N

N

Implementing Wilson-Dirac Operator on the Cell
Broadband Engine
Khaled Z. Ibrahim, Francois Bodin

» To cite this version:

Khaled Z. Ibrahim, Francois Bodin. Implementing Wilson-Dirac Operator on the Cell Broadband
Engine. [Research Report] PI 1880, 2007, pp.23. inria-00203478

HAL 1d: inria-00203478
https://inria.hal.science/inria-00203478
Submitted on 10 Jan 2008

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

https://inria.hal.science/inria-00203478
https://hal.archives-ouvertes.fr

ISSN 1166-8687

PUBLICATION
INTERNE
N° 1880

OQ{{/
&
&
&
%3
3

5
S
9

S

IMPLEMENTING WILSON-DIRAC OPERATOR ON THE
CELL BROADBAND ENGINE

KHALED Z. IBRAHIM , F. BODIN

 |RISA

CAMPUS UNIVERSITAIRE DE BEAULIEU - 35042 RENNES CEDEX - FRANCE

INSTITUT DE RECHERCHE EN INFORMATIQUE ET SYSTEMES ALEATOIRES
» I R I S E Campus de Beaulieu — 35042 Rennes Cedex — France

Tél. : (33) 029984 71 00— Fax: (33) 029984 7171
» http://www.irisa.fr

Implementing Wilson-Dirac Operator on the Cell
Broadband Engine

Khaled Z. Ibrahim , F. Bodin

Systémes communicants
Projet CAPS

Publication interne n1880 — December 2007 — 23 pages

Abstract: Computing the actions of Wilson-Dirac operators consumes most of the CPU
time for the grand challenge problem of simulating Lattice Quantum Chromodynamics (Lat-
tice QCD). This routine exhibits many challenges to implementation on most computational
environments because of the multiple patterns of accessing the same data that makes it dif-
ficult to align the data efficiently at compile time. Additionally, the low computation to
memory access ratio makes this computation both memory bandwidth and memory latency
bounded.

In this work, we present an implementation of this routine on Cell Broadband Engine. We
propose runtime data fusion, an approach aiming at aligning data at runtime, for data that
cannot be aligned optimally at compile time, to improve SIMDized execution.

We also show DMA optimization technique that reduces the impact of BW limits on per-
formance. Our implementation for this routine achieves 31.2 GFlops for single precision
computations and 8.75 GFlops for double precision computations.

Key-words: IBM Cell BE, Vectorization, SIMD, Lattice QCD, Parallel Algorithms,
Wilson-Dirac

(Résumé : tsup)

ks

Centre National de la Recherche Scientifique Institut National de Recherche en Informatique
(umr 6074) Université de Rennes 1 — Insa de Rennes et en Automatique — unité de recherche de Rennes

Mise en ceuvre de 'opérateur de Wilson-Dirac sur
I’architecture Cell

Résumé : La mise en ceuvre de 'opérateur de Wilson-Dirac est 1’un des calculs les plus
cotteux de QCD sur réseau. Ce calcul pose de nombreux challenges de mise en ceuvre liés a
I’accés aux données. En effet les multiples patrons d’accés rendent difficile I’optimisation de
alignement des données pour des accés mémoire efficaces. Par ailleurs, le ratio calcul / accés
mémoire engendre une saturation de la bande passante mémoire qui limite ’exploitation des
unités de calculs.

Ce rapport présente une mise en ceuvre sur ’architecture Cell de 'opérateur de Wilson-
Dirac. Des techniques de fusion de données a I’exécution sont proposées pour résoudre le
probléme des contraintes d’alignement de données et 1'utilisation des opérateurs SIMD des
unités de calcul du Cell. De plus, une technique permettant d’optimiser les transferts DMA
est aussi décrite. Notre implémentation atteint 31.2 Gflops en calcul simple précision, 8.75
Gflops en calcul double précision.

Mots clés : IBM Cell, Vectorisation, SIMD, QCD sur réseau, Algorithme paralléle,
Wilson-Dirac

Wilson-Dirac on Cell BE 3

W ’ @ 4D gauge field of 3x3
- . _ _complex vars
[% [RN
\
e . G / ! \ \'\
o
@
o
. o o
’ @ /Spinor: 4 SU3 vector\ \‘.
[~ o - SUS3 vector: 3 complex vars

Figure 1: 4-dimensional space time lattice QCD.

1 Introduction

Efficient implementation for computing the action of Wilson-Dirac operators is of critical
importance for the simulation of lattice Quantum Chromodynamics (Lattice QCD). Sim-
ulating Lattice QCD aims at understanding the strong interactions that binds quarks and
gluons together to form hadrons. In lattice QCD, a four-dimensional space-time continuum
is simulated, where quantum fields (quarks) are symbolized at the lattice sites and quantum
fields (gluons) are symbolized at the links between these sites. Lattice spacing should be
small to obtain reliable results which requires enormous amount of computations. Figure 1
shows the discretization of the four-dimensional space-time space of the lattice QCD.

The use of accelerator for scientific computing has always been experimented by many
researchers. Among recently attractive technologies are graphic processing units (GPU) and
Cell Broadband Engine. The Lattice QCD community, as well as other high performance
computing communities, started exploring the possibility of using these accelerators to build
cost effective supercomputers to simulate these problems.

Using GPU, for instance, has been investigated [1, 2|, especially with the advent of
general purpose programming environment such as Cuda [3] for graphic cards. The main
challenge in these environments is the over-protection that most manufacturers adopt to
hide their proprietary internal hardware design.

The use of Cell broadband engine is also under consideration of many Lattice QCD
groups. An analytical model to predict the performance limits of simulating lattice QCD is
developed [4]. Some simplified computation was also ported to the cell [5]. These studies
affirmed the fact that the computation of lattice QCD is bandwidth limited (or memory
bound) and tried to predict the performance of a real implementation.

In this study, we introduce an implementation of the main kernel routine for simulating
Lattice QCD. In this implementation, we tried to provide answers to two main questions;

PI n1880

4 Ibrahim € Bodin

the first is how to SIMDize the computation in an efficient way; the second question is how
to distribute the lattice data and how to handle memory efficiently.

For efficient SIMDization, we introduce the notion of runtime data fusion to align data
at runtime that cannot be aligned optimally at compile time. Furthermore, while allocating
lattice data on the main memory, we introduce analysis for data on the frames level to create
optimized DMA requests that removes redundancy of data transfers as well as improves
contiguity of memory accesses.

