
HAL Id: inria-00201165
https://inria.hal.science/inria-00201165

Submitted on 26 Dec 2007

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed Slicing in Dynamic Systems
Antonio Fernández, Vincent Gramoli, Ernesto Jimenez, Anne-Marie

Kermarrec, Michel Raynal

To cite this version:
Antonio Fernández, Vincent Gramoli, Ernesto Jimenez, Anne-Marie Kermarrec, Michel Raynal. Dis-
tributed Slicing in Dynamic Systems. The 27th International Conference on Distributed Computing
Systems (ICDCS’07), Jun 2007, Toronto, Canada. pp.66. �inria-00201165�

https://inria.hal.science/inria-00201165
https://hal.archives-ouvertes.fr

in
ria

-0
02

01
16

5,
 v

er
si

on
 1

 -
 2

6
D

ec
 2

00
7

Distributed Slicing in Dynamic Systems

Antonio Fernández∗ Vincent Gramoli† Ernesto Jiménez‡ Anne-Marie Kermarrec† Michel Raynal†

∗Universidad Rey
Juan Carlos,

28933 Móstoles, Spain
anto@gsyc.escet.urjc.es

† IRISA, INRIA
Université Rennes 1,

35042 Rennes, France
{vgramoli,akermarr,raynal}@irisa.fr

‡Universidad Politécnica
de Madrid,

28031 Madrid, Spain
ernes@eui.upm.es

Abstract

Peer to peer (P2P) systems are moving from applica-
tion specific architectures to a generic service oriented de-
sign philosophy. This raises interesting problems in con-
nection with providing useful P2P middleware services ca-
pable of dealing with resource assignment and management
in a large-scale, heterogeneous and unreliable environment.
The slicing service, has been proposed to allow for an au-
tomatic partitioning of P2P networks into groups (slices)
that represent a controllable amount of some resource and
that are also relatively homogeneous with respect to that
resource. In this paper we propose two gossip-based al-
gorithms to solve the distributed slicing problem. The first
algorithm speeds up an existing algorithm sorting a set of
uniform random numbers. The second algorithm statisti-
cally approximates the rank of nodes in the ordering. The
scalability, efficiency and resilience to dynamics of both al-
gorithms rely on their gossip-based models. These algo-
rithms are proved viable theoretically and experimentally.

Keywords: Slice, Gossip, Churn, Peer-to-Peer, Aggrega-
tion, Large Scale.

1. Introduction

1.1. Context and Motivations

The peer to peer (P2P) communication paradigm has
now become the prevalent model to build large-scale dis-
tributed applications. On the one hand, P2P protocols in-
tegrate into platforms on top of which several applications,
with various requirements, may cohabit. This leads to the
interesting issue of resource assignment or how to allocate
a set of nodes for a given application. Examples of appli-
cations for such a service are telecommunication, testbed
platform [3], or desktop-grid-like applications [2]. On the

other hand, P2P systems should be able to balance the load
taking into account that capabilities are heterogeneous atthe
peers [19, 4, 20]. This heterogeneity has some drawbacks.
Completely decentralized P2P application, like the origi-
nal Gnutella [8], suffered from congestion when applied to
large-scale systems because nodes with a low bandwidth
capability were queried. Consequently, file sharing appli-
cations [16, 9] tend to request ultrapeers/supernodes (peers
with larger lifetime and bandwidth capabilities), more often
than regular peers. P2P protocols must identify efficiently
and accurately peers with specific capabilities.

Large scale dynamic distributed systems consist of many
participants that can join and leave at will. Identifying peers
in such systems that have a similar level of power or ca-
pability (for instance, in terms of bandwidth, processing
power, storage space, or uptime) in a completely decentral-
ized manner is a difficult task. It is even harder to maintain
this information in the presence of churn. Due to the intrin-
sic dynamics of contemporary P2P systems it is impossi-
ble to obtain accurate information about the capabilities (or
even the identity) of the system participants. Consequently,
no node is able to maintain accurate information about all
the nodes. This disqualifies centralized approaches.

The slicing service [13] enables peers to self-organize
into a partitioning, where partitions (slices) are connected
overlay networks that represent a given percentage of some
resource. The slicing is ordered in the sense that peers are
sorted according to their capabilities expressed by an at-
tribute value. Building upon the work on ordered slicing
of [13], here we focus on the issue ofaccurateslicing. That
is, we focus on improving quality by slicing the network
accurately, and improving stability of slices by minimizing
the impact of the churn. The distributed slicing problem
we tackle in this paper consists in ranking nodes depending
on their relative capability, slicing the network depending
on these capabilities and, most importantly, readapting the
slices continuously to cope with system dynamism.

1.2. Contributions

The paper presents two distributed algorithms to slice the
nodes according to their capability, reflected by an attribute
value. Theses algorithms are robust and lightweight due to
their gossip-based communication pattern. The first algo-
rithm of the paper builds upon the ordered slicing algorithm
proposed in [13] that we call the JK algorithm in the sequel
of this paper. This algorithm speeds up the convergence of
JK by locally computing a disorder measure so that a peer
chooses the neighbor to communicate with in order to max-
imize the chance of decreasing the global disorder measure.

Then, we identify two issues that prevent accurate slicing
and motivate us to find an alternative approach to this algo-
rithm and JK. First, the slicing might be inaccurate. Ran-
dom values are used to calculate which slice a node belongs
to. The accuracy of the slicing fully depends on the unifor-
mity of the random value spread between 0 and 1. (e.g., the
proportion of random values between 0.8 and 1 should be
ideally 20% of the nodes). Second, the previous algorithms
suffer from churn an dynamism when correlated with the
attribute values. For example, if the peers are sorted accord-
ing to their connectivity potential, a portion of the attribute
space (and therefore the random value space) might be sud-
denly affected. The consequence is to skew the distribution
of random values towards high or low values.

