N

HAL

open science

From Paninian Sandhi to Finite State Calculus

Malcolm D. Hyman

» To cite this version:

Malcolm D. Hyman. From Paninian Sandhi to Finite State Calculus. First International Sanskrit
Computational Linguistics Symposium, INRIA Paris-Rocquencourt, Oct 2007, Rocquencourt, France.

inria-00202966

HAL 1d: inria-00202966
https://inria.hal.science/inria-00202966
Submitted on 8 Jan 2008

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://inria.hal.science/inria-00202966
https://hal.archives-ouvertes.fr

From Paninian Sandhi to Finite State Calculus

Malcolm D. Hyman*
Max Planck Institute for the History of Science, Berlin

Abstract

The most authoritative description of the mor-
phophonemic rules that apply at word bound-
aries (external sandhi) in Sanskrit is by the
great grammarian Panini (fl. 5th c¢. B.C.E.).
These rules are stated formally in Panini’s
grammar, the Astadhyayr ‘group of eight chap-
ters’. The present paper summarizes Panini’s
handling of sandhi, his notational conventions,
and formal properties of his theory. An XML
vocabulary for expressing Panini’s morpho-
phonemic rules is then introduced, in which
his rules for sandhi have been expressed. Al-
though Panini’s notation potentially exceeds a
finite state grammar in power, individual rules
do not rewrite their own output, and thus they
may be automatically translated into a rule cas-
cade from which a finite state transducer can
be compiled.

1 Sandhi in Sanskrit

Sanskrit possesses a set of morphophonemic rules
(both obligatory and optional) that apply at morpheme
and word boundaries (the latter are also termed pada
boundaries). The former are called internal sandhi (<
samdhi ‘putting together’); the latter, external sandhi.
This paper only considers external sandhi. Sandhi rules
involve processes such as assimilation and vowel coa-
lescence. Some examples of external sandhi are: na
asti > nasti ‘is not’, tat ca > tac ca ‘and this’, etat hi
> etad dhi ‘“for this’, devas api > devo ’pi *also a god’.!

2 Sandhi in Panini’s grammar

Panini’s Astadhyayr is a complete grammar of San-
skrit, covering phonology, morphology, syntax, seman-
tics, and even pragmatics. It contains about 4000 rules
(termed siitra, literally ‘thread’), divided between eight

*This work has been supported by NSF grant IIS-
0535207. Any opinions, findings, and conclusions or recom-
mendations expressed are those of the author and do not nec-
essarily reflect the views of the National Science Foundation.
The paper has benefited from comments by Peter M. Scharf
and by four anonymous referees.

"The symbol () (avagraha) does not represent a phoneme
but is an orthographic convention to indicate the prodelision
of an initial a-.

chapters (termed adhydya). Conciseness (laghava) is a
fundamental principle in Panini’s formulation of care-
fully interrelated rules (Smith, 1992). Rules are either
operational (i. e. they specify a particular linguistic op-
eration, or karya) or interpretive (i.e. they define the
scope of operational rules).> Rules may be either oblig-
atory or optional.

A brief review of some well-known aspects of Pa-
nini’s grammar is in order. The operational rules rel-
evant to sandhi specify that a substituend (sthanin) is
replaced by a substituens (ddesa) in a given context
(Cardona, 1965b, 308). Rules are written using meta-
linguistic case conventions, so that the substituend is
marked as genitive, the substituens as nominative, the
left context as ablative (fasmat), and the right context
as locative (tasmin). For instance:

8.4.62 jhayo ho
jhaY-ABL h-GEN

‘nyatarasyam
optionally

This rule specifies that (optionally) a homogenous
sound replaces & when preceded by a sound termed
jhaY — i.e. an oral stop (Sharma, 2003, 783-784).
Panini uses abbreviatory labels (termed pratyahara)
to describe phonological classes. These labels are
interpreted in the context of an ancillary text of the
Astadhyayr, the Sivasiitras, which enumerate a catalog
of sounds (varnasamamnaya) in fourteen classes (Car-
dona, 1969, 6):