The rest of this report is organized as follows: Section 2 introduces the Cell broadband
architecture and the software development environment. Section 3 introduces the Wilson-
Dirac computation kernel. The SIMDization problem is tackled in Section 4. Section 5
details the proposed memory layout and the analysis leading to optimizing the memory
transfers. We comment on the utilization of the Cell BE on Section 6. Section 7 concludes
this report.

2 Cell Broadband Engine and Software Development En-
vironment

In this study, we target developing efficient implementation of the main kernel routine of
simulating Lattice QCD on Cell Broadband Engine (BE). We used IBM Cell BE SDK 3.0 [6].
We explored our implementation on current Cell BE as well as the future generation Cell
with enhanced double precision (EDP)?.

We used the simulator provided by the SDK to analyze the performance of our imple-
mentation and we verified the performance, except for Cell EDP, on a IBM BladeCenter®)
QS20 system with dual-Cell BE processors (running at 3.2 GHz).

Figure 2 outlines the basic component of the Cell BE processor. The Cell BE chip is
composed of multiple heterogeneous cores; a PowerPC compatible master processor (with
dual SMT) (PPE) and eight synergistic processing elements (SPE).

The execution unit on the PPE can handle control flow intensive codes while the exe-
cution unit on the SPE is optimized to handle SIMD computations. Each SPE has a 128
register file, each 16-bytes wide. The SPE has a small (256 KB) special memory called local
store that execution unit can access with a pipelined latency of one cycle.

The main data is usually stored in the external memory and data are transferred back
and forth with memory through special DMA APIs. Each SPE has two pipelines, one is
specialized mainly on doing integer and floating point operations (even pipeline) and the
other is specialized mainly in doing shuffling, branching and load/store operations (odd
pipeline).

IFor Cell EDP, the performance numbers are just estimates based on information collected from the
simulator.

Irisa

Wilson-Dirac on Cell BE 5

SPE SPE SPE SPE
Cell BE (= e
PPE Local Store Local Store Local Store Local Store 5
(Ls) (LS) (Ls) (Ls) g
c
| 5 4=
o
L2 Cache 8
16 B/Cycle

4H Element Interconnect Bus (96 Bytes/cycle)

PXU Local Store
(2-way SMT) (LS)
SXU

FRY SPE SPE SPE SPE

Controller

Local Store
(LS)

Local Store
(LS)

Local Store

(LS) 25.6 GBIs

RambusXDR Memory

Figure 2: Cell Broadband Engine

3 Wilson-Dirac Operator

In this study, we ported the computation of the actions Wilson-Dirac on spinor field based
on the code of the ETMC collaboration, see for instance [7, 8.

Computing the actions of Wilson-Dirac operator is the most time consuming operation in
simulating lattice QCD. Equation 1 details the computation of the actions of Wilson-Dirac
operator. This computation involves a sum over quark field (¢;) multiplied by a gluon gauge
link (U;,,,) through the spin projector (I £,).

Xi = Z /‘\3# {Ui“u, (I - ')/p,) 1/)14-;1 + UZT_ILN (I + /Yll‘) ’d)l_ﬂ} (]_)
p={z,y,z,t}
0 0 0 =4 0 0 0 -1 0 0 ¢« O
0 0 ¢ 0 0 01 O 0 0 0 —
Where Y = 0 — 0 0 s ’)/y 0 1 O 0 s Yz _ 0 0 O
- 0 0 0 -1 0 0 O 0 2 0 O

, I is a unity matrix, and ~, represents the hopping term.

The representation of each gauge field is a special unitary SU(3) matrix (3 x 3 complex
variables). The spinors are represented by four SU(3) vectors composed of three complex
variables. The routine implementing this computation is called Hopping Matrix. Paral-
lelization of the routine involves dividing the lattice into two dependent subfields odd and
even, as shown in Figure 1. Each spinor of the odd subfield is surrounded by spinors of the
even subfield and vice versa. The computation sweeps on spinors from one subfield making
the other subfield temporarily constant, thus breaking data dependency.

PI n1880

6 Ibrahim € Bodin

Even though Equation 1 shows regular computation across all sites of the lattice, the
computation usually faces the challenge of the low ratio of floating point operations to
memory references. This makes this computation memory bandwidth and latency bounded.

In Section 4, we discuss the problem of efficiently SIMDizing this code, while the data
alignment and communication is investigated in Section 5.

4 SIMDizing Wilson-Dirac Computations on Cell Broad-
band Engine

The main problem that prevents SIMDizing this code efficiently is the different patterns
of accessing the same data, due to the spin projector in Equation 1, that make no single
representation optimal at runtime. Each gauge field SU(3) matrix is accessed twice (positive
and negative directions). The computation may involve the original matrix or the conjugate
transpose of the matrix. The matrix is usually stored with only one representation. The
problem is exacerbated for spinors because each spinor is accessed in eight different contexts
depending on the space direction. Each access involves different spinor vectors and oper-
ations alternating between vector addition, subtraction, conjugate addition, and conjugate
subtraction.

Aligning data such that all these operations are performed optimally at the same time
is not possible. Different earlier approaches for SIMDizing this code align the data on one
layout and then use shuffle operations to change alignment of the data at runtime to perform
the needed computations.

Another problem is that data are represented by 3 x 3 complex matrix and 4 3 x 1
complex vectors, which do not map perfectly to power of 2 data alignment. For the cell
processor data should be aligned in the 16 Bytes boundary to be efficiently accessed. DMA
is also better aligned in 128 bytes boundary.

In this work, we define “Runtime Data Fusion” as a solution for the above problems of
data alignment. We show that the performance can be greatly improved using this technique.

Efficient SIMDization of the code requires alignment of the data in a way that reduces
the dependency between instructions, reduces the number of shuffle instructions, and allows
efficient instructions like multiply-add to be executed.

4.1 Runtime data fusion

Two conventional representation of complex structure are commonly used; the first combines
the real and the imaginary parts into one structure; the second separates the real and the
imaginary part into two separate arrays. Figure 3 shows these data layout for storing a 3 x 1
complex vector and 3 x 3 matrix for double precision aligned into 16 bytes word.

