithm converges signifigantl
To this end, we bound the deviation of random values dis- faster than JK. Note that none of the algorithm reaches zero
tribution from the mean, and we lower bound the probability SDM, since they are both based on the same idea of sorting
that this happen with only two slices. The following result randomly generated values. Besides, since they both used
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W shows the amount of useless messages that are sent. Now,
modified JK ------- we explain how the concurrency is simulated. Letaker-
lapping messagdse a set of messages that mutually over-
lap: it exists, for any couple of overlapping messages, at
least one instant at which they are both in-transit. For each
algorithm we simulatedf) full concurrency: in a given cy-
cle, all messages are overlapping messages;(igndalf
concurrency: in a given cycle, each message is an overlap-
ping message with probability. Generally, we see that
increasing the concurrency increases the number of useless
to0 " " o 20 = o messages. Moreover, in the modified version of JK, more
Time (Cycles) messages are ignored than in the original JK algorithm.
This is due to the fact that some nodes (the most misplaced
ones) are more likely targeted which increases the number
of concurrent messages arriving at the same nodes. Since a
nodei ignored more likely a message when it receives more
an identical set of randomly generated values, both con-messages during the same cycle, it comes out that concen-
verge to the same SDM. Note that for the sake of fairness,trating message sending at some targets increases the num-
JK and mod-JK are compared using the same underlyingber of useless messages.
view management protocol in our simulation: the variantof  Figure[4(b) compares the convergence speed under full
Cyclon. concurrency and no concurrency. Full-concurrency impacts
on the convergence speed very slightly.

10000 f

1000

Slice disorder measure

Figure 3. Slice disorder measure over time.

Concurrency. The simulations are cycle-based and at . . . .
each cycle yan algorithm step is doneyatomically so that 5. Dynamic Ranking by Sampling of Attributes
no other execution is concurrent. More precisely, the al- ) . _ ]
gorithms are simulated such that in each cycle, each node [N this section we propose an alternative algorithm for
updates its view before sending its random value or its at- the distributed slicing problem. This algorithm circumten
tribute value. Given this implementation, the cycle-based the problems identified in the previous approach by contin-
simulator does not allow us to realistically simulate con- Uously ranking nodes based on observing attribute value in-
currency, and a drawback is that view is up-to-date Whenformgthq. Besides, th|s. algorllthm is not sensitive to chl_Jr
a message is sent. In the following we artificially intro- €ven if it is correlated with attrlbute_values. In the remain
duce concurrency (so that view might be out-of-date) into ing part of the paper we refer to this new algorithm as the
the simulator and show that it has only a slight impact on ranking algorithm while referring to JK and mod-JK as the
the convergence speed. ordering algorithms.

Adding concurrency raises some realistic problems due
to the use of non-atomic push-pyil}12] in each message ex-Impact of dynamics correlated with attribute. As al-
change. That is, concurrency might lead to other problemsready mentioned, the ordering algorithms rely on the fact
because of the potential staleness of views: unsuccessfuthat random values are uniformly distributed. However, if
swaps due to useless messages. Technically, the view othe attribute values are not constant but correlated with th
nodei might indicate thaj has a random valuewhile this dynamic behavior of the system, the distribution of random
value is no longer up-to-date. This happens lifas lastly values may change from uniform to skewed quickly. For in-
updated its view beforé swapped its random value with ~stance, assume that each node maintains an attribute value
another;j’. Moreover, due to asynchrony, it could happen that represents its own lifetime. Although the algorithm is
that by the time a message is received this message has béble to quickly sort random values, so nodes with small life-
come useless. Assume that nodgends its random value time will obtain the small random values, it is more likely
r; 10 j in order to obtain; at timet andj receives it by that these nodes leave the system sooner than other nodes.
time ¢ + §. With no loss of generality assume > 7;. This results in a higher concentration of high random val-
Then if j swaps its random value witi{ such that”, > r; ues and a large population of the nodes wrongly estimate
between time andt + 4, then the message ofbecomes  themselves as being part of the higher slices.
uselessand the expected swap does not occur (we call this
anunsuccessful swap Inaccurate slice assignments.  As discussed in previous

Figure) indicates the impact of concurrent messagesections in detail, slice assignments will typically be im-
exchange on the convergence speed. while Fi 4(aperfect even when the random values are perfectly ordered.
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Figure 4. (a) Percentage of unsuccessful swaps. (b) Convergence speed under high concurrency.

Since the ranking approach does not rely on ordering ran-of its neighbors). Nodé selects also a random neighlyer
dom nodes, this problem is not raised: the algorithm guar-among its view (LinGEIZ). When those two nodes are se-
antees eventually perfect assignment in a static environ-ected,; sends an update message, denoted by a9,
ment. to j; andj, containing its attribute value (Lide]1iB314).