1. aiuN 8. jnbh N

2. rlK 9. ghdhdhS
3.eoN 10. jbgddS

4. aiau C 11. khphchththcttV
5.hyvrT 12. kpY

6. IN 13. §ssR

7. imnnnM 14. hL

’The traditional classification of rules is more fine-
grained and comprises samjiia (technical terms), paribhasa
(interpretive rules), vidhi (operational rules), niyama (restric-
tion rules), pratisedha (negation rules), atidesa (extension
rules), vibhasa (optional rules), nipatana (ad hoc rules), adhi-
kara (heading rules) (Sharma, 1987, 89).

The final items (indicated here by capital letters) are
markers termed it ‘indicatory sound’ and are not con-
sidered to belong to the class. A pratyahara formed
from a sound and an it denotes all sounds in the se-
quence beginning with the specified sound and ending
with the last sound before the it. Thus jhaY denotes the
class of all sounds from jh through p (before the it Y):
jh, bh, gh, dh, dh, j, b, g, d, d, kh, ph, ch, th, th, c t, t, k,
p (i.e. all oral stops).3 Sttra 8.4.62, as printed above,
is by itself both elliptic and uninterpretable. Ellipses in
sttras are completed by supplying elements that occur
in earlier sttras; the device by which omitted elements
can be inferred from preceding siitras is termed anuvriti
‘recurrence’ (Sharma, 1987, 60). It will be noticed that
no substituens is specified in 8.4.62; the substituens
savarnah ‘homogenous sound-NOM’ (Cardona, 1965a)
is supplied by anuvrtti from siitra 8.4.58 anusvarasya
yayi parasavarnah. Still, the device of anuvrtti is in-
sufficient to specify the exact sound that must be in-
troduced as a substituens. It is here that interpretive
rules play arole. Satra 8.4.62 must be interpreted in the
light of the paribhasa ‘interpretive rule’ 1.1.50 sthane
‘ntaratamah, which specifies that a substituens must be
maximally similar (sc. in articulatory place and man-
ner) to the substituend (Sharma, 1987, 126). Thus the
substituens in 8.4.62 will always be aspirated, since &
(the substituend) is aspirated: e.g. vag hasati (< vak
hasati ‘a voice laughs’ by 8.2.39) > vagghasati.*

A second example further illustrates the principles
already discussed:

8.4.63 sas cho ti
$§-GEN ch-NOM aT-LOoC

Here jhayah ‘jhaY-ABL’ and anyatarasyam ‘option-
ally’ are supplied by anuvrtti from the preceding siitra
(8.4.62). The rule specifies that (optionally) § is re-
placed by ch when it is preceded by an oral stop (jhaY)
and followed by a vowel or semivowel (aT).

Rules specific to external sandhi are found in the
third quarter (pdada) of the eighth adhyaya. A num-
ber of rules are common to both internal and external
sandhi, and rules relevant for external sandhi are also
found in the first pdda of the sixth adhydya and the
fourth pada of the eighth adhyaya.

3 An XML encoding for Paninian rules

An encoding based on Extensible Markup Language
(XML) has been chosen for expressing Paninian rules
in machine-readable form. The XML vocabulary con-
tains an element <rule>, with required attributes
source (the substituend) and target (the sub-
stituens) and optional attributes 1context (the left
context) and rcontext (the right context). The
values of source, lcontext, and rcontext

3The vowel a added after a consonant makes the pratya-
hara pronounceable.

*Note that Sanskrit / represents a voiced glottal fricative
[f].

are specified as Perl-compatible regular expressions
(PCREs) (Wall et al., 2000).> Sanskrit sounds are in-
dicated in an encoding known as SLP1 (Sanskrit Li-
brary Phonological 1) (Scharf and Hyman, 2007). An
encoding such as Unicode is not used, since Unicode
represents written characters rather than speech sounds
(Unicode Consortium, 2006). The SLP1 encoding fa-
cilitates linguistic processing by representing each San-
skrit sound with a single symbol (see fig. 1).° The use
of Unicode would be undesirable here, since (1) there
would not be a one-to-one correspondence between
character and sound, and (2) Sanskrit is commonly
written in a number of different scripts (Devanagat,
Tamil, Romanization, etc.).