In Table 1, we list the number of instructions that are needed to do a matrix-vector
multiplication. We consider the average for doing vector-matrix multiply and vector- trans-
posed conjugate matrix multiply. For the first representation, the real and the imaginary

Irisa

Wilson-Dirac on Cell BE 7

\

Patterns of access for complex
ply of the base repr

,rlre o Inn o r o lre o Illll o I\
))

i i i i

|" 00 |””|m | |" 00 |””m» | /

struct complex { i i i i i
double re, im; regg |y | |re gy gy |"" 02

b

struct vector { - - -
'_l V[3]; re “ m l) re l lllll re ~; m » IL 1” m lU Ire 11 Illll 11 | re 12

%

Base vector

i

iy,

struct matrix {

i i
Complex m[3][3]; |rc 20 iy imy,
b

i, |rc o |rc 5

T
v v
Base representation matrix) (¥ e N

No compute' ™/ 7" 2 ") Compute
struct vector { shuffle L ; | shuffle
double re[3], pad; 1
double im[3], pad; re
b m g .
struct rot_vector { = O\ . e
double re[6]; Padded vector - 4 +’ ‘Reduction
double im[6]; (shuffle

. y - ‘ T
: wp [leslred] e sfred] fre e]
struct matrix {

double re[3][3], vl v I v > ‘
pad; im g \im oy | \im o inn g | fim g |im

double im[3][3], Rotated vector Separate representation matrix
pad;

o Lot Tt [[eoitt[i [it [oi [oitt][o i [it
|“ml|“w> H”"ou|”"«m | I"nl l"nl I””m l””nl ‘ |”'«rz|”-<rz gy |”"n2

) IL“, refy! llllmllm“, ‘ re |y |refy HHH“ ‘HH“ ‘ |ul, |ul,

Fused Vector |u “IIL n]“l/"m Ilm “1‘ |/L lIIL 0 “lm_l Iml,l
\

i |, |H"l |

+1 +1
|u,,|u,, im, |Hn »

Fused Matrix

Figure 3: Multiple representations of structures based on complex variables aligned on 16
bytes word. The top shows merged representation, the middle shows separate representation,
and the bottom shows the fused representation.

part faces different treatment, thus requiring shuffles. The second representation separates
the real part and imaginary parts into two separate arrays, which involves additional shuffles
for transposing the matrix.

The computational requirements based on these alignments favor separating the arrays
for the real part and the imaginary part. The number of floating points is reduced because
of the possibility to use multiply-add and multiply subtract instructions. These instructions
cannot be used with the first layout because the real and imaginary parts share the same
16 bytes word.

Even with the larger number of instructions, the first layout is favored by the perfect
alignment within the boundary of the word. The second layout requires either to use padding
(25% of the total space for spinors and 10% of the gauge field link) or the data will not be
perfectly aligned. Increasing the size of the data because of alignment can severely reduce
the performance of this application because it is bandwidth limited as will be detailed in
Section 5. Aligning data not to 16 bytes boundary will severely penalize loading and storing
data and will nullify the computation benefit achieved by the reduced instructions. We
adopted the first alignment of complex data as base for comparison, especially that the
original implementation (optimized for SIMDization on Intel SSE2) adopted it throughout
the whole code for simulating Lattice QCD.

Considering the fused version in Figure 3, the number of floating variables can be reduced
significantly and no shuffling is needed except at the fusion/disjoin stages. The fusion intro-
duced Figure 3 shows the two-way matrix fusion for complex variables of double precision.

PI n1880

8 Ibrahim € Bodin

| | Merged | Seperate | Fused |

add, sub 18 12 6
madd, msub 0 10 9
mul 22 10 9
compute/reduce shuffles 31 14 0
transpose/conjugate shuffles 3) 0
fuse shuffles 0 0 6

Table 1: Instruction decomposition for vector-matrix multiply on SPE. The count represent
the average for vector-by-matrix and vector-by-transposed matrix.

The fused matrix removes the need for shuffling in case of conjugate access to the array
elements because complex and real variables are aligned in separate 16 Bytes boundary.
Transposing or conjugating the matrix does not involve additional shuffles.

This fused alignment is unfortunately not possible at compile time, especially for spinors
because it requires having a unique order of accessing spinor at compile time. In other
word, given a spinor ¢ we need to determine a unique spinor that will always precede it in
computation and a unique spinor that will always follow it. The surrounding spinors in every
access context can be different and it will be a very large space overhead to keep multiple
coherent, copies.

Because of the performance associated with data fusion and difficulty of doing it stati-
cally, we consider the following proposal for “runtime data fusion”

1. Data are fused at runtime for a number of structures dependent on the number of
elements per memory word, which usually involve some startup shuffle operations.

2. Optimized kernel of computation is written assuming fused data. Fused data are kept
alive in registers as long as they are needed.

3. The final results for the optimized kernel (output spinors) are then disjoined back
before storing them to the memory.

The steps involved in code transformations to support runtime data fusion are shown in
Figure 4. Our technique involves fusing unrolled code to align data that can not be aligned
statically due to the multiple access patterns encountered at runtime. The fusion process
involves grouping data that will be accessed with the same pattern of access on SPU word
size (i.e., aligning them in 16 bytes boundary). For single precision computation, 4-bytes
floating points, spinors are computed in a group of 4 output spinors. Consequently, the
input gauge fields and the input spinors are combined into groups of four (4-way fusion).
For double precision, optimal alignment requires fusing the computation for two output
spinors (2-way fusion).

Runtime fusion adopts the same data structure used for the base. No alignment problem
is encountered. The fused version only exists during computation, living in registers.

Irisa

Wilson-Dirac on Cell BE 9

Original code Code with runtime fusion
fori <~ Oton—1 stepldo for i < Oton—1 step 2do
%=Ly we = fuse(y! vl

end for wi = fuse(y.wly)
Unrolled code
fori < 0to n—1 step2do (//4’(” = ‘ﬁ[‘ve((//[.’” ’(///.’;'_l
xi= f(l//;),l///l L 'rl///m) A= f* (I//L) 5 l//;xlc e ’(//Alcu)
in = LWl (i A1) = disjoin()
end for end for

Figure 4: Code transformations for “runtime data fusion” computation.

