
HAL Id: inria-00202930
https://inria.hal.science/inria-00202930

Submitted on 8 Jan 2008

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

The stability problem for verification of concurrent
object-oriented programs
Marieke Huisman, Clément Hurlin

To cite this version:
Marieke Huisman, Clément Hurlin. The stability problem for verification of concurrent object-oriented
programs. Verification and Analysis of Multi-threaded Java-like Programs, Sep 2007, Lisbonne, Por-
tugal. pp.52. �inria-00202930�

https://inria.hal.science/inria-00202930
https://hal.archives-ouvertes.fr


VAMP 2007

The Stability Problem for Verification of
Concurrent Object-Oriented Programs

Marieke Huisman1,2

INRIA Sophia Antipolis
2004, route des Lucioles BP 93
06902 Sophia Antipolis, France

Clément Hurlin1,3

INRIA Sophia Antipolis
2004, route des Lucioles BP 93
06902 Sophia Antipolis, France

Abstract

Modular static verification of concurrent object-oriented programs remains a challenge. This paper discusses
the impact of concurrency on the use and meaning of behavioural specifications, and in particular on method
contracts and class invariants.
Atomicity of methods is often advocated as a solution to the problem of verification of multithreaded
programs. However, in a design-by-contract framework atomicity in itself is not sufficient, because it does
not consider specifications. Instead, we propose to use the notion of stability of method contracts to allow
sound modular reasoning about method calls. A contract is stable if it cannot be broken by interferences
from concurrent threads. We explain why stability of contracts cannot always be shown directly, and we
speculate about different approaches to prove stability. Finally, we outline how a proof obligation generator
for sequential programs can be extended to one for concurrent programs by using stability information.
This paper does not present a full technical solution to the problem, but instead shows how it can be
decomposed into several smaller subproblems. For each subproblem, a solution is sketched, but the technical
details still need to be worked out.

Keywords: Multithreading, Design by Contract, stability.

1 Introduction

With the high demands on performance of software, the use of concurrency has
become compulsory. Unfortunately, often the gains in speed are cancelled out by
the bugs due to the use of concurrency. Therefore, formal techniques to analyse
and reason about concurrent programs are necessary. Model checking provides a
partial solution, but because of the state space explosion, this often does not scale

1 This work is partially funded by the IST programme of the EC, under the IST-FET-2005-015905 Mo-
bius project, and the French national research organisation (ANR), under the ANR-06-SETIN-010 ParSec
project.
2 Email: marieke.huisman@sophia.inria.fr
3 Email: clement.hurlin@sophia.inria.fr

This paper is electronically published in
Electronic Notes in Theoretical Computer Science

URL: www.elsevier.nl/locate/entcs

mailto:marieke.huisman@sophia.inria.fr
mailto:clement.hurlin@sophia.inria.fr


Huisman and Hurlin

up to complex programs and properties. Instead, we propose to use logic-based
techniques for the verification of concurrent programs. We focus in particular on
the verification of multithreaded Java programs, where threads communicate via a
shared global memory. In the literature two classical approaches exist to verify such
programs: the non-modular Owicki-Gries method [17], and Jones’s modular rely-
guarantee method [9]. However, both approaches require one to write very detailed
specifications about the interactions between the different threads, and therefore
they do not scale.

Instead, we take a different approach, and identify as many code fragments as
possible that can be verified sequentially. In particular, we use method and class
specifications, as advocated in the Design by Contract approach [14] (and its Java-
instantiation JML [11]), and discuss the impact of multithreading on their use and
verification. The basic idea behind Design by Contract is that preconditions impose
conditions on clients, while postconditions provide guarantees. In addition, class
invariants specify properties that hold throughout the execution.

The use of such specifications provides the basis for sound modular verification of
sequential object-oriented programs [15]: when verifying a code fragment containing
a method call, the method call can be abstracted by its specification. Consider for
example the following code fragment, annotated with JML.