The following is the XML representation of siitra
8.3.23 mo ’'nusvarah, which specifies that a pada-final
m is replaced by the nasal sound anusvara (m) when
followed by a consonant (Sharma, 2003, 628):

<rule source="m" target="M"
rcontext="[Q@ (wb)] [@ (hal)]"
ref="A.8.3.23"/>

This rule employs a syntactic extension used for
macros. The expression @ (name) is replaced by the
value of a defined macro name. Macros are defined
with an XML element <macro> and may be defined
recursively. Macro expansion is performed immedi-
ately after parsing the XML file, before any further
processing. Here the rcontext attribute references
two macros: @ (wb) is expanded to characters that
indicate a word boundary, and @ (hal) is expanded
to the characters representing the sounds of the pra-
tyahara haL (i.e. all consonants). Macros are a syn-
tactic convenience that allows rules to be easier to
read (and closer to Panini’s original formulation); one
might equally spell out in full all characters represent-
ing sounds in a phonological class. The square brackets
belong to the PCRE syntax and indicate that any char-
acter contained between them should be matched; that
is, [abc] matches an a, b, or c.

In the target two additional syntactic facilities al-
low for rules to be expressed in a way that is close to
Panini’s formulation. These facilities are termed map-
pings and functions. The following rule illustrates a

mapping:

<rule source="h"
target="% (voicedaspirate ($1))"
lcontext="([Q@(Jay)]) [@(wb)]"
optional="yes"
ref="A.8.4.62"/>

3So-called “regular expressions” in programming lan-
guages such as Perl include extended features such as pattern
memory that exceed the power of regular languages (see §4);
for example, it is possible to write a regular expression that
matches the awv language, that is, the language of all redu-
plicated strings. Thus PCREs are not, in the formal sense,
regular expressions at all.

SFigure 1 is a simplified overview of SLP1. It does
not show symbols for accents, certain nasalized sounds, or
sounds peculiar to the Vedic language.

a i I u
®r | &P @l %l
f F X X N
Je Q‘al 3o 3T au
e E o (0]
Tk | Wkh Tg H gh gn
k K g G N
dc &ch I & jh i
c C j J Y
gt | &t | &d | &dh | 9o
w w q Q R
Tt qth Td {dh qn
t T d D n
ap F ph Ib Tbh "m
p P b B m
Ty | U o[@l [oav
y r | '
T | W5 | Ws | gh
S z s h

* anusvara = M; visarga=H

Figure 1: A partial overview of the SLP1 encoding

This sttra has been discussed earlier. The left context
matches a jhaY followed by a word boundary. The
parentheses (part of PCRE syntax) specify that the con-
tents (the jhaY) be stored in pattern memory. Strings
stored in pattern memory are available for subsequent
reference: the pattern matched by the first parenthe-
sized group may be recalled with $1; the second, with
$2, etc. (only nine pattern memory variables are avail-
able). The pattern memory variable $1 is referenced
in the target attribute. The rule specifies that an A,
when preceded by a pada-final jhaY, is replaced by the
result of performing the voicedaspirate mapping
on the matched jhaY. The mapping syntax takes the
form % (name (input)), where name is the name
of a mapping, and input is the input symbol for the
mapping. A mapping is defined with a <mapping>
element, which has as children one or more <map> el-
ements. The mapping voicedaspirate is defined
thus:
<mapping name="voicedaspirate">

<map from="@ (jaS)" to="@ (Jaz)"/>
</mapping>
This mapping translates the voiced oral stops denoted
by the pratyahara jaS G, b, g, d, d) to the equivalent
aspirated voiced oral stops denoted by the pratyahara
jhas$ (jh, bh, gh, dh, dh). In the case that the input sym-
bol to a mapping is not contained in £ rom, the mapping
is equivalent to the identity function.