The main feature of the Cell SPE that allows this technique is the large register file.
Merging data structure in the beginning of computation incurs minimal overhead if all
fused data are kept in registers as long as they are needed for computation. Runtime
fusion can prove difficult for other processors with SIMD instruction set, that have small
register count, for instance Intel SSE. We need to keep not only input fused data but
also intermediate results alive in registers, especially that data are not accessed frequently.
During the computation of a group of two spinors in double precision, almost 6 KB of
memory are accessed while the register file can hold only 2 KBytes. Knowing that some
registers are needed to hold shuffle patterns, intermediate results, and other bookkeeping
operations, careful register lifeness analysis of registers is needed to minimize the possibility
of spilling the register file to the memory. We did this analysis on a basic block size ranging
between 2-2.4 Kilo instructions. In our implementation, we managed to use almost 110 of
the SPE 128-bit registers without the need to spilling fused data or intermediate results to
the memory.

Figure 5 shows the dynamic instruction decomposition for four implementations of the
base complex alignment and the fused version. We have two computation flows in terms
of the shuffle needed, one for the double precision and the 2-way single precision, and the
other kernel is for the 2-way double precision and 4-way single precision. Perfect fusion
kernel, 4-way single and 2-way double, provides better chance of reducing shuffles of data.
The shuffling is reduced to less than 37% of the original shuffle operations count for single
precision when we use 4-way fusion and less than 22% for double precision. Going for no
fusion for single precision, not presented, will incur additional overheads during transposing
matrixes and would provide a much worse performance.

Figure 5 shows also reductions in floating point operations, in addition to the reduction
in shuffle instructions, because runtime fusion of data allows using multiply-add or multiply-
subtract more frequently as clarified earlier in Table 1 .

PI n1880

10 Ibrahim € Bodin

2000
5 ||
k= 1800
& 1600
2 1400
2
5 1200
-1
g 1000 E— [l Others (even)
=] FP (even)
2 800 [] Others (odd)
‘o 600- \ W LD/ST (odd)
% [shuffle (odd)
ot 400
>
QO 200

0

Figure 5: Decomposition of dynamic instructions per spinor computation. Two fusion level
are shown for both single precision and double precision computations.

The impact on average execution cycles per spinor computation is detailed in Table 2. For
these performance cycles, we aligned all data on the local store of Cell SPE. The execution
cycles were reduced significantly for the versions with fusion compared with the versions
with less or no fusion. For single precision the reduction is 35% for 4-way fusion compared
with 2-way fusion. For double precision, the reduction is 40% on current generation Cell BE
and is predicted to be 53% for future generation Cell EDP.

In Table 2, we define memory instructions efficiency as the percentage of the minimum
load/store instructions, needed by the computation, to the actual load/store instructions
executed during computation. As shown in the table, memory instructions efficiency is very
high (ranging from 97.3% to 99%) in our implementation. Careful register lifeness analysis
is needed to achieve this but is also facilitated by the large register file available on the Cell
BE that makes it possible to hold intermediate computation of the spinors data structure
after fusion until the end of the computation. Only single precision with 4-way fusion has
additional memory operations associated with the fuse/disjoin phase, reducing the memory
instructions efficiency to 83%. Still the overall performance with 4-way fusion is much better
that 2-way fusion.

Table 2 also shows the performance in GFlops for these implementations. Apparently,
if the data are requested from the memory system outside the Cell BE, then the memory
subsystem will not be able to afford these bandwidths?. Only double precision on current
generation Cell BE requires moderate bandwidth because the execution of double precision
computation is severely penalized during the issue stage of instruction execution. This table

2Padding is added for single precision gauge field matrix to make the number of element even (less than
4% aditional overhead).

Irisa

Wilson-Dirac on Cell BE 11

cycles GFlops Bytes GB/s Cycles/ | LD/ST
per /FP Frame Effi-
spinor ciency
2-way single on Cell 794 51.84 0.935 48.73 50816 98.28%
4-way single on Cell 517 79.62 0.935 74.85 33088 82.7%
double Cell 7741 5.32 1.79 9.52 247712 97.79%
2-way double Cell 4681 8.79 1.79 15.74 149792 99%
double Cell EDP 1757 23.43 1.79 41.94 56224 97.79%
2-way double Cell EDP 824 49.96 1.79 89.42 26368 97.28%

Table 2: Execution cycles for single and double precision computation.

Single precision on Cell BE Double precision on Cell BE Double precision on EDP

800 — =" 8000 T—————— 1800

7000 1600

600 6000 1400 7

JLssal

Wl Issue Stall

O Stall waiting shuffle

W Stall waiting FP

CINops.

[Even (FP)

Ml Odd (shuffle,
Loisn

Oissal

W Issue Stall

[0 stall waiting shuffle
W Stall waiting FP

1200 _—
5000
1000 —
400 4000 —
800

Cycles per spinor
Cycles per spinor
[m]
z
g
Cycles per spinor

3000

W Odd (shuffle, 600 -
Lo/isn)

200 | @ Even +odd 2000 [Even +Odd 400

1000 200

0 0+ o
2-way 4-way No 2-way No Fusion ~ 2-way
Fusion Fusion Fusion Fusion Fusion

Figure 6: Kernel routine execution time breakdown for one spinor based on single precision
and double precision computations on Cell BE and the future Cell EDP architectures.

shows that performance, in general, will be bounded by bandwidth; which justifies our choice
of avoiding implementations based on data alignment that requires large paddings.

Efficient handling of memory decides the limits of the achievable performance on Cell
architectures for Lattice QCD. This topic will be explored in details in the next section.

Figure 6 shows the decomposition of the execution cycles at runtime. For double precision
on Cell BE the performance is dominated by the issue stall. The performance improvement
for 2-way fusion is attributed to reduction in the number of issued FP (due to using multiply-
add and multiply-subtract as one instruction instead of two separate instructions). For single
precision on Cell BE and double precision on future generation Cell EDP, the shuffling is
reduced (fewer cycles in the critical path of the execution time is needed by the odd pipeline
and fewer stalls on shuffles). Additionally some nops are removed of the critical path of
execution on future generation Cell EDP with double precision computation.

The unoverlapped odd pipeline cycles (implying stall of the even pipeline, responsible
for FP operations) is reduced by 20%, 63%, and 66% for single precision on Cell BE, double
precision on Cell BE, and double precision Cell EDP, respectively.