//@ requires P;
//@ ensures Q;
void call(){ ... }

void method(MyObject o){
o.call();
// (1) }

When reasoning sequentially, one can assume that Q[o/this] holds after
o.call() (at (1)). However, in a multithreaded setting this need not be the case:
any other thread simultaneously executing within the object pointed to by o can
change the validity of Q[o/this], and in particular, Q[o/this] might be inval-
idated between the end of call and the continuation of method. Therefore we
propose to use the notion of stable contract (cf. [3]), to indicate that a contract
cannot be invalidated by another thread. Contract stability is crucial for the verifi-
cation of multithreaded programs: after a method call, a stable postcondition can
be used as a precondition for the next statement, whereas an unstable postcondition
must be discarded. Similarly, a method implementation can only rely on a stable
precondition.

This paper discusses how contract stability can be used to reason about multi-
threaded programs, and it sketches several speculative ideas how it can be proven.
Section 2 discusses in more detail the difficulties of reasoning with method speci-
fications for multithreaded programs. Section 3 defines stability of contracts and
discusses how locking, confinement, immutability, and semantics might be used to
prove stability. Section 4 demonstrates how to extend a sequential verification con-
dition generator for multithreading, while Section 5 concludes.

2



Huisman and Hurlin

2 Reasoning with Specifications in Concurrent Pro-
grams

2.1 Method Specifications

Traditionally, atomicity [5] has been advocated as a means to decide whether a
method could be verified sequentially. A method is said to be atomic if it contains
at most one instruction that is sensitive to interference (in the special case where the
method contains no such instruction, it is said to be independent). If a method is
atomic, its method body can be verified without considering interleavings from other
threads. However, existing atomicity analyses do not take method specifications into
account, and in particular they do not consider whether a pre- or postcondition can
be invalidated by another thread. Therefore, it is not possible to reason about calls
to atomic methods in terms of method specifications. In particular, if an atomic
method has an unstable contract, reasoning about calls to this method cannot be
done in the standard modular way. However, contract stability is not strictly a
stronger notion than atomicity: if the instructions that break the atomicity of the
method do not influence validity of the stable method specification, it still can be
verified sequentially if the method respects its contract.

Also, we would like to remark that atomicity (and independence) are often
conditional properties, i.e., they only hold under particular conditions (see also [5]).
Typical examples of such conditions are that a particular lock is held, or that a
method parameter is local to a thread. However, when reasoning in terms of method
specifications, we think it is sufficient to list these conditions as part of the method’s
precondition. An alternative approach would be to list such conditions separately,
and to interpret the method specification differently, depending on whether this
condition is satisfied or not. If the condition is satisfied, and the contract is stable,
it is interpreted as is. However, if the condition is not satisfied, all unstable parts
should be removed from the contract (cf. [3]). But this would mean that from the
client’s point of view, methods could have different behaviours. We think this is
an undesirable and counter-intuitive situation; making these conditions part of the
precondition ensures that the method only can be called in cases where the contract
is stable, and thus where one can rely on the method behaving as specified.

Finally, notice that also the meaning of the modifies clause must be changed.
This clause specifies which variables may be modified during a method call, and
all others are implicitly unchanged. However, in a concurrent setting unstable
variables can always be modified by another thread. Therefore, a modifies clause
only implicitly specifies which stable variables remain unchanged.

2.2 Class specifications: Invariants and Constraints

The standard meaning of invariants also needs to be revised in a multithreaded
context. JML defines a visible-state semantics for class invariants: all invariants
of all allocated objects have to hold in all visible states, i.e., basically all states in
which a method is called or finished (except for so-called “helper” methods) [12,
§8.2]. This means in particular that invariants may be freely broken inside a method
body.

3



Huisman and Hurlin

But in a multithreaded program, when one thread is inside a method body, and
thus has the right to break the invariants, another thread might just be entering a
method, and thus require the invariants to hold. This is particularly relevant for true
concurrent objects [19], where several threads may access simultaneously the same
object. However, even if we would exclude such behaviour (which could decrease
performance [1]), the problem remains, because JML requires all invariants to hold
in a visible state. Thus, even if different parallel threads would never be allowed
to access the same part of memory at the same time, the standard JML semantics
would have to be adapted, by requiring for example that only the invariants that
are related to that part of memory that can be accessed by the current thread have
to hold. However, deciding statically which invariants are relevant to a particular
program point is an open problem.