Sttra 6.1.87 ad gunah illustrates the use of a func-
tion:
<rule source="[@(a)][@(wb)] ([@(ik)])"

target="! (gunate ($1))"
ref="A.6.1.87"/>

The source matches either short a or long @ (by the
definition of the macro a), a word boundary, and then

the pratyahara iK (a simple vowel other than a or a).
The macro ik is defined:

<macro name="ik"
value="@(i)Q(u)@(f)@
ref="A.1.1.71"/>

(X) n

and depends on the macro definitions:

<macro name="i" value="iI"
ref="A.1.1.69"/>
<macro name="u" value="uU"
ref="A.1.1.69"/>
<macro name="f" value="fF"
ref="A.1.1.69"/>
<macro name="x" value="xX"
ref="A.1.1.69"/>

The iK is stored in pattern memory, and the substituend
(a-varna) is replaced by the output of calling the func-
tion gunate on the stored iK. A function is defined
with an element <function>, which has as children
one or more <rule> elements. These are context-
free rules that typically make use of mappings in the
target. Thus gunate is defined:

<function name="gunate">

<rule source="[@(a)@ (1)@ (u)]"
target="%(guna ($1))"/>
<rule source="[Q(f)Q(x)]1"
target="% (guna ($1))
% (semivowel ($1))"/>
</function>

Two mappings are invoked here:

<mapping name="guna"
ref="A.1.1.2">
<map from="@ (a)" to="a"/>

<map from="Q@(i)" to="e"/>
<map from="Q@Q (u)" to="o"/>
<map from="Q@(f)" to="a"/>
<map from="Q (x)" to="a"/>

</mapping>

<mapping name="semivowel"
ref="A.6.1.77">
<map from="Q@(i)" to="y"/>

<map from="@ (u)" to="v"/>
<map from="Q@(f)" to="r"/>
<map from="@ (x)" to="1"/>

</mapping>

The mapping guna maps simple vowels such as a-
varna (which includes short @ and long @) to their guna
equivalent. The term guna is defined by the technical
rule (samjiia) (Sharma, 1987, 102) 1.1.2 aden gunah
‘a and eN [are] guna’ (the pratyahara eN = {e, o}).
The mapping semivowel maps those vowels that
possess homorganic semivowels to the corresponding
semivowels. The function gunate, if the input is a-,
i-, or u-varna, outputs the corresponding guna vowel;
if the input is r- or [-varna, it outputs the correspond-
ing guna vowel (in this case, a) concatenated with the
homorganic semivowel (either r or /). The domain of
gunateis{a @i i u @ r, 7, [, [} and its range is {q,
e, 0, ar, al}.

context free

context sensitive

recursively enumerable

Figure 2: The Chomsky hierarchy of languages (after
Prusinkiewicz and Lindenmayer (1990, 3))

4 Regular languages and regular
relations

First, it is necessary to define a regular language. Let 2
denote a finite alphabet and ¢ denote ¥ U {¢} (where
e is the empty string). {e} is a regular language where
e € X¢, and the empty language) is a regular lan-
guage. Given that L, Lo, and L are regular languages,
additional regular languages may be defined by three
operations (under which they are closed): concatena-
tion (L1- Ly = {zy|x € L1,y € Ls), union (L1 U Ly),
and Kleene closure (L* = U2 L") (Kaplan and Kay,
1994, 338).

Regular relations are defined in the same fashion.
An n-relation is a set whose members are ordered n-
tuples (Beesley and Karttunen, 2003, 20). Then {e}
is a regular n-relation where e € %€ x ... x 3¢ (§
is also a regular n-relation). Given that R;, R, and
R are regular n-relations, additional regular n-relations
may be defined by three operations (under which they
are closed): n-way concatenation (R;- Ry = {zylz €
R1,y € Rs), union (R U R»), and n-way Kleene clo-
sure (R* = U2 RY).