The second algorithm is an alternative algorithm solving
these two issues by approximating locally the rank of the
nodes, without using random values. The basic idea is that
each node periodically estimates its rank along the attribute
axis depending on the attributes it have seen so far. Based
on continuously aggregated information, the node can de-
termine the slice it belongs to with a decreasing error mar-
gin. We show that this algorithm provides accurate estima-
tion and recovery ability in presence of attributes-correlated
churn at the price of a slower convergence.

1.3. Outline

The rest of the paper is organized as follows: Section 2
surveys some related work. The system model is presented
in Section 3. The first contribution of an improved ordered
slicing algorithm based on random values is presented in
Section 4 and the second algorithm based on dynamic rank-
ing in Section 5. Section 6 concludes the paper.

2. Related Work

Most of the solutions proposed so far for ordering nodes
come from the context of databases [5, 11], where paral-
lelizing query executions is used to improve efficiency. A
large majority of the solutions in this area rely on central-

ized gathering or all-to-all exchange, which makes them un-
suitable for large-scale networks.

Other related problems are the selection problem and the
φ-quantile search. The selection problem [7] aims at deter-
mining theith smallest element with as few comparisons
as possible. Theφ-quantile search (withφ ∈ (0, 1]) is
the problem to find amongn elements the(φn)th element.
Even though these problems look similar to our problem,
they aim at finding a specific node among all, while the dis-
tributed slicing problem aims at solving a global problem
where each node maintains a piece of information. Addi-
tionally, solutions to the quantile search problem like the
one presented in [17] use an approximation of the system
size. The same holds for the algorithm in [18], which uses
similar ideas to determine the distribution of a utility in or-
der to isolate peers with high capability—i.e., super-peers.

As far as we know, the distributed slicing problem was
studied in a P2P system for the first time in [13]. In this pa-
per, every node draws independently and uniformly a ran-
dom value in the interval(0, 1]. Each of these values serve
as an estimate of normalized indexk/n for the node with
thekth smallest attribute value.

3. Model and Problem Statement

3.1. System model

We consider a systemΣ containing a set ofn uniquely
identified nodes.(The valuen may vary over time.) The set
of identifiers is denoted byI ⊂ N. Each node can leave and
new nodes can join the system at any time, thus the number
of nodes is a function of time. Nodes may also crash. In
this paper, we do not differentiate between a crash and a
voluntary node departure.

Each nodei maintains a fixed attribute valueai ∈ N, re-
flecting the node capability according to a specific metric.
These attribute values over the network might have an ar-
bitrary skewed distribution. Initially, a node has no global
information neither about the structure or size of the system
nor about the attribute values of the other nodes.

We can define a total ordering over the nodes based
on their attribute value, with the node identifier used to
break ties. Formally, we leti precedej if and only if
ai < aj, or ai = aj and i < j. We refer to this totally
ordered sequence as theattribute-based sequence, denoted
by A.sequence. The attribute-based rank of a nodei, de-
noted byαi ∈ {1, ..., n}, is defined as the index ofai in
A.sequence.

3.2. Distributed Slicing Problem

Let Sl,u denote theslicecontaining every nodei whose
normalized rank, namelyαi

n
, satisfiesl < αi

n
≤ u where

0 m

0

1 2 3 4 5 6 7 8 9 10

897 10654321

1

2 m

Figure 1. Slicing of a population based on a
height attribute.

l ∈ [0, 1) is the slice lower boundary andu ∈ (0, 1] is the
slice upper boundary so that all slices represent adjacent in-
tervals(l1, u1], (l2, u2]... Let us assume that we partition
the interval(0, 1] using a set of slices, and this partitioning
is known by all nodes. The distributed slicing problem re-
quires each node to determine the slice it currently belongs
to. Note that the problem stated this way is similar to the or-
dering problem, where each node has to determine its own
index inA.sequence. However, the reference to slices in-
troduces special requirements related to stability and fault
tolerance, besides, it allows for future generalizations when
one considers different types of categorizations.

Figure 1 illustrates an example of a population of 10 per-
sons, to be sorted against their height. A partition of this
population could be defined by two slices of the same size:
the group of short persons, and the group of tall persons.
This is clearly an example where the distribution of attribute
values is skewed towards 2 meters. The rank of each person
in the population and the two slices are represented on the
bottom axis. Each person is represented as a small cross on
these axes.1 Each slice is represented as an oval. The slice
S1 = S0, 1

2

contains the five shortest persons and the slice
S2 = S 1

2
,1 contains the five tallest persons.

Since the distribution of attribute values is unknown and
hard to predict, defining relevant groups is a difficult task.
For example, if the distribution of the human heights were
unknown, then the persons taller than1m could be consid-
ered as tall and the persons shorter than1m could be con-
sidered as short. In this case, the first of the two groups
would be empty, while the second of the two groups would
be as big as the whole system. Conversely, slices partition
the population into subsets representing a predefined por-
tion of this population. Therefore, in the rest of the paper,
we consider slices as defined as a proportion of the network.