A partial solution is the introduction of so-called strong invariants, i.e., invari-
ants that are never broken, not even temporarily. Another possibility is to specify
explicitly the properties on which a thread can rely when it has certain locks. This
could be expressed using an expression like locking rely(l1, ..., ln) P, mean-
ing that if a thread acquires the locks l1, ..., ln, it can assume the property P,
and when it releases the locks, it has to establish P. Alternatively stated, the envi-
ronment guarantees P when l1, ..., ln are held. One can also imagine further
combinations of the different possibilities, where the thread holding the locks has to
ensure that the predicate P holds in any of its visible states. A particular instance
of this would be to restrict object invariants to specify properties about the state
that is protected by the object’s lock. Thus, having the object’s lock means that
one can rely on the object’s invariants.

A related problem exists for constraints. A constraint describes a relation that
is supposed to hold between every pair of consecutive visible states. But in a mul-
tithreaded setting these might belong to different threads. Thus, a naive approach
to verify a constraint would be to consider all possible interleavings of the different
threads, but this results in non-modular verification. Another possibility is to re-
define the notion of constraint, so that it only relates visible states within the same
thread. However, in that case, one needs to ensure that other threads cannot break
the constraint in-between related states.

In the rest of this paper, we will focus on how we can show that method spec-
ifications are stable, and how this can exploited for verification. We assume that
the contracts have been extended with conditions arising from class invariants and
history constraints. However, from the above, it should be clear that simply desug-
aring all class invariants and constraints into method pre- and postconditions would
make it virtually impossible to show that such an extended method contract is sta-
ble. Therefore, in addition we will need to develop the means to modularise class
invariants and constraints over the program - so that the method contract is ex-
tended only with the relevant class specifications.

3 Stability of Contracts

The stability of a contract depends on how variables that have to be read to evalu-
ate the contract can be modified by threads. We use the term footprint to denote

4



Huisman and Hurlin

an upper bound on the set of locations that are accessed during contract evalua-
tion. It depends on the expressiveness of the specification language how precisely
a contract’s footprint can be computed. For a contract which only reads fields
and contains no qualified expressions, the contract’s footprint is the set of all fields
appearing in the contract.

However, for more complex specification expressions, computing the footprint is
more complicated. For example, to compute the footprint of a contract containing
a quantifier, we need to be able to determine the quantifier’s domain. Fortunately,
often the domain of a quantifier is finite, e.g., a universal quantifier ranging over all
elements of an array. As an example, the footprint of oneify’s contract below is the
whole array a; thus if no elements of a can be written by other threads, oneify’s
contract is stable.

//@ ensures (\forall int i; i >= 0 && i < a.length; a[i] == 1);
void oneify(int[] a){ for (int i = 0; i < a.length; i++) a[i] = 1; }

Another problem is when the footprint of a contract cannot be expressed as a list
of accessed fields. For example, the footprint of multiply’s contract below depends
on the way Node objects are linked. To show stability of multiply’s contract, one
has to show that all objects that are recursively accessible via the next field are
stable (i.e., cannot be modified by concurrent threads). We plan to investigate
whether we can use JML’s ownership type system [4], to show stability of contracts
in such cases.

class Node{
int x; Node next;
//@ invariant x > 0 && ((next != null) ==> next.x < this.x);

//@ measured_by(this.x);
//@ ensures (next != null) ==> (\result == x * next.multiply());
//@ ensures (next == null) ==> (\result == x);
/*@ pure @*/ int multiply(){
if(next == null)

return x;
else

return x * next.multiply(); }}

To summarize, the footprint of a contract indicates which objects should be
thread-local or lock-protected so that the contract is stable. In some simple cases,
a contract’s footprint can be computed directly, but in general this is not feasible.
The next paragraph describes a permission system used to control concurrent access
to objects. This permission system permits to show properties that can be used to
prove contract stability. The remainder of this section then shows how stability is
proven.

3.1 A Program in Need of Permissions

In order to show stability of contracts, we use a permission system whose general
ideas are described elsewhere [7]. This system is a generalization of Boyland’s

5



Huisman and Hurlin

fractional permissions system [2] to object-oriented programs with dynamic thread
creation, joins and locks. Our permission system permits to verify properties that
are sufficient to show stability. In the following we recall the most relevant features
of our system.