%

5 Finite state automata and regular
grammars

A finite state automaton is a mathematical model that
corresponds to a regular language or regular relation
(Beesley and Karttunen, 2003, 44). A simple finite
state automaton corresponds to a regular language and
is a quintuple (S, 3, d, s, F'), where S is a finite set
of states, X the alphabet of the automaton, J is a tran-
sition function that maps S x Y€ to 25 50 € Sisa
single initial state, and F' C S is a set of final states
(Aho et al., 1988, 114). A finite state automaton that
corresponds to a regular relation is termed a finite state
transducer (FST) and can be defined as a quintuple
(S, X x...xX, 0,80, F), with ¢ being a transition func-
tion that maps S x X€ x ... x %€ to 2° (Kaplan and
Kay, 1994, 340).

A regular (or finite) grammar describes a regular lan-
guage and is equivalent to a finite state automaton. In

a regular grammar, all production rules have a single
non-terminal on the left-hand side, and either a single
terminal or a combination of a single non-terminal and
a single terminal on the right-hand side. That is, all
rules are of the form A — a, A — aB (for a right
regular grammar), or A — Ba (for a left regular gram-
mar), where A and B are single non-terminals, and a is
a single terminal (or €). A regular grammar is the least
powerful type of grammar in the Chomsky hierarchy
(see fig. 2) (Chomsky, 1956). A context free grammar
describes a context free language, a context sensitive
grammar describes a context sensitive language, and
an unrestricted grammar describes a recursively enu-
merable language. The hierarchy is characterized by
proper inclusion, so that every regular language is con-
text free, every context free language is context sensi-
tive, etc. (but not every context free language is regular,
etc.). A regular grammar cannot describe a context free
language such as {a"b™|1 < n}, which consists of the
strings {ab, aabb, aaabbb, aaaabbbd . ..} (Kaplan and
Kay, 1994, 346).

Since Paninian external sandhi can be modeled using
finite state grammar, it is highly desirable to provide a
finite state implementation, which is computationally
efficient. Finite state machines are closed under com-
position, and thus sandhi operations may be composed
with other finite state operations to yield a single net-
work.

6 From rewrite rules to regular
grammars

A string rewriting system is a system that can trans-
form a given string by means of rewrite rules. A rewrite
rule specifies that a substring x7...x, is replaced by
a substring y1...Ym: Z1...Tn — Yi...Ym, Where
xi,y; € 2 (and X is a finite alphabet). Rewrite rules
used in phonology have the general form

¢—b/A__p

Such a rule specifies that ¢ is replaced by ¥ when
it is preceded by A and followed by p. Tradition-
ally, the phonological component of a natural-language
grammar has been conceived of as an ordered se-
ries of rewrite rules (sometimes termed a cascade)
Wi, ..., W, (Chomsky and Halle, 1968, 20). Most
phonological rules, however, can be expressed as reg-
ular relations (Beesley and Karttunen, 2003, 33). But
if a rewrite rule is allowed to rewrite a substring in-
troduced by an earlier application of the same rule,
the rewrite rule exceeds the power of regular relations
(Kaplan and Kay, 1994, 346). In practice, few such
rules are posited by phonologists. Although certain
marginal morphophonological phenomena (such as ar-
bitrary center embedding and unlimited reduplication)
exceed finite state power, the vast majority of (mor-
pho)phonological processes may be expressed by reg-
ular relations (Beesley and Karttunen, 2003, 419).

Since phonological rewrite rules can normally (with
the provisos discussed above) be reexpressed as regular
relations, they may be modeled as finite state transduc-
ers (FSTs). FSTs are closed under composition; thus if
Ty and T5 are FSTs, application of the composed trans-
ducer 77 o T5 to a string S' is equivalent to applying T}
to S and applying 7% to the output of 77:

Ty 0 Ty(S) = To(T1(S))

So if a cascade of rewrite rules Wy, ..., W,, can be
expressed as a series of FSTs T1,...,T,, there is a
single FST 7T that is a composition 7} o ... o T}, and

is equivalent to the cascade W1, ..., W,, (Kaplan and
Kay, 1994, 364). G = Ty o...oT, constitutes a regular
grammar. Efficient algorithms are known for compil-
ing a cascade of rewrite rules into an FST (Mohri and
Sproat, 1996).