PI n1880

12 Ibrahim € Bodin

5 Lattice QCD Memory Alignment

Traditionally, the computation of Wilson-Dirac routine is parallelized by aligning part of
the lattice near a computing element and the results of computation from this computing
element are communicated with other computing elements. Fixing lattice per local store has
the advantage of reducing the DMA requests with the memory. Applying the same model
on the Cell processor is challenged by the following:

e The local store associated with SPE is very small. The number of output spinors that
can be computed in this memory is no more than 64 double precision spinors or 128
single precision spinor. This leads to trivially small sublattice size.

e The computation-to-communication of small lattice is severely small. The results from
on each local store will need to be communicated not only to the other SPE sharing
the chip but also to the SPE for the other Cell chips. The need for simulating lattice
of millions of spinors leads to the need for thousands of Cell processors making the
slow communication a dominating factor for performance.

e The synchronization between the SPEs will be very frequent. In Table 2, we show
the number of cycles needed to finish one frame of computation of 64 single precision
spinors or one frame of 32 double precision spinors. Computing a frame requires cy-
cles in the order of tens of thousands. These cycles leaves trivially small amount of
inter-communication time and cannot scale well on a parallel machine. In our experi-
ments, we noticed that the variation in execution time due to the wait for DMA is very
large which makes any frequent synchronization on this architecture ineffective. Syn-
chronization causes contention on resources because all SPEs will be either acquiring
memory, doing computation or waiting at synchronization point.

The conventional approach to program Cell BE is to store the data on the memory system,
then to bring frames of data for processing. Each SPE takes responsibility of doing the
computation for part of the dataset. To compute one spinor, the data communicated with
the external memory is 1504 bytes (assuming 16 bytes alignment) for single precision com-
putations and 2880 bytes for double precision. This leads to Bytes/FP equals to 0.935 and
1.79 for single precision and double precision, respectively. Considering solely the bandwidth
restriction of the cell memory system at 25.6 GB/s, the upper limit on performance will be
27.4 GFlops for single precision computation and 14.3 GFlops for double precision.

Putting data in the main memory solves the limited storage size of the SPE, but direct
application of this approach will assign SPE computing threads the job of requesting data
to operate upon. The data need to be aligned in contiguous memory regions to facilitate
fetching.

As explained earlier, each spinor appears in the computation of eight other spinors.
The context of access (relative access with other spinors) is not the same for each of these
spinor access scenarios. Because of coherence we cannot have multiple copies easily for
spinors; instead we need to compute indices of spinor location before fetching them. An
implementation of this approach on Cell will face the following obstacles:

Irisa

Wilson-Dirac on Cell BE 13

o It is extremely inefficient to do address calculation in the SPE because of the need for
control flow and integer operations for many spinor sites. These computations cannot
be easily SIMDized.

e It is not possible to compute indices of spinors and store them on the local store
because of the limited size of the local store. Alternatively, storing them on the main
memory will add the additional step of fetching indices from the main memory in the
critical path of execution, in addition to stressing the system scarce bandwidth.

e Computing individual spinor location then requesting it will be associated with DMA
fragmentation which can severely impact the performance and reduces the effective
bandwidth observed during execution.

Because we know that storing spinors in the main memory is the solution suitable tradition-
ally for Cell BE and since we know that there is redundancy on accessing the data (especially
for spinors), we analyzed the data available within frames targeting the following objectives:

e Reducing the stress on the scarce bandwidth.

e Improving contiguity of DMA requests (having fewer DMAsS).

The next section shows that frame analysis can lead to achieve these goals at least in part.

5.1 Contiguity analysis of the data space

The data accessed during spinors computation mostly belongs to the gauge field and spinors.
Accessing each of these data structures has different attributes, as follows:

e For gauge field

PI n1880

1.
2.

Each gauge link is surrounded by two spinors.

The gauge field is not updated during the computation of the Wilson-Dirac oper-
ator. Consequently, each gauge link can have multiple copies in separate locations
because no coherence is needed between these copies.

. The gauge field can be reordered arbitrary to improve the performance. Because

two spinors are surrounding each link then preserving contiguity with respect to
the surrounding spinors will require at most two copies for each gauge link.

. The spinors surrounding a gauge field always belong to two separate spinor sub-

fields (one in the odd field and the other on the even field). One of these spinors
is updated while the other is considered constant (belonging to the constant sub-
field). During a sweep (even-to-odd or odd-to-even) each gauge field link appears
only once.

14 Ibrahim € Bodin

Based on the above, the best way to access the gauge field is to replicate the gauge field
based on the spatial locality for each sweep of computation. This alignment can be done at
compile time. Two gauge field organizations can be created, one is optimized for contiguity
during the odd-even sweep of computation and a redundant copy is optimized for the even-
odd sweep. In one sweep, no redundancy of data exists and data are organized in way to
guarantee contiguity of access.

e For spinor field

1. Each spinor is surrounded by eight gauge links. Each spinor is accessed in eight
different contexts.

2. Half the spinors are updated in each sweep of computation.

Multiple copies of the same spinor will require coherent update for all copies which would
add load to the potentially overloaded memory system.

For spinors, we considered analyzing the frames of computation for contiguity and redun-
dancy. Figure 7 shows part of the indices accessed in one frame of spinors. Computing an
output spinor requires accessing one row of the input spinors. Looking at the indices of each
row (needed to compute one spinor) we find no spatial locality. Looking across neighboring
spinors, we observe some contiguity for the spinors streamed from the same directions of the
space, for instance the columns for +t, -t, +x, and -x.

We can issue DMA requests from the memory based on their space alignment to im-
prove contiguity of access from the external memory. Knowing that the local store is not
arranged like cache, the non-contiguous access during execution of spinors on the local store
is fortunately not penalized.

Contiguity of access favors issuing DMAs based on column major ordering from the main
memory while accessing spinors in a row-major fashion from the SPE local store.

The second observation is that some of the spinors within the frame are repeated. To
save bandwidth, we can bring the non-redundant part of the frame and then use the very
fast local store to local store transfers. This can reduce the stress on the memory system
and reduce the effect of bandwidth on performance. We similarly search for redundant data
that can be moved between consecutive frames. Effectively, two copy lists are created; the
first is used for copying redundant spinors within the same frame; and the second is used to
copy spinors between contiguous frames.