A class can be annotated with the keyword permission to indicate the per-
missions that exist for each instance of this class. Permissions can be base per-
missions, object permissions, or lock permissions. Base permissions have the form
f : \split(n) where f is a field of the class considered and n is a natural num-
ber. Intuitively, this means there are at most 2n threads accessing the field at the
same time (since 20 = 1, \split(0) means only one thread has access). Hence-
forth, permission f : \split(0) allows to write to and read to field f, permis-
sion f : \split(n) (with n> 0) allows solely to read. A permission can be split
into two smaller permissions using the equivalence \split(n) ≡ \split(n+1) &&
\split(n+1). To alleviate the annotation burden we use W as a shorthand for
\split(0) and R as a shorthand for \split(1).

Object permissions have the form f : W (\split(p,n)) or
f : R (\split(p,n)) where p is a permission and n is a natural number.
These permissions contain the base permission f : W (or f : R) and permission
\split(p,n) on the object pointed to by f. As with base permissions, we have
the equivalence \split(p,n) ≡ \split(p,n+1) && \split(p,n+1). When n is
0 we simply write p.

Lock permissions have the form \split({l},n) where l is a non-primitive fi-
nal field of the class considered and n a natural number. For any n, permission
\split({l},n) gives the right to lock l. When n is 0 we simply write {l}. A lock
permission comes with a lock clause written lock {l} = p, ..., q to indicate
that permissions p, ..., q are obtained when l is locked.

For every field f of an object, the permission system guarantees that (i) only one
permission allows to write to f, and (ii) if a read permission to f exists, then there
is no write permission to f. These conditions are crucial to show stability. Finally,
our system is defined as an extension of JML [11], so permissions requirements and
guarantees are expressed as part of method contracts.

The rest of this section speculates about different possibilities to prove contract
stability by using our permission system.

3.2 Stability by Locking

Most concurrent programs rely on locking to achieve correct synchronization. Lock-
ing can be used to provide exclusive access to parts of the heap. Existing method-
ologies have ways to protect individual fields [18,7] or whole classes [8] by locks. The
permission system described before allows to specify locking policies. Adherence to
the specified locking policy of a class helps to show contract stability of the class’s
methods. Note that – although we do not detail it here – aliasing complicates sta-
bility checking: determining which lock protects which object can require aliasing
information.

Class Point illustrates how locking policies help to show stability. Class Point’s
permissions clause define that there exists a permission p per Point object. Per-

6



Huisman and Hurlin

mission p allows to synchronise on the Point object considered. Further, the lock
clause indicates that synchronising on a Point object gives write permission to fields
x and y of this object.

Precondition of method shiftX’s requires callers to have permission {this} i.e.,
to synchronise on this before calling shiftX. This behavior is called client-side
locking [8]. Note that because permission p means the right to lock this, it cannot
be written as a precondition for shiftX whose correctness relies on this being
locked before calling (which is the meaning of requires {this}).

class Point{
int x, y;

//@ permission p = {this};
//@ lock {this} = x : W, y : W;

//@ requires {this};
//@ ensures {this} && x == \old(x) + delta;
void shiftX(int delta){ x += delta; }}

Client-side locking rules out interferences from other threads, thus it permits
to show stability. Since shiftX’s caller holds the lock on this, and since writes
and reads to x are only allowed when this is held (because of the lock clause),
throughout shiftX’s execution concurrent accesses to x are not possible. Thus, all
locations in shiftX’s footprint ({\old(x),x}) cannot be written by other threads
and the contract is stable.

3.3 Stability by Confinement

Another technique to ensure stability is to control concurrent access to objects.
This allows one for example to show that an object can only be accessed by a single
thread (it is said to be thread local). This technique is also particularly useful for
lock-free algorithms (like the ones described in [13]), where accesses to objects are
distributed by the algorithm. Our permission system supports such programs.

For example, class DoubleInt below specifies that there exists two permissions
p and q on instances of class DoubleInt. Permission p allows to write to and
read from field x (similarly for permission q and field y). Method incX of class
DoubleInt requires permission p on this and returns the same permission when
the call returns.

class DoubleInt{
int x, y;

//@ permission p = x : W;
//@ q = y : W;

//@ ensures p && q && x == 0 && y == 0;
public DoubleInt(){ x = 0; y = 0; }

7



Huisman and Hurlin

//@ requires p && x == 0;
//@ ensures p && x == 1;
public void incX(){ x++; }

//@ requires q && y == 0;
//@ ensures q && y == 1;
public void incY(){ y++; }}

The notation r = di : R (q) in class IncMachine below specifies an object
permission: it contains a base permission di : R and also permission q on the
DoubleInt object pointed to by di. This shows how permissions can be encapsu-
lated into other permissions (following the object-oriented paradigm).