3.3. Facing Churn

Node churn, that is, the continuous arrival and depar-
ture of nodes is an intrinsic characteristic of P2P systems
and may significantly impact the outcome, and more specif-
ically the accuracy of the slicing algorithm. The easier case

1Note that the shortest (resp. largest) rank is represented by a cross at
the extreme left (resp. right) of the bottom axis.

is when the distribution of the attribute values of the depart-
ing and arriving nodes are identical. In this case, in princi-
ple, the arriving nodes must find their slices, but the nodes
that stay in the system are mostly able to keep their slice
assignment. Even in this case however, nodes that are close
to the border of a slice may expect frequent changes in their
slice due to the variance of the attribute values, which is
non-zero for any non-constant distribution. If the arriving
and departing nodes have different attribute distributions,
so that the distribution in the actual network of live nodes
keeps changing, then this effect is amplified. However, we
believe that this is a realistic assumption to consider thatthe
churn may be correlated with some specific values (for ex-
ample if the considered attribute is uptime or connectivity).

4. Dynamic Ordering by Exchange of Random
Values

This section proposes an algorithm for the distributed
slicing problem improving upon the original JK algorithm
[13], by considering a local measure of the global disorder
function. In this section we present the algorithm along with
the corresponding analysis and simulation results.

4.1. On Using Random Numbers to Sort
Nodes

This Section presents the algorithm built upon JK. We re-
fer to this algorithm asmod-JK(standing for modified JK).
In JK, each nodei generates a real numberri ∈ (0, 1] in-
dependently and uniformly at random. The key idea is to
sort these random numbers with respect to the attribute val-
ues by swapping (i.e., exchanging) these random numbers
between nodes, so that ifai < aj then ri < rj . Even-
tually, the attribute values (that are fixed) and the random
values (that are exchanged) should be sorted in the same or-
der. That is, each node would like to obtain thexth largest
random number if it owns thexth largest attribute value.
Let R.sequence denote therandom sequenceobtained by
ordering all nodes according to their random number. Let
ρi(t) denote the index of nodei in R.sequence at time t.
When not required, the time parameter is omitted.

Once sorted, the random values are used to determine the
portion of the network a peer belongs to.

4.2. Definitions

Every nodei keeps track of some neighbors and their
age. Theage of neighborj is a timestamp,tj , set to 0
whenj becomes a neighbor ofi. Thus, nodei maintains
an array containing the id, the age, the attribute value, and
the random value of its neighbors. This array, denotedNi,
is called theview of nodei. The views of all nodes have

the same size, denoted byc. A nodei participates in the
algorithm by exchanging its rank with amisplacedneigh-
bor in its view. Neighborj is misplaced if and only if
(aj − ai)(rj − ri) < 0. In [13], a measure of the rela-
tive disorder of sequenceR.sequence with respect to se-
quenceA.sequence was introduced. We call it theglobal
disorder measure (GDM)and it is defined, for any timet,
asGDM (t) = 1

n

∑

i(αi − ρ(t)i)
2. The minimal value of

GDM is 0, which is obtained whenρ(t)i = αi for all nodes
i. In this case the attribute-based index of a node is equal
to its random value index, indicating that random values are
ordered.

4.3. Improved Ordering Algorithm

In this algorithm, each nodei searches its own viewNi

for misplaced neighbors. Then, one of them is chosen to
swap random value with. This process is repeated until
there is no global disorder. In this version of the algorithm,
we provide each node with the capability of measuring dis-
order locally. This leads to a new heuristic for each node to
determine the neighbor to exchange with which decreases
most the disorder. Referring to this disorder measure as a
criterion, the decrease of the global criterion is related to the
decrease of local criteria, similarly to [1].

For a nodei to evaluate the gain of exchanging with a
nodej of its current viewNi, we define itslocal disor-
der measure(abbreviatedLDMi). Let LA.sequencei and
LR.sequencei be the local attribute sequence and the local
random sequence of nodei, respectively. These sequences
are computed locally byi using the informationNi ∪ {i}.
Similarly to A.sequence andR.sequence, these are the se-
quences of neighbors where each node is ordered according
to its attribute value and random number, respectively. Let,
for any j ∈ Ni ∪ {i}, ℓρj(t) andℓαj(t) be the indices of
rj andaj in sequencesLR.sequencei andLA.sequencei,
respectively, at time(t). At any timet, the local disorder
measure of nodei is defined as:

LDM i(t) =
1

c + 1

∑

j∈Ni(t)∪{i}

(ℓαj(t) − ℓρj(t))
2.(1)

We denote byGi,j(t+1) = LDM i(t)−LDM i(t+1), the
reduction on this measure thati obtains after exchanging its
random value with nodej between timet andt + 1.

The heuristic used chooses for nodei the misplaced
neighborj that maximizesGi,j(t + 1).

Sampling uniformly at random. The algorithm relies on
the fact that potential misplaced nodes are found so that they
can swap their random numbers thereby increasing order. If
the global disorder is high, it is very likely that any given
node has misplaced neighbors in its view to exchange with.

Initial state of node i
(1) period i, initially set to a constant;
ri, a random value chosen in(0, 1]; ai, the attribute value;
slicei ← ⊥, the slicei belongs to;Ni, the view;
gainj′ , a real value indicating the gain achieved by

exchanging withj′;
gain-max = 0, a real.

Active thread at node i
(2) wait(periodi)
(3) recompute-view()i

(4) for j′ ∈ Ni

(5) if gainj′ ≥ gain-max then
(6) gain-max ← gainj′

(7) j ← j′

(8) end for
(9) send(REQ, ri, ai) to j
(10) recv(ACK, r′j) from j

(11) rj ← r′j
(12) if (aj − ai)(rj − ri) < 0 then
(13) ri ← rj

(14) slicei ← Sl,u such thatl < ri ≤ u

Passive thread at node i activated upon reception
(15) recv(REQ, rj , aj) from j
(16) send(ACK, ri) to j
(17) if (aj − ai)(rj − ri) < 0 then
(18) ri ← rj

(19) slicei ← Sl,u such thatl < ri ≤ u

Figure 2. Dynamic ordering algorithm.