7 An FST for Paninian sandhi

The XML formalism for expressing Paninian rules in
§3 contains a number of devices; it is not immediately
evident how rules employing these devices might be
compiled into an FST. A rule compiler, however, is de-
scribed here that translates Paninian rules expressed in
the XML formalism into rewrite rules that can be au-
tomatically compiled into an FST using standard algo-
rithms.

It is useful to begin with an instance of Paninian
sandhi derivation of the string devo ’'pi < devas api
‘also a god’.

FORM SUTRA
devas api

deva$ api 8.2.66
deva#u api 6.1.113
dev! (gunate (u)) api | 6.1.87
devo ’pi 6.1.109

Sttra 8.2.66 replaces a pada-final s with »U (here sym-
bolized by $). Sitra 6.1.113 replaces pada-final rU
with u preceded by a boundary marker (#) when the
next pada begins with a. Sutra 6.1.87 has been dis-
cussed above. Siitra 6.1.109 replaces pada-initial a
with avagraha (represented by ’ in SLP1) when the
previous pada ends in the pratyahara eN (i.e. e or 0).”

Although the PCREs in the XML format exceed the
power of regular relations, and the implementation of
mappings and functions is not obvious in a regular
grammar, the rule compiler mentioned above is able
to produce a cascade of rewrite rules that may be ef-
ficiently compiled into an FST. A consequence of the
rule compilation strategy is that a single Paninian rule
may be represented as several rewrite rules. Where a
rule makes use of pattern memory, which can contain

" Although avagraha is not a phoneme, it may be con-
ceived of linguistically as a “trace” left after the deletion of
a-. For this reason, it is represented in the SLP1 phonological
coding.

Figure 3: An FST for siitra 6.1.109

n possible values, the rule is expanded into n rewrite
rules. Mappings and functions are automatically ap-
plied where they occur in v (the substituens).

The following cascade represents the four siitras ex-
emplified above:

s—$/ -]#
$—#ula (- [#a
@) | #)(alp) — a
@) [H)(E[1) —e
(@2 | H)ulv) — o
(alp)(o |)(E|F) — ar
(alpa)(e |)(x|x) — al
a—"'"/(elo) | #) —

Here the notation (z|y|z) expresses alternation; the rule
matches either x, or y, or z. The symbol .. represents
a space character; the symbol # represents a boundary
that has been inserted by a rule.

These rules may be efficiently compiled into FSTs.
An FST encoding the final rule is shown in fig. 3. In
this transducer, s¢ is the initial state and doubly-circled
states are the members of F', the set of final states. The
graphical representation of the FST has been simpli-
fied, so that symbols that are accepted on transition
from s; to s; share an arc between s; and s; (in this
case, the symbols are separated by commas). The nota-
tion x : y indicates the symbols on the upper and lower
tapes of the transducer, respectively. If the transducer
reads input from the upper tape and writes output to the
lower tape, x : y indicates that if x is read on the up-
per tape, y is written on the lower tape. If the symbols
on the upper and lower tapes are the same, a shorthand
notation is used; thus x is equivalent to x : x. The spe-
cial symbol ? indicates that any symbol is matched on
either the upper or lower tape.

Since it is possible to translate each rule in the above
cascade into an FST, and FSTs are closed under compo-
sition, it is possible to compose a single FST that imple-
ments the portion of Panini’s sandhi represented by the
rules in the cascade above. A compiler developed by
the author will be capable of compiling the entirety of
Panini’s sandhi rules into a single FST. The FST is then
converted to Java code using a toolkit written by the au-
thor. Compilation of the generated source code yields
binary code that may be run portably using any Java
Virtual Machine (JVM) (Lindholm and Yellin, 1999).
Alternatively, for improved performance, the Java code

may be compiled into native machine code using the
GNU Compiler for Java (gcj).