In method main below, the main thread first creates the DoubleInt object di and
obtains di’s permissions p and q. Then, the main thread creates the IncMachine
thread t and encapsulates di’s permission q in t’s permission r. When t is started,
permission r is transferred from the main thread to t. Then, the main thread can
call di.incX() (using di’s permission p), while the IncMachine thread can exe-
cute di.incY() (using its permission r which contains di’s permission q). This
makes class DoubleInt truly concurrent, because two threads can execute simulta-
neously within an instance of this class. Also note that the main thread cannot call
di.incY() once it has created t. Permissions are split when the main thread creates
t: the main thread keeps di’s permission p but di’s permission q is encapsulated
into t’s permission r, therefore becoming inaccessible to the main thread.

class IncMachine extends Thread{
final DoubleInt di;

//@ permission r = di : R (q);

//@ requires di.q;
//@ ensures r;
public IncMachine(DoubleInt di){ this.di = di; }

//@ requires r;
//@ ensures r;
public void run(){ di.incY(); }

public static void main(){ // permissions owned by threads
DoubleInt di = new DoubleInt(); // main has di.q and di.p
Thread t = new IncMachine(di); // main has di.p and t.r

t.start(); // main has di.p, t has r
di.incX();
// (1)
}}

Because there is only one permission p to write to field x of any instance of class
DoubleInt, concurrent writes to di’s field x are impossible and therefore incX’s

8



Huisman and Hurlin

postconditions is stable: di.x == 1 can be assumed at point (1). Thus, the per-
mission system allows us to show stability of contracts of classes designed to be
accessed by a single writer thread without locking: this is particularly useful for
lock-free programs.

3.4 Stability by Immutability

Another way to prove stability of contracts is to use the notion of immutability [6].
An object is said to be immutable if it is never written after its initialization. There-
fore, it is safe to access it without synchronization. With the annotation system
described above, immutability can be expressed by R base permissions. Immutabil-
ity can be used to show stability of contracts. For example, class Fraction below
(adapted from Lea [10]) is an immutable class. Clause permission of class Fraction
specifies a permission p which allows solely to read fields n and d of Fraction ob-
jects.

In order for multiple threads to simultaneously access Fraction objects, we need
to distribute permission p among different threads. Our system supports this by
splitting permissions. We use \part(p) to denote a part of permission p, that is p or
p split any number of times (\part(p) is desugared into (\exists n. split(p,n)
&& n >= 0)).

Precondition of method plus requires callers to have a part of p. Stability of
plus’s contract is trivial to prove, because its footprint only contains accesses to
readonly fields (and the permission system ensures that there cannot be - interfering
- write permissions to these fields in other parts of the program).

class Fraction{
final int n; // numerator
final int d; // denominator

//@ permission p = n : R, d : R;

//@ ensures p;
public Fraction(int num, int den){ n = num; d = den; }

//@ requires \part(p) && \part(f.p);
//@ ensures \part(p) && \part(f.p) && \result.p &&
//@ \result.n == n * f.d + f.n * d && \result.d == d * f.d;
public Fraction plus(Fraction f){

return new Fraction(n * f.d + f.n * d, d * f.d); }}

3.5 Stability by Semantics

The techniques to show stability described above are syntactical techniques. In the
following, we sketch an example to give the reader an intuitive notion of stability by
semantics. Class Account below (adapted from [8]) uses a JML constraint (a simple
temporal property) to express that items in the history are never deleted. Because
the semantics of constraints have been influenced by rely-guarantee techniques, they
can be used to show stability of contracts in a manner reminiscent of rely-guarantee

9



Huisman and Hurlin

reasoning (but applied to object-oriented programs).

class Account{
//@ constraint (\forall Integer x;
//@ \old(history).contains(x); history.contains(x));

final Vector<Integer> history = new Vector<Integer>();
int balance = 0;

//@ permission p = {this};
//@ lock {this} = balance : W, history : ...;

//@ requires \part(p);
//@ ensures \part(p) &&
//@ (\exists Integer x; history.contains(x); x == amount);
synchronized void deposit(Integer amount){

balance+=amount;
history.add(amount); }}

In this example, deposit’s postcondition is sensible to interferences from other
threads: between deposit’s returning and the caller resuming a thread may call
deposit, thus adding an item to the history. However, the constraint and the
fact that amount is put in the history during deposit’s executions entail stability
of deposit’s postcondition. Generally, proving stability by semantics consists in
using constraints to give additional assumptions in the presence of interferences
from concurrent threads.