Nevertheless, as the system gets ordered, it becomes more
unlikely for a nodei to have misplaced neighbors. In this
stage the way the view is composed plays a crucial role: if
fresh samples from the network are not available, conver-
gence can be slower than optimal.

Several protocols may be used to provide a random and
dynamic sampling in a P2P system such as Newscast [15],
Cyclon [21] or Lpbcast [12]. They differ mainly by their
closenessto the uniform random sampling of the neighbors
and the way they handle churn. In this paper, we chose to
use a variant of the Cyclon protocol, to construct and update
the views, as it is reportedly the best approach to achieve a
uniform random neighbor set for all nodes [10].

Description of the algorithm. The algorithm is presented
in Figure 2. The active thread at nodei runs the member-
ship (gossiping) procedure (recompute-view()i) and the ex-
change of random values periodically. As motivated above,
the membership procedure is similar to the Cyclon algo-
rithm. This variant of Cyclon exchanges all entries of the
view at each step and uses two additional parameters: the
attribute value and the random value. For the detailed pseu-
docode, please refer to the full version of this paper [6].

The algorithm for exchanging random values from node
i starts by measuring the ordering that can be gained by
swapping with each neighbor (Lines 4–8). Then,i chooses

the neighborj ∈ Ni that maximizes gainGi,k for any of
its neighbork. Formally,i finds j ∈ Ni such that for any
k ∈ Ni, we have

Gi,j(t + 1) ≥ Gi,k(t + 1).

In Figure 2 of nodei, we refer togainj as the value of
ℓαi(t)ℓρj(t)+ℓαj(t)ℓρi(t)−ℓαj(t)ℓρj(t). This expression
is directly obtained from equation (1), see the full version
of this paper [6] for furthter details.

From this point on,i exchanges its random valueri

with the random valuerj of nodej (Line 11). The pas-
sive threads are executed upon reception of a message. In
Figure 2, whenj receives the random valueri of nodei,
it sends back its own random valuerj for the exchange to
occur (Lines 15–16). Observe that the attribute value ofi
is also sent toj, so thatj can check if it is correct to ex-
change before updating its own random number (Lines 17–
18). Nodei does not need to receive attribute valueaj of
j, sincei already has this information in its view and the
attribute value of a node never changes over time.

4.4. Analysis of Slice Inaccuracy

In mod-JK, as in JK, the current random numberri of
a nodei determines the slicesi of the node. The objec-
tive of both algorithms is to reduce the global disorder as
quickly as possible. Algorithm mod-JK consists in choos-
ing one neighbor among the possible neighbors that would
have been chosen in JK, plus the GDM of JK has been
shown to fit an exponential decrease. Consequently mod-
JK experiences also an exponential decrease of the global
disorder. Eventually, JK and mod-JK ensure that the disor-
der has fully disappeared. For further information, please
refer to [13].

However, the accuracy of the slices heavily depends on
the uniformity of the random value spread between 0 and
1. It may happen, that the distribution of the random values
is such that some peers decide upon a wrong slice. Even
more problematic is the fact that this situation is unrecov-
erable unless a new random value is drawn for all nodes.
This may be considered as an inherent limitation of the ap-
proach. For example, consider a system of size 2, where
nodes 1 and 2 have the random valuesr1 = 0.1, r2 = 0.4.
If we are interested in creating two slicesS1 andS2 of equal
size (S1 = S0, 1

2

andS2 = S 1

2
,1), both nodes will wrongly

believe to belong to the same sliceS1, sincer1 andr2 be-
long to(0, 1

2]. This wrong estimate holds even after perfect
ordering of the random values.

Therefore, an important step is to characterize the inac-
curacy of slice assignment and how likely it may happen.
To this end, we bound the deviation of random values dis-
tribution from the mean, and we lower bound the probability
that this happen with only two slices. The following result

bounds, with high probability, the number of nodes that can
be misplaced in the system. For the proof of Lemma 4.1
please refer to the full version of this paper [6].

Lemma 4.1 For any β ∈ (0, 1], a sliceSp of lengthp ∈
(0, 1] has a number of peersX ∈ [(1 − β)np, (1 + β)np]
with probability at least1 − ǫ as long asp ≥ 3

β2n
ln(2/ǫ).

To measure the effect discussed above during the simu-
lation experiments, we introduce the slice disorder measure
(SDM) as the sum over all nodesi of the distance between
the slicei actually belongs to and the slicei believes it be-
longs to. For example (in the case where all slices have the
same size), if nodei belongs to the1st slice (according to
its attribute value) while it thinks it belongs to the3rd slice
(according to its rank estimate) then the distance for nodei
is |1 − 3| = 2. Formally, for any nodei, let Sui,li be the
actual correct slice of nodei and letS

ûi,l̂i
(t) be the slicei

estimates as its slice at timet. The slice disorder measure is
defined as:

SDM (t) =
∑

i

1

ui − li

∣

∣

∣

∣

∣

ui + li
2

−
ûi + l̂i

2

∣

∣

∣

∣

∣

.

SDM (t) is minimal (equals 0) if for all nodesi, we have
S

ûi,l̂i
(t) = Sui,li .

4.5. Simulation Results

We present simulation results using PeerSim [14], us-
ing a simplified cycle-based simulation model, where all
messages exchanges are atomic, so messages never over-
lap. First, we compare the performance of the two algo-
rithms: JK and mod-JK. Second, we study the impact of
concurrency that is ignored by the cycle-based simulations.