Because the values of spinors changes during computation, while their locations remain
fixed, the analysis to create optimized DMA lists and to create copy list is needed only once
at the start of the program execution. This job is done more efficiently on PPE because
it is control flow intensive. The PPE can also use the addresses of the spinors within the
SPE local store so that absolute indexing is given back to the SPE to improve SPE runtime
performance.

The SPE receives the addresses where its optimized DMAs are located in the start of
creating its thread. In our implementation, we allocate a buffer for information about DMAs
for 64 frames in the local store (occupying about 32 KB). Each frame represents the data

Irisa

Wilson-Dirac on Cell BE 15

Data constructed frorm
current frame DMAs
DMA access. *T T 3% = Y ¥ +Z <
-
start

off+0 4235\255?@@% @@ (2305 (2304 [|
off+1 4353| | 257 |:[2433|: [2177|: (2313|: | 2425 | 2306 |2305|
off+2 4354/ | 258 |:[2434|: 2178|: (2314|: | 2426| | 2307 |2306|
off+3 4355| | 259 |(12435|: |2179|" |2315| | |2427| | 2308| 12307|| | ¢
, Offté 4356/ | 260 | (2436 : (2180 (2316 (2428 ||2309] 12308|| |
£ off+5 4357 | 261 |:[2437|: 2181|: [2317|:|2429| | ;2310 [2309| |
£ off+6 4358| | 262 |(2438| |2182| |2318| (2430 | 231 2310/ |
& off+7 4359|: | 263 |:[2439|: |2183|: (2319 §g43% 2308 \231v| |2
5 off+8 4360|:| 264 |:2440|: |2184|: [2320| : 230 ‘5’512\ 2319 |8
£ off+9 4361|| 265 | |2441|: |2185|: |2321|: [2305| | 2313 3312 | |7
O off+10 4362| | 266 | (2442|2186 |2322| |2306| |,2314] |2313)| | =
off+11 4363|'| 267 |||2443|: |2187| (2323|: |2307| | 2315 23141 |2
off+12 4364| | 268 |:2444|: |2188|' (2324|: |2308| | 2316] |2315]| | £
off+13 4365/ | 269 | (2445|: |2189|: (2325 : |2309| | 2317| (23161 | &
off+14 4366/ | 270 | [2446|: |2190| |2326| : 2310/ | 2318 (2317 | O

otre1s g3y ar1) lasey) ey aszy) aary) (231w zenm) |

| Spinor computation access direction

Figure 7: Analysis of access pattern for a frame of spinors.

necessary for computing 64 single precision spinors or 32 double precision spinors. In total,
the DMA list carries information about 2048 to 4096 spinors. The eight SPE can hold the
optimized DMA information for lattice size 163 x 16 of single precision (or half of that for
double precision).

To handle larger lattice sizes the optimized DMA lists, created in the beginning of the
program, can be fetched in pieces. The overhead of this process is minimal since it occurs
once every 64 frames of computation and the memory request involves small amount of
data. The layout of the data on the local store including the optimized DMA list is shown
in Figure 8.

Benefiting from these optimized DMA scheme depends on whether the bandwidth is
the performance bottleneck or not. Figure 9 shows the use of double buffering to overlap
computation with communication. For single precision computation on Cell BE, the DMA
performance is in the critical path of execution time. For double precision, the computations
hide the latency for DMA completely. For Cell EDP, simulations show that the wait for
DMA will be put back in the critical path of execution for double precision computations.
The optimized DMA, shown on the right of Figure 9, reduces the stress on the DMA and
introduces additional work to the computing thread. The overall execution time can be
lowered if DMA is bounding the performance.

The computation of the optimized DMA by the PPE is outlined by Algorithm 1. Con-
tiguous spinors within a single frame are grouped into single DMA (if their size does not

PI n1880

16 Ibrahim € Bodin

Data layout in the local store unit in synergetic processing

wlemont (SPE)
WS G EE Surrounding gauge fields Surrounding spinors

/_\A/! m

DMA Requests o~
Frame H T X[X [y [F2][-Z 3}\:?

1 Frame complement /——-—/_‘»‘\i/ B

—ka___, B3

L] . (.

i ® <

ey +

\KV\ 5

. N[, <

™

N

N

[
7&:{;
L] 8 i+l
Frameg; Output spinors [T ﬁﬂ 11
Frame complement | | 2x1608 FPs + accessing 2x168 complex variables — two spinors

Figure 8: Data layout inside the local store of a Cell SPE. Figure shows 2-way fusion access
pattern.

Compute Data Frame,; < Wait Compute Data Frame, < Wait >

v

Enqueue DMA,;

Enqueue DMA;

DMA; in progress DMA,,; in progress

Double-buffering (single precision on Cell BE, Double precision on Cell EDP)

3 3
g] & £
. = | . El=[- | £ g
§ Compute data frame;., & Compute data frame; ; 8 Cm:ll; ':;[I’m Ergn & (8 G Bl | i
L - 2 T s i
2 z AlH gl 12 |5 §
g P g |& gl |3 [* g
= 8 & &
2 H 2 3
E] B s N e —
& | DMA, in progress E DMA,., in progress = DMA; in progress ‘ E ‘ DMA,.; in progress
Double-buffering (double-precision on Cell BE) Optimized double-buffering for DMA sensitive performance

Figure 9: Double buffering for computing spinors in single-precision and double-precision
computations. Optimized double-buffering is also shown on the right based on frame anal-
ysis.

Irisa

Wilson-Dirac on Cell BE 17

Algorithm 1 CREATE FRAME DMA(), Compute frame DMA and copy list (PPE side
computation).

of fsets — COMPUTE_FRAME_OFFSETS()

dmas — CREATE CONTIGUOUS_ DMA(of fsets)

(minimal _dma, copy _list) — CREATE FRAME COPY _LIST(dmas)

return (minimal _dma,copy list)

Algorithm 2 Frame analysis to create optimized DMA and copy list (PPE side computa-
tion).
prev_dma «— CREATE FRAME DMA()
spelc]. dmas|0] < prev_dma
for j — 1 to dma_per spe—1do
current _dma «— CREATE FRAME DMA()
5. temp_dma «— current _dma
current _dma «— INTER_FRAME ANALYSIS(prev_dma, current _dma)
spelc]- dmas[j] < current_dma
prev_dma «— temp_dma
end for

exceed 16KB, otherwise they are split). DMAs are then checked for redundancy, when de-
tected the DMA is removed or split and a copy entry is created. The same analysis is done
between frames that are to co-exist within the local store, as outlined in Algorithm 2.