4 Lifting Sequential Program Verification to Concur-
rency

Above, we have shown how method’s contracts can be shown to be stable, so that
they can be used for reasoning about method calls. However, we also need a tech-
nique to discard properties that we no longer can rely upon. In particular, whenever
the stability of objects changes, because of sharing or releasing locks, the unstable
expressions need to be discarded from the intermediate assertions. This technique is
inspired by the “havoc“ approach introduced in the Boogie methodology [8]. How-
ever the stability information obtained is more fine-grained than the approach cited:
less havoc statements are generated resulting in easier proof obligations. In par-
ticular, the Boogie approach forces programmers to protect whole classes by locks
whereas we allow a per field protection. This permits us to havoc only certain fields
of objects while the Boogie approach always havoc all fields.

We illustrate the discarding mechanism by an example, showing how the sequen-
tial verification of a CommonWarehouse is lifted to a concurrent one. The example
uses a Floyd-Hoare-like proof outline, but a similar technique can be used to lift
proof obligation generators based on, e.g., weakest precondition or strongest post-
condition calculi from sequential to concurrent program verification.

Class Quantity in Figure 1 defines a permission p that gives write access to field

10



Huisman and Hurlin

class Quantity{
volatile int i; //@ invariant i >= 0;

//@ permission p = i : W;

//@ requires initial >= 0;
//@ ensures p && i == initial;
public Quantity(int initial){ i = initial; }

//@ requires p && plus >= 0;
//@ modifies i;
//@ ensures p && i >= plus;
public void add(int plus){ i += plus; }}

class CommonWarehouse{
//@ permission q = ...;

//@ requires \part(q) && o.p;
//@ ensures \part(q);
void lend(Quantity o){ ... }

//@ requires \part(q);
//@ ensures \part(q) && o.p;
void takeBack(Quantity o){ ... }

//@ requires \part(c.q) && j >= 0 && k >= 0;
//@ ensures \part(c.q) && \result.p && \result.i >= k;
public static Quantity main(CommonWarehouse c, int j, int k){

Quantity o = new Quantity(j);
[o.p] {o.i = j}s ; {o.i = j}c

c.lend(o);
[] {o.i = j}s ; {>}c

c.takeBack(o);
[o.p] {o.i = j}s ; {>}c

o.add(k);
[o.p] {o.i ≥ k}s ; {o.i ≥ k}c

return o; }}

Fig. 1. Example: from sequential proof outline to concurrent proof outline

i. Note that class Quantity’s contracts are stable by confinement. Notice further
that its invariant is a strong invariant. The methods of class CommonWarehouse are
annotated with pre- and postconditions indicating how permissions of parameters
are updated. For example, lend’s callers must have a part of permission q on the
receiver and permission p on parameter o.

Method main is annotated with a proof outline (only showing relevant formulas).
First, between square brackets, the evolution of permissions owned by the main

11



Huisman and Hurlin

thread is shown. Initially, the main thread has exclusive access to the new Quantity
object, because it has permission p on this object (and as Quantity’s permissions
clause shows, only one such permission may exist on a Quantity object). After
calling lend, it gives away this permission (as indicated by lend’s contract), and
the object pointed to by o becomes unstable, as it can be accessed by other threads.
After calling takeBack, the main thread regains exclusive access to the Quantity
object (because it gains back o’s permission p), and thus it knows o.i cannot
be written by concurrent threads. The second column (enclosed with {}s) are
the sequential formulas obtained by a strongest postcondition calculation. Finally,
the third column (enclosed with {}c) shows the concurrent formulas, the result of
weakening the intermediate assertions based on the stability information.