The reason why a node close to the slice boundary is
selected as one of the contacts is that such nodes need more

samples to accurately determine which slice they belong to

rithms, a non negligible amount of messages are sent unnecz b ) . h hi . hi hni intred
essarily. The concurrency of messages has a drastic effecQSU sectiop 512 shows this point). This technique intreguc

on the number of useless messages as shown previousl)? bias towards t.hem, so they receive morg messages.
slowing down convergence. In the ranking algorithm con- Upon rgcepthn of a message from nadqhe passive
currency has no impact on convergence speed because aﬁhreads ofj, andyy are activated so thgt and_jg compute
received messages are taken in account. This is because tﬁg_e'r new rank estimate;, andr;,. The esUmate of the
information encapsulated in a message (the attribute values“Ce anode belongs to, follows the computation of the rank

of a node) is guaranteed to be up to date, as long as th&stimate. Messages are not replied, communication is one-
attribute values are constant way, resulting in identical message complexity to JK and

mod-JK.

Concurrency side-effect. In the previous ordering algo-

5.1. Ranking Algorithm Specification 5.2. Theoretical Analysis

The pseudocode of the ranking algorithm is presented in
Figure[b. As opposed to the ordering algorithm of the previ-

ous section, the ranking algorithm does not assign random.oelongs to. This probability depends not only on the num-
initial unalterable values as candidate ranks. Insteal, th ber of attribute exchanges but also on the rank estimaite of

ranking algorithm improves its rank estimate each time & g he proof of Theorefi §.1 please refer to the full version
new message is received. of this paper [Bl.

The ranking algorithm works as follows. Periodically
each node updates its viewV; following an underlying ~ Theorem 5.1 Letp be the normalized rank afand letp be
protocol that provides a uniform random sample (Lihe 3); its estimate. For nodéto exactly estimate its slice with con-
later, we simulate the algorithm using a variant of Cyclon fidence coefficient afoo(1 — )%, the number of messages
protocol. See[]6] for further details. Nodecomputes its  ; must receive is:
rank estimate (and hence its slice) by comparing the at- 9
tribute value of its neighbors to its own attribute valueisTh <Z p(1—p) )
estimate is set to the ratio of the number of nodes with a 3 d ’
lower attribute value thathas seen over the total number of
nodesi has seen (Ling 15). Noddooks at the normalized ~ whered is the distance between the rank estimate afid
rank estimate of all its neighbors. Theéselects the nodg the closest slice boundary, aiid: represents the endpoints
closest to a slice boundary (according to the rank estimatesf the confidence interval.

The following Theorem shows a lower bound on the
probability for a node to accurately estimate the slice it



Initial state of node s

(1) period,, initially set to a constant;;, a value in(0, 1];
a;, the attribute valueb, the closest slice boundary to node
gi, the counter of encountered attribute valugsthe counter

while the distribution of attribute values do not changerove
time (varying distribution is simulated below). The differ
ence between the ordering algorithm and the ranking al-

of lower attribute valuesslice; «— L; N, the view.

Active thread at node ¢

(2) wait(period;)

(3) recompute-view();

(4) dist-min — oo

(5) for j' € N;

6) gi—git1

7 if a;s <a;jthent; — £; +1
8) if dist(a;/,b) < dist-min then

9) dist—min « dist(a;/, b)
(10 g1’
(11) end for

(12) Letj2 be arandom node of/;
(13) send(UPD, a;) to j1

(14) send(UPD, a;) to j2

(15) 7 «— £i/g;

(16) slice < &; ,, suchthat < r; <wu

Passive thread at node ¢ activated upon reception
(17) recv(UPD, a;) from j

(18) if aj <a;thent; —¢; +1

(19) g; = gi +1

(20) r; — £i/g;

gorithm indicates that the ranking algorithm gives a more
precise result (in terms of node to slice assignments) than
the ordering algorithm. More importantly, the slice disor-
der measure obtained by the ordering algorithm is lower
bounded while the one of the ranking algorithm is not. Con-
sequently, this simulation shows that the ordering albanit
might fail in slicing the system while the ranking algorithm
keeps improving its accuracy over time.

Feasibility of the ranking algorithm. Figure@) shows
that the ranking algorithm does not need artificial uniform
drawing of neighbors. Indeed, an underlying view manage-
ment protocol might lead to similar performance results.
In the presented simulation we used an atrtificial protocol,
drawing neighbors randomly at uniform in each cycle of
the algorithm execution, and the variant of the Cyclon view
management protocol presented above. Those underlying
protocols are distinguished on the figure using terms "uni-
form” (for the former one) and "views” (for the latter one).

(21) slice < &; ,, suchthat < r; <wu

This figure shows that both cases give very similar results.
The SDM legend is on the right-handed vertical axis while
the left-handed vertical axis indicates what percentage th
SDM difference represents over the total SDM value. At

To conclude, under reasonable assumptions all node estiany time during the simulation (and for both type of algo-
mate its slice with confidence coefficierttd(1—a)%, after ~ ithms) its value remains within plus or min@%. The two
a finite number of message receipts. Moreover a node closeSPM curves of the ranking algorithm almost overlap. To

to the slice boundary needs more messages than a node f&onclude, the use of an underlying distributed protocd tha
from the boundary. shuffles the view among nodes can be easily used with the

ranking algorithm to provide results similar to the optimal

Figure 5. Dynamic ranking algorithm.