The computation engine with the optimized DMA and the inter-frame analysis is shown
in Algorithm 3. The computation uses double buffering with the optimized DMA to overlap
computation and communication whenever possible.

5.2 Performance with DMA

In this section, we present the performance based on 4-way fusion for single precision and
2-way fusion for double precision. We also report results estimated by the simulator for
future generation Cell EDP with enhanced double precision performance.

We show the performance with three implementations of the DMA

e DMA with no optimization: The row major layout for spinors is not changed thus
causing fragmentation for DMA.

e DMA with contiguity: The spinor data in the local store are aligned in column major
format and the DMAs are requested form memory for all data on contiguous fashion
when possible.

PI n1880

18

Ibrahim € Bodin

e Optimized DMA: only non redundant data are requested from the memory. The data

are complemented either from the data brought in the current frame or from the data
available in the previous frame.

Algorithm 3 SPE computation of spinors with optimized DMA.

10:

15:

20:

25:

REQUEST OPTIMIZED DMAS STRUCTURE(0)
for i — 0 to sublattices — 1 do

phase — 0
WAIT OPTIMIZED DMAS STRUCTURE(:)
ISSUE_ FRAME INPUTS DMAS(phase,0)
phase «— phase ® 1
for k — 0 to frames per spe—2 do
ISSUE_ FRAME INPUTS DMAS(phase, k + 1)
phase «— phase & 1
WAIT INPUTS RECIEVED(phase)
COMPLEMENT TRANSFER(k)
WAIT OUTPUTS_SENT(phase)
KERNEL COMPUTE(phase)
TRANSFER FROM _ PREV(k + 1)
ISSUE_ FRAME WRITE DMA (phase)
end for
phase «— phase ® 1
WAIT INPUTS RECIEVED(phase)
COMPLEMENT TRANSFER(k)
WAIT_OUTPUTS_SENT(phase)
if i +1 < sublattices then
REQUEST OPTIMIZED DMAS STRUCTURE(: + 1)
end if
KERNEL COMPUTE(phase)
ISSUE_ FRAME_ WRITE DMA (phase)

end for
WAIT OUTPUTS_SENT(phase)

Figure 10 shows the execution time breakdown for the three DMA schemes on Cell BE

and Cell EDP.

Enqueuing unoptimized DMA requests consumes large percentage of execution time rang-

ing between 50% and 90%. The main reason for that large delay is that only 16 DMA requests
are allowed at a time. Exceeding this limit causes the SPE execution to stall waiting for
the completion of DMAs and thus reducing the chance of overlapping computation with
communication. Another problem with fragmented DMA is that it is not always aligned on
128 bytes boundary of address space. The fragmentation in the single precision computation

Irisa

Wilson-Dirac on Cell BE 19

Single Double Double
Cell BE Cell BE Cell EDP

100 +

90 1
80 1

70

60 [l Others
] Wait DMA

507 [Buffer Com-
40 H plement
[l Compute kernel
307 @ Enqueue DMA
20
10+
0

Figure 10: Execution time breakdown with DMA for fragmented DMA, contiguous DMA,
and optimized DMA. Each group is normalized to the fragmented version.

Normalized execution time

is more severe compared with double precision. Aligning data to 128 bytes boundary would
reduce the number of spinors that can be computed per frame to half.

Contiguous DMA requests created by observing contiguity on spinors accessed in the
same spinor of the space. Enqueuing time becomes negligible and the wait time for DMA
show up as a limiting factor for single precision on Cell BE with about 62% of the execution
time and is predicted for double precision on future Cell EDP to be 66% of the execution
time. The double precision performance on Cell BE is not affected by the latency of the
DMA.

The optimized DMA reduces the stall for DMA by 30-40%. Buffer repair (complement)
after DMA consumes less than 5% of the execution time for single precision on Cell BE and
double precision on Cell EDP. For double precision on Cell BE, the buffer repair takes 2.5%
of the execution time.

Table 3 summarizes the performance in GFlops and the bandwidth needed in GB/s.
Compared with contiguous DMA, optimized DMA achieves 37% performance improvement
for single precision. Future Cell EDP is expected to observe 39% performance improvement
for optimizing DMA.

For double precision on Cell BE, the best performance is achieved with contiguous DMA
without optimization because copying spinors is added to the critical path of execution. The
reduction in performance is about 2%, while almost 26% of the bandwidth is saved which
potentially can save power consumption.

The improvement in performance is higher than the saving in bandwidth because other
savings are associated with reducing the requested data such as reducing the queuing delay,
reducing fragmentation repairs, and reducing the controller occupancies.

PI n1880

20 Ibrahim & Bodin
| | Single on Cell | Double on Cell | Double on EDP
Effective | frag. | contig. opt. frag. | contig. opt. frag. | contig. opt.
GFlops 8.4 22.81 31.2 4.34 8.75 8.56 6 11.95 16.6
GB/s 7.86 21.33 23.58 7.78 15.68 124 10.74 21.6 24.05
Table 3: Performance of Wilson-Dirac operator routine in terms of GFlops and Bandwidth
requirements
85
o JOTE e
()] .
g 75
c R4
@ K
© 65 -
g
> 55 paamn /
5 /
g s
3 Lo \ Lattice size 16”4
& 35 *s, Lattice size 84 |
25 T T T T 1
16 32 64 128 256 512
Frame size

Figure 11: Contiguous redundancy within a frame of

spinors.

Another observation is that the saving in bandwidth is different for single precision
(24%) compared with double precision (26%). The bandwidth saving is dependent on the
fragmentation of data and the amount of redundancy within a frame. The fragmentation
for double precision frame is lower compared with single precision frame because of the
larger size of data structures for the spinors and the gauge field. On the other hand, the
redundancy within a frame is dependent on the frame size where for single precision it is
64 while it is 32 for double precision. The bigger the frame size the better the chance to
find redundancy of spinors. If the local store size is increased for the future generation Cell
then we expect to have higher saving in bandwidth based on our optimized DMA. Figure 11

shows the increase in the amount of redundancy within a frame wit

h the increase of frame

size. Increasing the lattice size also requires increasing frame size to detect the same amount

of redundancy.