After constructing the new Quantity object and assigning it to o, sequential
formula o.i = j holds, because of the constructor’s postcondition. As this post-
condition is stable, it is also a concurrent formula. Because of the implicit modifies
\nothing clause, lend and takeBack do not change o’s contents, and the sequential
formula remains o.i = j. However, the call to lend makes o unstable: another
thread gains o’s permission p and this thread may write to o.i, therefore properties
about o need to be discarded in the concurrent formula. After the call to takeBack,
main has exclusive access to o again, but as we do not know what other threads
did with the object in the mean time, we cannot assume anything about o.i here.
Only after the call to add, we know something about o.i’s value. This information
also holds in a concurrent setting, because o is stable: o.i cannot be written by
other threads. However, notice that if the postcondition of add had contained the
old value of i, the concurrent formula would have reduced to > again.

This shows how the stability information provided by the permission system
can be used to compute intermediate assertions for concurrent programs. This
approach is modular because (i) concurrency aspects are delegated to the permission
system, (ii) interferences of concurrency with the intermediate assertions occur
only at weakening points, and (iii) program behaviour is abstracted by method
specifications. This improves for example over rely-guarantee techniques, where the
stability information flows through the proof.

5 Conclusions and Future Work

This paper sketches a modular verification technique, based on method specifica-
tions for multithreaded Java programs. The main idea is that method specifica-
tions should be stable, i.e., their validity should not be affected by other threads. If
method specifications are stable, modular sequential verification techniques can be
adapted for a concurrent setting. We show how locking, controlling object access
and immutability can be used to show stability of contracts. We also show how
stability information allows to lift a sequential proof outline to a concurrent proof
outline.

This paper does not describe finished work; instead it is a first step towards
the development of a verification technique for multithreaded programs, without
putting any major restrictions on the programming model used.

For this technique to be fully operational, the following topics need to be ad-

12



Huisman and Hurlin

dressed: (i) class invariants and history constraints must be handled appropriately,
probably requiring that certain locks are held before such specifications can be as-
sumed, (ii) more precise techniques to compute contract’s footprints have to be
developed, (iii) techniques for stability checking need to be completed and imple-
mented, and (iv) we need to extend a verification condition generator for sequential
programs to concurrent programs, based on the weakening procedure described in
Section 4.

Related Work
Jacobs et al. [8] recommend client-side locking to force contracts to rely on stable

objects and require contracts to perform only legal access. They do not discuss how
to check this for complex specifications. They use an ownership system to control
object accesses, however in a more restrictive way, as they exclude for example, true
concurrency. Contrary to Jacobs et al., we try not to impose a programming model
and aim at verifying more varied patterns.

Rodriguez et al. [18] use the term internal interference to denote that a thread
may change data observable by a method executed by another thread. They rule out
internal interferences by using atomicity and independence i.e., by showing that an
interleaved execution of a method can always be reduced to a sequential execution.
They call external interference the problem of a thread making observable changes
between a method call of another thread and the method’s entry of this thread
(or between the method’s exit and the thread’s resuming). As we pointed out in
section 2, atomicity and independence are not sufficient to avoid this problem and
the method presented in this work suffers from this defect: it is advocated that
contracts should solely rely on thread safe objects, i.e., local or locked objects,
but it is not described how this is enforced. Our technique handles both kind of
interferences in a sound way.

Nienaltowski and Meyer [16] address the stability problem by having an al-
ternative semantics for contracts. Preconditions are treated as wait-conditions: a
non-satisfied precondition forces the client to wait until it becomes true. Postcon-
ditions are projected into the future: a postcondition on an object is required to
be true only when this object is accessed. However, as the authors point out this
solution raises liveness issues. Furthermore, it cannot be applied to Java where
method calls and returns do not respect this alternative semantics.

Calcagno et al. [3] address the stability problem by stabilizing assertions: from
unstable properties weaker stable properties are computed, using a fixpoint com-
putation. This approach is not integrated into a Design by Contract framework.
Notice that our technique does not require stabilization, we simply impose contracts
to be stable. This can be seen as a worst case stabilization: we consider that shared
objects can be affected in any way by other threads.

Acknowledgements
We thank our partners in the Mobius project, in particular Christian Haack,

Erik Poll for their useful and constructive comments on the stability issue. We also
thank Gustavo Petri for his insightful remarks.

13



Huisman and Hurlin

References

[1] C. Baquero, R. Oliveira, and F. Moura. Integration of concurrency control in a language with subtyping
and subclassing. In USENIX Conference on Object-Oriented Technologies, Monterey, California, 1995.