Performance comparison. We compare the time taken
by these algorithms to sort the random values according to
the attribute values (i.e., the node with thejth largest at-
tribute value of the system value obtains thejth random
value). In order to evaluate the convergence speed of each
algorithm, we use the slice disorder measure as defined in
Section 4.4.

We simulated104 participants in 100 equally sized slices
(when unspecified), each with a view sizec = 20. Fig-
ure 4.5 presents the evolution of the slice disorder measure
over time for JK, and mod-JK.

Figure 4.5 shows the slice disorder measure to compare
the convergence speed of our algorithm to that of JK with 10
equally sized slices. Our algorithm converges significantly
faster than JK. Note that none of the algorithm reaches zero
SDM, since they are both based on the same idea of sorting
randomly generated values. Besides, since they both used

100

1000

10000

100000

0 10 20 30 40 50 60

S
lic

e
di

so
rd

er
 m

ea
su

re

Time (Cycles)

JK
modified JK

Figure 3. Slice disorder measure over time.

an identical set of randomly generated values, both con-
verge to the same SDM. Note that for the sake of fairness,
JK and mod-JK are compared using the same underlying
view management protocol in our simulation: the variant of
Cyclon.

Concurrency. The simulations are cycle-based and at
each cycle an algorithm step is done atomically so that
no other execution is concurrent. More precisely, the al-
gorithms are simulated such that in each cycle, each node
updates its view before sending its random value or its at-
tribute value. Given this implementation, the cycle-based
simulator does not allow us to realistically simulate con-
currency, and a drawback is that view is up-to-date when
a message is sent. In the following we artificially intro-
duce concurrency (so that view might be out-of-date) into
the simulator and show that it has only a slight impact on
the convergence speed.

Adding concurrency raises some realistic problems due
to the use of non-atomic push-pull [12] in each message ex-
change. That is, concurrency might lead to other problems
because of the potential staleness of views: unsuccessful
swaps due to useless messages. Technically, the view of
nodei might indicate thatj has a random valuer while this
value is no longer up-to-date. This happens ifi has lastly
updated its view beforej swapped its random value with
anotherj′. Moreover, due to asynchrony, it could happen
that by the time a message is received this message has be-
come useless. Assume that nodei sends its random value
ri to j in order to obtainrj at time t andj receives it by
time t + δ. With no loss of generality assumeri > rj .
Then if j swaps its random value withj′ such thatr′j > ri

between timet andt + δ, then the message ofi becomes
uselessand the expected swap does not occur (we call this
anunsuccessful swap).

Figure 4(b) indicates the impact of concurrent message
exchange on the convergence speed. while Figure 4(a)

shows the amount of useless messages that are sent. Now,
we explain how the concurrency is simulated. Let theover-
lapping messagesbe a set of messages that mutually over-
lap: it exists, for any couple of overlapping messages, at
least one instant at which they are both in-transit. For each
algorithm we simulated(i) full concurrency: in a given cy-
cle, all messages are overlapping messages; and(ii) half
concurrency: in a given cycle, each message is an overlap-
ping message with probability12 . Generally, we see that
increasing the concurrency increases the number of useless
messages. Moreover, in the modified version of JK, more
messages are ignored than in the original JK algorithm.
This is due to the fact that some nodes (the most misplaced
ones) are more likely targeted which increases the number
of concurrent messages arriving at the same nodes. Since a
nodei ignored more likely a message when it receives more
messages during the same cycle, it comes out that concen-
trating message sending at some targets increases the num-
ber of useless messages.

Figure 4(b) compares the convergence speed under full
concurrency and no concurrency. Full-concurrency impacts
on the convergence speed very slightly.

5. Dynamic Ranking by Sampling of Attributes

In this section we propose an alternative algorithm for
the distributed slicing problem. This algorithm circumvents
the problems identified in the previous approach by contin-
uously ranking nodes based on observing attribute value in-
formation. Besides, this algorithm is not sensitive to churn
even if it is correlated with attribute values. In the remain-
ing part of the paper we refer to this new algorithm as the
ranking algorithm while referring to JK and mod-JK as the
ordering algorithms.

Impact of dynamics correlated with attribute. As al-
ready mentioned, the ordering algorithms rely on the fact
that random values are uniformly distributed. However, if
the attribute values are not constant but correlated with the
dynamic behavior of the system, the distribution of random
values may change from uniform to skewed quickly. For in-
stance, assume that each node maintains an attribute value
that represents its own lifetime. Although the algorithm is
able to quickly sort random values, so nodes with small life-
time will obtain the small random values, it is more likely
that these nodes leave the system sooner than other nodes.
This results in a higher concentration of high random val-
ues and a large population of the nodes wrongly estimate
themselves as being part of the higher slices.

Inaccurate slice assignments. As discussed in previous
sections in detail, slice assignments will typically be im-
perfect even when the random values are perfectly ordered.

 0

 5

 10

 15

 20

 25

 30

 35

905010

P
er

ce
nt

ag
e

of
 u

ns
uc

ce
ss

fu
l s

w
ap

s

Time (cycles)

JK - half concurrency
JK - full concurrency

modified JK - half concurrency
modified JK - full concurrency

(a)

1000

10000

100000

1e+06

0 20 40 60 80 100

S
lic

e
di

so
rd

er
 m

ea
su

re

Time (Cycles)

modified JK - no concurrency
modified JK - full concurrency

(b)

Figure 4. (a) Percentage of unsuccessful swaps. (b) Convergence speed under high concurrency.

Since the ranking approach does not rely on ordering ran-
dom nodes, this problem is not raised: the algorithm guar-
antees eventually perfect assignment in a static environ-
ment.