5.3. Simulation Results

Performance comparison in the dynamic case. In Fig-

This section evaluates the ranking algorithm by focus- re[6(d) the two curves represent the slice disorder measure
ing on three different aspects. First, the performance®fth gpiained using the ordering algorithm and the ranking al-
ranking algorithm is compared to the performance of the gorithm. We simulate the churn such that 0.1% of nodes
ordering algorithm in a large-scale system where the distri |eave and join in each of the 200 first cycles. We observe
bution of attribute values does not vary over time. Second, how the SDM converges. The churn is reasonably and pes-
we investigate if sufficient uniformity is achievable in kea simistically tuned compared to recent experimental evalua
ity using a dedicated protocol. Third, the ranking algarith  tjons [20] of the session duration in three well-known P2P
(with and without sliding window technique) and ordering gystems.
algorithm are compared in a dynamic system where the dis- 16 gistribution of the churn is correlated with the at-
tribution of attribute values may change. For this purpose, vy te values: the leaving nodes are the nodes with the
we ran two simulations, one for each algorithms. The sys- et attribute values while the entering nodes have highe
tem contains (initially)10" nodes and each view contains yinyte values than all nodes already in the system. The
10 uniformly drawn ran(_jom .nodes and is updated in each churn introduces a significant disorder in the system which
cycle. The number of slices is 100, and we present the evo-q nters the fast decrease. When, the churn stops, the rank-
lution of the slice disorder measure over time. ing algorithm readapts well the slice assignments: the SDM

starts decreasing again. However, in the ordering algurith
Perfor mance comparison in the static case. Figure@) the convergence of SDM gets stuck. This leads to a poor
compares the ranking algorithm to the ordering algorithm slice assignment accuracy.
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Figure 6. (a) Comparing the ordering algorithm and the ranking algorithms. (b) Comparing the
uniform drawing and the underlying variant of Cyclon. (c) Effect of burst of attribute-correlated
churn. (d) Effect of a low and regular attribute-correlated churn.

In Figure[6(d), the three curves represent the slice dis-in the system. Since the churn increases the attribute value
order measure obtained using the ordering algorithm, thepresent in the system, nodes tend to receive more messages
ranking algorithm, and a modified version of the ranking with higher attribute values and less messages with lower
algorithm with sliding-windows. (The simulation obtained attribute values, which turns out to keep the SDM low, de-
using sliding windows is described in the next subsection.) spite churn. To conclude, the results show that when the
The churn is diminished and made more regular than in thechurn is related to the attribute (e.g., attribute represtre
previous simulation such that 0.1% of nodes leave and joinsession duration, uptime of a node), then the ranking algo-
every 10 cycles. rithm is better suited than the ordering algorithm.

The decrease slope diminishes and the churn effect re-
duces the amount of nodes with a low attribute value while Sliding-window for limiting the SDM increase. In Fig-
increasing the amount of nodes with a large attribute value.ure , the "sliding-window” curve presents a slightly
This unbalance leads to a messy slice assignment, that ismodified version of the ranking algorithm that encompasses
each node must quickly find its new slice to prevent the SDM increase. In the ranking algorithm, upon reception
SDM from increasing. In the ordering algorithm, the SDM of a new message each nadee-computes immediately its
increases faster than in the ranking algorithm. Unlike the rank estimate and the slice it thinks it belongs to. Conse-
ordering algorithm, the ranking one keeps re-estimatieg th quently the messages received long-time ago have as much
rank of each node depending on the attribute values presenimportance as the fresh messages in the estimate Tie



drawback, as it appeared in Figyre $(d) of Secfioh 4.5, ison leave at IRISA, supported by the Spanish MEC under
that if the attribute values are correlated with churn, then grant PR-2006-0193.
the precision of the algorithm might diminish.

To cope with this issue, upon reception of a message,
each node records an information, about whether the at-
tribute value received is larger or lower than the current o
one. Say this information is stored in a first-in first-out [ E. Anceaume, X. Defago, M. Gradinariu, and M. ROV-‘ To-
buffer such that only the most recent values remain. (One wards a theory OT s.elf-organllzatllon. feroc. of 9th Int

. . . - : . Conference on Principles of Distributed Syste@305.
might consider this buffer as a sliding-window.) Right afte o :
having recorded this information, nodean re-compute its [2] D. P. Anderson. Boinc: a system for public-resource com-

K esti di i ! based he bi f puting and storage. I®roc. of the 5th IEEE/ACM Int'l
rank estimate and its slice estimate based on the piece o Workshop on Grid Computingages 4—10, 2004.
information in the buffer. Consequently, this improvement 3]

) : A. Bavier, M. Bowman, B. Chun, D. Culler, S. Karlin,
increases the algorithm tolerance to change. S. Muir, L. Peterson, T. Roscoe, T. Spalink, and M. Wawrzo-

niak. Operating system support for planetary-scale nd¢wor
: services. InSymposium on Networked Systems Design and
6. Conclusion Implementationpages 253266, 2004.
[4] R. Bhagwan, S. Savage, and G. Voelker. Understanding
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