8 Implications

While one of the guiding principles of Panini’s gram-
mar is conciseness (ldghava), a computational imple-
mentation poses other demands, such as tractability and
efficiency. Panini’s rules are formulated in terms of
classes based on distinctive features and must be con-
strued with the aid of ‘interpretive’ (paribhasa) rules,
technical terms (samjiia), and other theoretical appara-
tus.

However desirable the mathematical properties of a
regular grammar may be, a grammar stated in such
terms is at odds with Panini’s principles. Rather, it
hearkens back to the vikara system employed by ear-
lier linguistic thinkers, in which individual segments
are the target of specific rules (Cardona, 1965b, 311).

By way of contrast, Panini states a rule econom-
ically in terms of the sound classes enumerated in
the Sivasitras. Thus 8.4.41 stuna stuh specifies the
retroflexion of an s or dental stop either (1) before a
pada-final -s or (2) pada-finally before a tU (i.e. a
retroflex stop).

With a little less economy, we can represent Panini’s
rule by two rules in XML.:
<rule source="[s@ (tu)]"

target="% (retroflex ($1))"

lcontext="z[@ (wb)]"
ref="A.8.4.41"/>

<rule source="[s@ (tu)]"
target="% (retroflex (S1)"
rcontext="[Q (wb)] [@ (wu)]"

ref="A.8.4.41"/>

The pratyahara tU stands for the dental stop series {7,
th, d, dh, n}. We apply the retroflex mapping:
<mapping name="retroflex">

<map from="s" to "z"/>

<map from="Q@ (tu)" to "@ (wu)"/>
</mapping>
The effect is to change a single phonological feature
across an entire class; sounds with a dental place of
articulation (dantya) are replaced by sounds with a
retroflex articulation (mirdhanya). In specifying such
a replacement, Panini makes use of the principle of
savarpya ‘homogeneity of sounds’. So the substituend
chosen is that closest to the original—with respect to
voice (ghosavat / aghosa), aspiration (mahdaprana /
alpaprana), and nasality (sanundsika / niranundsika).
Thus t — ¢, th — th, d — d, and so on; yet Panini does
not need explicitly (and repetitively) to specify the ex-
act segments substituted. In this way, the Astadhyayr
avoids the bias (“segmentalism”) that places the linear
segment at the center of phonological theory—a bias
from which contemporary linguistics is beginning to
distance itself (Aronoff, 1992).

The finite state approach discussed in this paper,
however, is limited to describing the relations between

strings (sequences of segments). As far as the com-
putational model is concerned, individual symbols are
atomic, and no class relations between the symbols ex-
ist. The goal in this study has been to develop an in-
termediate representational structure, based on XML,
that can faithfully encode some of the linguistically sig-
nificant aspects of a portion of Panini’s grammar (the
rules involved in external sandhi) and at the same can
be automatically translated into an efficient computa-
tional implementation.

9 Appendix: core rules for external
sandhi

The following is a list of modeled vidhi rules (8.3.4:
adhikara, 8.4.44: pratisedha) for external sandhi. No
account is taken here of pragrhya rules that specify cer-
tain sounds as exempt from sandhi (since these rules
refer to morphosyntactic categories). Various optional
rules are not listed.

6.1.73 checa

6.1.74 anmanosca

6.1.132 etattadoh sulopo ’koranaiisamase hali
8.2.66 sasajuso ruh

8.2.68 ahan

6.1.113 ato roraplutadaplute
6.1.114 hasi ca

6.1.101 akah savarne dirghah

6.1.88 vrddhireci

6.1.87 adgunah

6.1.77 iko yanaci

6.1.109 enah padantadati

6.1.78 eco ’yavayavah

8.2.39 jhalam jaso ’nte

8.3.4 anundasikatparo "nusvarah
8.3.7 naschavyaprasan

83.14 rori

8.3.17 bhobhagoaghoapiirvasya yo ’Si
8.3.15 kharavasanayorvisarjaniyah
8.3.19 lopah sakalyasya