Concurrency side-effect. In the previous ordering algo-
rithms, a non negligible amount of messages are sent unnec-
essarily. The concurrency of messages has a drastic effect
on the number of useless messages as shown previously,
slowing down convergence. In the ranking algorithm con-
currency has no impact on convergence speed because all
received messages are taken in account. This is because the
information encapsulated in a message (the attribute value
of a node) is guaranteed to be up to date, as long as the
attribute values are constant.

5.1. Ranking Algorithm Specification

The pseudocode of the ranking algorithm is presented in
Figure 5. As opposed to the ordering algorithm of the previ-
ous section, the ranking algorithm does not assign random
initial unalterable values as candidate ranks. Instead, the
ranking algorithm improves its rank estimate each time a
new message is received.

The ranking algorithm works as follows. Periodically
each nodei updates its viewNi following an underlying
protocol that provides a uniform random sample (Line 3);
later, we simulate the algorithm using a variant of Cyclon
protocol. See [6] for further details. Nodei computes its
rank estimate (and hence its slice) by comparing the at-
tribute value of its neighbors to its own attribute value. This
estimate is set to the ratio of the number of nodes with a
lower attribute value thati has seen over the total number of
nodesi has seen (Line 15). Nodei looks at the normalized
rank estimate of all its neighbors. Then,i selects the nodej1
closest to a slice boundary (according to the rank estimates

of its neighbors). Nodei selects also a random neighborj2
among its view (Line 12). When those two nodes are se-
lected,i sends an update message, denoted by a flagUPD,
to j1 andj2 containing its attribute value (Line 13–14).

The reason why a node close to the slice boundary is
selected as one of the contacts is that such nodes need more
samples to accurately determine which slice they belong to
(subsection 5.2 shows this point). This technique introduces
a bias towards them, so they receive more messages.

Upon reception of a message from nodei, the passive
threads ofj1 andj2 are activated so thatj1 andj2 compute
their new rank estimaterj1 and rj2 . The estimate of the
slice a node belongs to, follows the computation of the rank
estimate. Messages are not replied, communication is one-
way, resulting in identical message complexity to JK and
mod-JK.

5.2. Theoretical Analysis

The following Theorem shows a lower bound on the
probability for a nodei to accurately estimate the slice it
belongs to. This probability depends not only on the num-
ber of attribute exchanges but also on the rank estimate ofi.
For the proof of Theorem 5.1 please refer to the full version
of this paper [6].

Theorem 5.1 Letp be the normalized rank ofi and letp̂ be
its estimate. For nodei to exactly estimate its slice with con-
fidence coefficient of100(1−α)%, the number of messages
i must receive is:

(

Zα

2

√

p̂(1 − p̂)

d

)2

,

whered is the distance between the rank estimate ofi and
the closest slice boundary, andZα

2
represents the endpoints

of the confidence interval.

Initial state of node i
(1) period i, initially set to a constant;ri, a value in(0, 1];
ai, the attribute value;b, the closest slice boundary to nodei;
gi, the counter of encountered attribute values;li, the counter
of lower attribute values;slicei ← ⊥;Ni, the view.

Active thread at node i
(2) wait(periodi)
(3) recompute-view()i

(4) dist-min ←∞
(5) for j′ ∈ Ni

(6) gi ← gi + 1
(7) if aj′ ≤ ai then ℓi ← ℓi + 1
(8) if dist(aj′ , b) < dist-min then
(9) dist-min ← dist(aj′ , b)
(10) j1 ← j′

(11) end for
(12) Letj2 be a random node ofNi

(13) send(UPD, ai) to j1
(14) send(UPD, ai) to j2
(15) ri ← ℓi/gi

(16) slice ← Sl,u such thatl < ri ≤ u

Passive thread at node i activated upon reception
(17) recv(UPD, aj) from j
(18) if aj ≤ ai then ℓi ← ℓi + 1
(19) gi ← gi + 1
(20) ri ← ℓi/gi

(21) slice ← Sl,u such thatl < ri ≤ u

Figure 5. Dynamic ranking algorithm.

To conclude, under reasonable assumptions all node esti-
mate its slice with confidence coefficient100(1−α)%, after
a finite number of message receipts. Moreover a node closer
to the slice boundary needs more messages than a node far
from the boundary.

5.3. Simulation Results

This section evaluates the ranking algorithm by focus-
ing on three different aspects. First, the performance of the
ranking algorithm is compared to the performance of the
ordering algorithm in a large-scale system where the distri-
bution of attribute values does not vary over time. Second,
we investigate if sufficient uniformity is achievable in real-
ity using a dedicated protocol. Third, the ranking algorithm
(with and without sliding window technique) and ordering
algorithm are compared in a dynamic system where the dis-
tribution of attribute values may change. For this purpose,
we ran two simulations, one for each algorithms. The sys-
tem contains (initially)104 nodes and each view contains
10 uniformly drawn random nodes and is updated in each
cycle. The number of slices is 100, and we present the evo-
lution of the slice disorder measure over time.

Performance comparison in the static case. Figure 6(a)
compares the ranking algorithm to the ordering algorithm

while the distribution of attribute values do not change over
time (varying distribution is simulated below). The differ-
ence between the ordering algorithm and the ranking al-
gorithm indicates that the ranking algorithm gives a more
precise result (in terms of node to slice assignments) than
the ordering algorithm. More importantly, the slice disor-
der measure obtained by the ordering algorithm is lower
bounded while the one of the ranking algorithm is not. Con-
sequently, this simulation shows that the ordering algorithm
might fail in slicing the system while the ranking algorithm
keeps improving its accuracy over time.