The simulations we conducted for Cell EDP conservatively assumed that the local store
size (and thus the frame size) will be the same as the current generation Cell BE. If the local

store size increases, as expected, then the effectiveness of optimizi
redundancy, is expected to increase.

ng DMA, by removing

Irisa

Wilson-Dirac on Cell BE 21

6 SPEs Utilization

The SPEs are fully utilized for double precision computation on the current generation Cell
BE. For single precision computation on Cell BE and double precision on Cell EDP, the
processor stalls for large percentage of the execution cycles.

The main reason is that the cycles that the memory controller will be fully occupied
bringing one frame of data, based on 25.6 GB/s, is not less than 11.5 KCycles. Having
eight SPEs per Cell BE, each SPE will have 92.2 KCycles to do computation. These cycles
are about 3 times the cycles needed for computing a single precision frame on Cell BE. A
higher ratio is predicted for double precision on Cell EDP; if the memory bandwidth is not
improved. This shows why the SPE will be underutilized in these cases.

Figure 12 shows the performance achieved by partial use of the Cell BE computational
resources. The experiments were done on IBM Blade Center@® QS20 system varying the
used SPE from 1 to 8. For single precision calculation, it is apparent that as few as four SPEs
can achieve most of the performance the Cell processor can afford, considering 4-way fusion.
The performance slows down by 5% if we increase the SPEs from four to eight because we
use more contenting SPEs on the limited bandwidth. For single precision computation, we
achieve the same maximum throughput (defined by the bandwidth) for 2-way fusion and
4-way fusion. For single precision 2-way fusion, we achieve the maximum throughput with 6
SPEs compared with 4 SPEs for the 4-way fusion. For double precision 2-way fusion steadily
shows better performance compared with no fusion.

Although the flattening throughput is disappointing, it allows an additional degree of
freedom for designing a multi-cell system to simulate Lattice QCD. To handle the imbalance
of the computational resources with the bandwidth for Lattice QCD on Cell BE, among
alternative approaches are

e The memory of some of the SPEs can be used as an extended memory for the other
SPEs, for instance, to hold optimized DMA information. The inter-SPE bandwidth is
much higher than the bandwidth with the external memory. The Cell processor will
then be able to hold information about very large lattice size (for instance 323 x 64).

e In addition to the computing SPE, other SPE can manage their local storage as addi-
tional buffers for frames. Creating extended frames increases the chance of detecting
redundancy within the frames and thus reducing the pressure on the system band-
width.

e Few SPE can be used and others are turned off to save power, or computing threads
migrate between SPEs to reduce hotspoting parts of the Cell processor. The runtime
fusion can be be viewed as power-saving optimization.

PI n1880

22 Ibrahim € Bodin

32

B et T
24 Single 4-way
» 20 - *+, Single 2-way
15 16 I "+ Double 2-way
L 2 \ Double
O 12
8 B
4=
T T T T T T 1
1 2 3 6 7 8

Figure 12: Scalability of performance with the count of used SPEs.

7 Conclusions

Porting the computation of the actions of Wilson-Dirac Operators on cell broadband engine
requires two special program design processes; the first process is SIMDizing the code to
achieve good performance on this architecture; the second process involves optimizing DMA
requests.

For Wilson-Dirac operator, no single compile time data layout can be optimal for SIMDiz-
ing this code. In this work, we presented the “runtime data fusion” model to overcome the
difficulty in static fusion and to reduce the need to shuffle operations. We show that we can
achieve 79.6 GFlops for single precision computation and 8.8 GFlops for double precision
(50 GFlops for double precision is expected on future Cell EDP).

Considering DMA without analysis makes the observable performance no more than 8.4
GFlops for single precision and 4.3 GFlops for double precision (6 GFlops on Cell EDP).

We show that analysis of frames of data can help in saving 26% percent of the bandwidth
in addition to improving contiguity of access. The PPE undertakes the job of analyzing the
data access for contiguity and redundancy once in the beginning of the program and then
transfer to the SPEs optimized DMA requests and buffer repairs. With optimized DMA,
we observed 31.2 GFlops for single precision, 8.75 GFlops for double precision, and we
predict 16.6 GFlops of double precision performance on Cell EDP based on the performance
simulator provided by IBM.

Acknowledgment
We would like to thank the “Centre Informatique National de I’Enseignement Supérieur
(CINES), France” for allowing us to access their machines to conduct our experiments. We

would like also to thank André Seznec for his insightful comments and suggestions to improve
this work.

Irisa

Wilson-Dirac on Cell BE 23

References

[1]

2]

3]
4]

[5]

[6]

7]

18]

G. I. Egri, Z. Fodor, C. Hoelbling, S. D. Katz, D. Nogradi, and K. K. Szabo, “Lattice
QCD as a Video Game,” arXiv:hep-lat/0611022v2, 2007.

K. Z. Ibrahim, F. Bodin, and O. Pene, “Fine-grained Parallelization of Lattice QCD
Kernel Routine on GPU,” First Workshop on General Purpose Processing on Graphics
Processing Units, Northeastern Univ., Boston, Oct 2007.

NVIDIA Cuda 1.0, “http://developer.nvidia.com/object/cuda.html,” 2007.

F. Belletti, G. Bilardi, M. Drochner, N. Eicker, Z. Fodor, D. Hierl, H. Kaldass, T. Lip-
pert, T. Maurer, N. Meyer, A. Nobile, D. Pleiter, A. Schaefer, F. Schifano, H. Simma,
S. Solbrig, T. Streuer, R. Tripiccione, and T. Wettig, “QCD on the Cell Broadband
Engine,” Oct 2007.

S. Motoki and A. Nakamura, “Development of QCD code on a CELL Machine,” Pro-
ceeding of Science, Oct 2007.

Cell SDK 3.0, “http://www.ibm.com/developerworks/power/cell/index.html,” Oct.
2007.

C. Urbach, K. Jansen, A. Shindler, and U. Wenger, “HMC Algorithm with Multiple
Time Scale Integration and Mass Preconditioning,” Computer Physics Communications,
vol. 174, p. 87, 2006.

C. Urbach, “Lattice QCD with Two Light Wilson Quarks and Maximal Twist,” The XXV
International Symposium on Lattice Field Theory, 2007.

PI n1880