8.3.20 oto gargyasya

8.3.23 mo ’nusvarah

8.3.31 Si tuk

8.3.32 namo hrasvadaci namunnityam
8.3.34 visarjaniyasya sah

8.3.35 Sarpare visarjaniyah

8.3.40 namaspurasorgatyoh

8.4.40 stoh Scuna scuh

8.4.44 sar

8.4.41 stund stuh

8.4.45 yaro 'nunasike 'nunasiko va
8.4.53 jhalam jasjhasi

8.4.55 kharica

8.4.60 torli

8.4.62 jhayo ho 'nyatarasyam
8.4.63 sascho ’ti

8.4.65 jharo jhari savarne

References

Alfred V. Aho, Ravi Sethi, and Jeffrey D. Ullman.
1988. Compilers: Principles, Techniques, and
Tools. Addison-Wesley, Reading, MA.

Mark Aronoff. 1992. Segmentalism in linguistics: The
alphabetic basis of phonological theory. In Pamela
Downing, Susan D. Lima, and Michael Noonan, ed-
itors, The Linguistics of Literacy, volume 21 of Ty-
pological Studies in Language, pages 71-82. John
Benjamins, Amsterdam.

Kenneth R. Beesley and Lauri Karttunen. 2003. Finite
State Morphology. CSLI, Stanford, CA.

Akshar Bharati, Vineet Chaitanya, and Rajeev Sangal.
1996. Natural Language Processing: A Paninian
Perspective. Prentice-Hall of India, New Delhi.

George Cardona. 1965a. On Panini’s morphophone-
mic principles. Language, 41(2):225-237.

George Cardona. 1965b. On translating and formaliz-
ing Paninian rules. Journal of the Oriental Institute,
Baroda, 14:306-314.

George Cardona. 1969. Studies in Indian grammar-
ians: I. The method of description reflected in the

Sivasitras. Transactions of the American Philosoph-
ical Society, 59(1):3-48.

Noam Chomsky and Morris Halle. 1968. The Sound
Pattern of English. MIT Press, Cambridge, MA.

Noam Chomsky. 1956. Three models for the descrip-
tion of language. IEEE Transactions on Information
Theory, 2(3):113—-124.

Ronald M. Kaplan and Matin Kay. 1994. Regular
models of phonological rule systems. Computa-
tional Linguistics, 20(3):332-378.

1999. The Java™
Addison-Wesley,

Tim Lindholm and Frank Yellin.
Virtual Machine Specification.
Reading, MA, 2d edition.

Mehryar Mohri and Richard Sproat. 1996. An efficient
compiler for weighted rewrite rules. In 34th Annual
Meeting of the Association for Computational Lin-
guistics, pages 231-238, Santa Cruz, CA. ACL.

Prezemyslaw Prusinkiewicz and Aristid Lindenmayer.
1990. The Algorithmic Beauty of Plants. Springer,
New York.

Peter M. Scharf and Malcolm D. Hyman. 2007. Lin-
guistic issues in encoding Sanskrit. Unpublished
manuscript, Brown University.

Rama Nath Sharma. 1987. The Astadhyayr of
Panini, Vol. 1: Introduction to the Astadhyayr as a
Grammatical Device. Munshiram Manoharlal, New
Delhi.

Rama Nath Sharma. 2003. The Astadhyayr of
Panini, Vol. 6: English Translation of Adhyayas
Seven and Eight with Sanskrit Text, Translitera-
tion, Word-Boundary, Anuvrtti, Vrtti, Explanatory
Notes, Derivational History of Examples, and In-
dices. Munshiram Manoharlal, New Delhi.

Henry Smith. 1992. Brevity in Panini. Journal of
Indian Philosophy, 20:133—-147.

Unicode Consortium. 2006. The Unicode Standard,
Version 5.0. Addison-Wesley, Boston.

Larry Wall, Tom Christiansen, and John Orwant. 2000.
Programming Perl. O’Reilly, Sebastapol, CA, 3d
edition.