Feasibility of the ranking algorithm. Figure 6(b) shows
that the ranking algorithm does not need artificial uniform
drawing of neighbors. Indeed, an underlying view manage-
ment protocol might lead to similar performance results.
In the presented simulation we used an artificial protocol,
drawing neighbors randomly at uniform in each cycle of
the algorithm execution, and the variant of the Cyclon view
management protocol presented above. Those underlying
protocols are distinguished on the figure using terms ”uni-
form” (for the former one) and ”views” (for the latter one).
This figure shows that both cases give very similar results.
The SDM legend is on the right-handed vertical axis while
the left-handed vertical axis indicates what percentage the
SDM difference represents over the total SDM value. At
any time during the simulation (and for both type of algo-
rithms) its value remains within plus or minus7%. The two
SDM curves of the ranking algorithm almost overlap. To
conclude, the use of an underlying distributed protocol that
shuffles the view among nodes can be easily used with the
ranking algorithm to provide results similar to the optimal.

Performance comparison in the dynamic case. In Fig-
ure 6(c) the two curves represent the slice disorder measure
obtained using the ordering algorithm and the ranking al-
gorithm. We simulate the churn such that 0.1% of nodes
leave and join in each of the 200 first cycles. We observe
how the SDM converges. The churn is reasonably and pes-
simistically tuned compared to recent experimental evalua-
tions [20] of the session duration in three well-known P2P
systems.

The distribution of the churn is correlated with the at-
tribute values: the leaving nodes are the nodes with the
lowest attribute values while the entering nodes have higher
attribute values than all nodes already in the system. The
churn introduces a significant disorder in the system which
counters the fast decrease. When, the churn stops, the rank-
ing algorithm readapts well the slice assignments: the SDM
starts decreasing again. However, in the ordering algorithm,
the convergence of SDM gets stuck. This leads to a poor
slice assignment accuracy.

1000

10000

100000

1e+06

0 100 200 300 400 500 600 700 800 900 1000

S
lic

e
di

so
rd

er
 m

ea
su

re

Time (Cycles)

ranking SDM
ordering SDM

(a)

-100

-50

0

50

100

0 100 200 300 400 500 600 700 800 900 1000
1000

10000

100000

1e+06

P
er

ce
nt

ag
e

of
 d

ev
ia

tio
n

S
lic

e
di

so
rd

er
 m

ea
su

re

Time (Cycles)

deviation (%)
SDM (uniform)

SDM (views)

(b)

 10000

 100000

 1e+06

 1e+07

 0 100 200 300 400 500 600 700 800 900 1000

S
lic

e
di

so
rd

er
 m

ea
su

re

Time (cycles)

ranking
JK

(c)

1000

10000

100000

1e+06

0 100 200 300 400 500 600 700 800 900 1000

S
lic

e
di

so
rd

er
 m

ea
su

re

Time (Cycles)

ordering
ranking

sliding-window

(d)

Figure 6. (a) Comparing the ordering algorithm and the ranking algorithms. (b) Comparing the
uniform drawing and the underlying variant of Cyclon. (c) Effect of burst of attribute-correlated
churn. (d) Effect of a low and regular attribute-correlated churn.

In Figure 6(d), the three curves represent the slice dis-
order measure obtained using the ordering algorithm, the
ranking algorithm, and a modified version of the ranking
algorithm with sliding-windows. (The simulation obtained
using sliding windows is described in the next subsection.)
The churn is diminished and made more regular than in the
previous simulation such that 0.1% of nodes leave and join
every 10 cycles.

The decrease slope diminishes and the churn effect re-
duces the amount of nodes with a low attribute value while
increasing the amount of nodes with a large attribute value.
This unbalance leads to a messy slice assignment, that is,
each node must quickly find its new slice to prevent the
SDM from increasing. In the ordering algorithm, the SDM
increases faster than in the ranking algorithm. Unlike the
ordering algorithm, the ranking one keeps re-estimating the
rank of each node depending on the attribute values present

in the system. Since the churn increases the attribute values
present in the system, nodes tend to receive more messages
with higher attribute values and less messages with lower
attribute values, which turns out to keep the SDM low, de-
spite churn. To conclude, the results show that when the
churn is related to the attribute (e.g., attribute represents the
session duration, uptime of a node), then the ranking algo-
rithm is better suited than the ordering algorithm.

Sliding-window for limiting the SDM increase. In Fig-
ure 6(d), the ”sliding-window” curve presents a slightly
modified version of the ranking algorithm that encompasses
SDM increase. In the ranking algorithm, upon reception
of a new message each nodei re-computes immediately its
rank estimate and the slice it thinks it belongs to. Conse-
quently the messages received long-time ago have as much
importance as the fresh messages in the estimate ofi. The

drawback, as it appeared in Figure 6(d) of Section 4.5, is
that if the attribute values are correlated with churn, then
the precision of the algorithm might diminish.

To cope with this issue, upon reception of a message,
each node records an information, about whether the at-
tribute value received is larger or lower than the current
one. Say this information is stored in a first-in first-out
buffer such that only the most recent values remain. (One
might consider this buffer as a sliding-window.) Right after
having recorded this information, nodei can re-compute its
rank estimate and its slice estimate based on the piece of
information in the buffer. Consequently, this improvement
increases the algorithm tolerance to change.

6. Conclusion

Allocating resources to applications and isolating capa-
ble nodes require specific algorithms that partition the net-
work in a relevant way. The sorting algorithm [13] provided
a first attempt to “slice” the network.