[2] J. Boyland. Checking interference with fractional permissions. In R. Cousot, editor, Static Analysis
Symposium, volume 2694 of Lecture Notes in Computer Science, pages 55–72. Springer-Verlag, 2003.

[3] C. Calcagno, M. Parkinson, and V. Vafeidis. Modular safety checking for fine-grained concurrency,
2007. Submitted.

[4] W. Dietl and P. Müller. Universes: Lightweight ownership for JML. Journal of Object Technology,
4(8):5–32, October 2005.

[5] C. Flanagan and S. Qadeer. Types for atomicity. In Types in Language Design and Implementation.
Association of Computing Machinery Press, 2003.

[6] C. Haack, E. Poll, J. Schäfer, and A. Schubert. Immutable objects for a Java-like language. In R. De
Nicola, editor, European Symposium on Programming, volume 4421 of LNCS, pages 347–362. Springer-
Verlag, 2007.

[7] M. Huisman and C. Hurlin. Thread capability annotations for common multithreaded
programming patterns, 2007. Manuscript, http://www-sop.inria.fr/everest/Clement.Hurlin/
publis/annotations-patterns.pdf.

[8] B. Jacobs, K.R.M. Leino, F. Piessens, and W. Schulte. Safe concurrency for aggregate objects with
invariants. In Software Engineering and Formal Methods, Koblenz, Germany, 2005.

[9] C.B. Jones. Tentative steps toward a development method for interfering programs. ACM Transactions
on Programming Languages and Systems, 5(4):596–619, 1983.

[10] D. Lea. Concurrent Programming in Java: Design Principles and Patterns (Second Edition). Addison-
Wesley Publishing Company, Boston, MA, USA, 1999.

[11] G.T. Leavens, A.L. Baker, and C. Ruby. Preliminary design of JML: A behavioral interface specification
language for Java. Technical Report TR 98-06y, Iowa State University, 1998. (revised since then 2004).

[12] G.T. Leavens, E. Poll, C. Clifton, Y. Cheon, C. Ruby, D. Cok, and J. Kiniry. JML Reference Manual,
July 2005. In Progress. Department of Computer Science, Iowa State University. Available from http:
//www.jmlspecs.org.

[13] C.E. Leiserson and H. Prokop. Minicourse on multithreaded programming, July 1998.
http://supertech.csail.mit.edu/cilk/papers/index.html.

[14] B. Meyer. Applying “design by contract”. IEEE Computer, 25(10):40–51, 1992.

[15] P. Müller. Modular Specification and Verification of Object-Oriented Programs, volume 2262 of Lecture
Notes in Computer Science. Springer-Verlag, 2002.

[16] P. Nienaltowski and B. Meyer. Contracts for concurrency. In Symposium on Concurrency, Real-Time,
and Distribution in Eiffel-like Languages, York, United Kingdom, July 2006.

[17] S. Owicki and D. Gries. An axiomatic proof technique for parallel programs. Acta Informatica Journal,
6:319–340, 1975.

[18] E. Rodŕıguez, M.B. Dwyer, C. Flanagan, J. Hatcliff, G.T. Leavens, and Robby. Extending JML for
modular specification and verification of multi-threaded programs. In A.P. Black, editor, European
Conference on Object-Oriented Programming, volume 3586 of Lecture Notes in Computer Science,
pages 551–576. Springer-Verlag, July 2005.

[19] L. Thomas. Inheritance anomaly in true concurrent object oriented languages: A proposal. In
TENCON, pages 541–545. IEEE Press, August 1994.

14

http://www-sop.inria.fr/everest/Clement.Hurlin/publis/annotations-patterns.pdf
http://www-sop.inria.fr/everest/Clement.Hurlin/publis/annotations-patterns.pdf
http://www.jmlspecs.org
http://www.jmlspecs.org

	Introduction
	Reasoning with Specifications in Concurrent Programs
	Method Specifications
	Class specifications: Invariants and Constraints

	Stability of Contracts
	A Program in Need of Permissions
	Stability by Locking
	Stability by Confinement
	Stability by Immutability
	Stability by Semantics

	Lifting Sequential Program Verification to Concurrency
	Conclusions and Future Work
	References