In this paper, we first proposed the ordering algorithm
that improves over this sorting algorithm. This improve-
ment comes from a judicious choice of candidate nodes to
swap values. Second, we showed that the existing global
disorder measure can not indicate whether nodes find their
slice. That is, we defined the slice disorder measure to mea-
sure how nodes wrongly estimate their slice. Using this new
measure, two problems related to the use of static random
values arose. The first one refers to the fact that slice as-
signment heavily depends on the degree of uniformity of
the initial random value. The second one is related to the
fact that the churn (or failures) might be correlated with the
attribute, leading to a wrong slice assignment.

Last but not least, we provided a ranking algorithm to
solve these problems This algorithm minimizes the effect
of correlated churn on slice disorder and recovers efficiently
after a period of correlated churn. The convergence speed
up of the ordering algorithm and the accuracy of the rank-
ing algorithm are proved through theoretical analysis and
simulations.

Acknowledgment

We wish especially to thank Márk Jelasity for the fruit-
ful discussions we had and the time he spent improving this
paper. We are also thankful to Spyros Voulgaris for having
kindly shared his work on the Cyclon development. The
work of A. Fernández and E. Jiménez was partially sup-
ported by the Spanish MEC under grants TIN2005-09198-
C02-01, TIN2004-07474-C02-02, and TIN2004-07474-
C02-01, and the Comunidad de Madrid under grant S-
0505/TIC/0285. The work of A. Fernández was done while

on leave at IRISA, supported by the Spanish MEC under
grant PR-2006-0193.

References

[1] E. Anceaume, X. Defago, M. Gradinariu, and M. Roy. To-
wards a theory of self-organization. InProc. of 9th Int’l
Conference on Principles of Distributed Systems, 2005.

[2] D. P. Anderson. Boinc: a system for public-resource com-
puting and storage. InProc. of the 5th IEEE/ACM Int’l
Workshop on Grid Computing, pages 4–10, 2004.

[3] A. Bavier, M. Bowman, B. Chun, D. Culler, S. Karlin,
S. Muir, L. Peterson, T. Roscoe, T. Spalink, and M. Wawrzo-
niak. Operating system support for planetary-scale network
services. InSymposium on Networked Systems Design and
Implementation, pages 253–266, 2004.

[4] R. Bhagwan, S. Savage, and G. Voelker. Understanding
availability. In Proc. of the 2nd Int’l Workshop on Peer-to-
Peer Systems, pages 256–267, 2003.

[5] D. J. DeWitt, J. F. Naughton, and D. A. Schneider. Parallel
sorting on a shared-nothing architecture using probabilistic
splitting. InProc. of the 1st Int’l Conference on Parallel and
Distributed Information Systems, pages 280–291, 1991.

[6] A. Fernández, V. Gramoli, E. Jiménez, A.-M. Kermarrec,
and M. Raynal. Distributed slicing in dynamic systems.
Technical Report 6051, IRISA, 2006.

[7] R. W. Floyd and R. L. Rivest. Expected time bounds for
selection.Commun. ACM, 18(3):165–172, 1975.

[8] Gnutella homepage. http://www.gnutella.com.
[9] The gnutella protocol development homepage.

http://www.the-gdf.org.
[10] K. Iwanicki. Gossip-based dissemination of time. Master’s

thesis, Warsaw University - Vrije Universiteit Amsterdam,
2005.

[11] B. Iyer, G. Ricard, and P. Varman. Percentile finding algo-
rithm for multiple sorted runs. InProc. of the 15th Int’l Con-
ference on Very Large Data Bases, pages 135–144, August
1989.

[12] M. Jelasity, R. Guerraoui, A.-M. Kermarrec, and M. van
Steen. The peer sampling service: experimental evaluation
of unstructured gossip-based implementations. InProc. of
the 5th ACM/IFIP/USENIX Int’l Conference on Middleware,
pages 79–98, 2004.

[13] M. Jelasity and A.-M. Kermarrec. Ordered slicing of very
large-scale overlay networks. InProc. of the 6th IEEE In-
ternational Conference on Peer-to-Peer Computing, pages
117–124, 2006.

[14] M. Jelasity, A. Montresor, and O. Babaoglu. A modular
paradigm for building self-organizing peer-to-peer applica-
tions. In Engineering Self-Organising Systems: Nature-
Inspired Approaches to Software Engineering, pages 265–
282, 2004.

[15] M. Jelasity, A. Montresor, and O. Babaoglu. Gossip-based
aggregation in large dynamic networks.ACM Transactions
on Computer Systems, 23(3):219–252, 2005.

[16] Kazaa homepage. http://www.kazaa.com.

[17] D. Kempe, A. Dobra, and J. Gehrke. Gossip-based com-
putation of aggregrate information. InProc. of 44th An-
nual IEEE Symposium of Foundations of Computer Science,
pages 482–491, 2003.

[18] J. Sacha, J. Dowling, R. Cunningham, and R. Meier. Using
aggregation for adaptive super-peer discovery on the gradi-
ent topology. InIEEE Int’l Workshop on Self-Managed Net-
works, Systems and Services, pages 77–90, 2006.

[19] S. Saroiu, K. P. Gummadi, and S. D. Gribble. A measure-
ment study of peer-to-peer file sharing systems. InProc.
of Multimedia Computing and Networking, volume 4673,
pages 156–170, 2002.

[20] D. Stutzbach and R. Rejaie. Understanding churn in peer-to-
peer networks. InInternet Measurement Conference, pages
189–202, 2006.

[21] S. Voulgaris, D. Gavidia, and M. van Steen. Cyclon: In-
expensive membership management for unstructured p2p
overlays. Journal of Network and Systems Management,
13(2):197–217, 2005.

