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Abstract: Using rigid body dynamics to solve multi-impact problems poses
many difficulties and unanswered questions. Experiments and numerical sim-
ulation by using all kinds of compliant contact models clearly show that the
outcomes of the post-velocities are not only influenced by the local dissipated
energy, but also significantly effected by the coupling between various contacts.
Based on the idea that the local dissipated energy depends on the constitu-
tive relationship of the compliances, while the couplings among contacts exhibit
the wave behaviors, this paper presents a new method that can well deal with
multi-impact problems and produce energetically consistent and unique solu-
tions to the post-impact velocities. Stronge’s energetic coefficient is used as the
energetic constraint to reflect the local dissipated energy at each impact, and
the wave effects are coupled into rigid body models by using a distributing law
that is associated with the relative contact stiffness and the relative potential
energy stored at contact points. The evolution of energy is mapped into the
impulsive-velocity level by stretching the time scale into the impulsive scale
such that multi-impact processes can be described as a set of differential equa-
tions with respect to a normal impulse. Combining the distributing law with
the Darboux-Keller’s method of taking the normal impulse as an independent
”time-like” variable can make multi-impact problems calculable and respect the
energy constraints. The guidelines related to the selection for the independent
normal impulse are presented and a numerical algorithm is developed in this
paper. Comparisons between the theoretical predictions and the experimental
results found in the literature as well as the numerical results obtained with
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compliant contact models are presented. Robustness analysis through numeri-
cal simulations is carried out and shows that the method proposed in this paper
can well keep the essential mechanical features of the real system as it respects
the evolution of motion in the energy sense. We use this method to investigate
some interesting phenomena found in granular systems, and hope to extend it
to the modeling of multiple impacts with friction, an issue that will be tackled
in the future.

Key-words:  Multiple Impacts, Darboux-Keller’s Dynamics, Wave Effects,
Energy Restitution Coefficient.
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Impacts multiples dans les systemes multicorps:
Analyse théorique et algorithme numérique

Résumé : Ce papier propose une extension du modele de choc de Darboux-
Keller, dans le cas d'impacts simultanés dans un systeme mécanique multicorps.
Dans une premier temps la dynamique du choc est développée. Puis un schéma
numérique d’intégration est proposé. De nombreux résultats numériques sont
présentés et comparés avec soin avec des résultats expérimentaux obtenus dans
d’autres publications.

Mots-clés : Impacts multiples, Dynamique de Darboux-Keller, Ondes, Coef-
ficient de restitution energétique
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Nomenclature

M Mass matrix

q Generalized coordinates

h; the unilateral constraint ¢

¥; i-th hypersurface of constraint

C Configuration space

P;(t) the normal impulse at j-th contact
«, 7 the mass and stiffness ratios

a1, ag, A parameters related to o and -~y
k, w the spring stiffness and the frequency

0; and \; the contact deformation and the normal contact force at contact
point ¢

dP; the increment of the normal impulse at contact point 4

K; the contact stiffness

7 the exponent for the contact modes (linear or Hertz stiffness)
f(P;) a function with respect to the normal impulse P;

FE; the residual potential energy at contact point 4

7ij, Eij the ratios of the contact stiffness and the residual potential energy
between contact points ¢ and j

Wi, We, ; the work done by the contact force during expansion and com-
pression phases, respectively

de,j, Oc,j the variable of the contact deformation at contact point j in
expansion and compression phases, respectively.

(58, 52; the contact deformation of contact point j at the location (-) in

expansion and compression phases, respectively

Om,; the maximum value of contact deformation of contact point j at the
end of the compression phase

dr,; the plastic deformation of contact point j at the end of the expansion
phase

es,; the energetic coefficient at contact point j

Ae.js Ac,j the variables of the contact forces in expansion and compression
phases, respectively
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o {o, t; the time of the beginning and the end of a impact

o t., Pj(t.) the time and the normal impulse at the end of the compression
phase

e s the number of the unilateral constraints

1 Introduction

Systems with multiple impacts have a time-varying structure due to the uni-
lateral features of constraints. Moreover the configurations and the possible
flexibilities at the contact points significantly influence the outcomes [1-13].
Consequently these phenomena require a special treatment for analytical and
numerical solution methods. There are basically four ways of modelling a con-
tact/impact phenomenon in multibody systems: (i) the finite element method
to directly discretize the contact bodies [14-17], (ii) a compliant model (spring—
dashpot, with linear or nonlinear stiffness) and the second order dynamics [18-
29], (iii) a purely algebraic impact law (or mapping) of the form ¢* = F (¢, ¢, p)
where p is a set of parameters [4,7,10-12,30-37] [27], (iv) the first order Darboux-
Keller impact dynamics [6] [38-42] [44].

It is well-known that the interaction between bodies usually experiences a
multi-scale process depending on the materials of contact bodies, the geometric
shape, as well as the loading conditions [I3| T[4, [T5]. Model (i) permits to analyze
the complex process in a stress-strain level and to obtain precise informations
associated with the force/displacement. However the requirement of large com-
putation resources and overrich information often hampers its application in
complex multibody systems.

Model (ii) seems to be an efficient method by using some centralized param-
eters representing the complex behaviors of colliding bodies. However, other
problems will arise, such as the numerical difficulties due to stiff differential
equations [23], problems to identify properly the contact parameters (the damp-
ing and stiffness coefficients used in a compliant contact model) [26] H5], and the
inability to correctly represent some physical effects like waves and dispersion
66

Model (iii) is an algebraic way to deal with impact problems. Directly ap-
plying the classical impact laws, such as the Newton’s and Poisson’s coefficients,
cannot provide an appropriate behavior (i.e. outcomes that agree with the ex-
periments and which satisfy some physical constraints like energy loss) when
more than one contact point participates in a shock process |5, 29, B6] (or when
there is one contact but with Coulomb friction 9, b0]). Kane [50] stated that
the Newton’s coefficient may yield some dynamical singularities when friction
is added at the contacts. The proper energetical behaviour of impact mappings
when tangential and normal restitutions are introduced, is treated in [ B7].
For multi-impact problems, d’Alembert [I] concluded that dividing the multiple
impacts into the sum of percussions computed for each pair of solids seems to
be impossible, and the elastic deformation at contact points should be involved.
The fundamental importance of good restitution mappings and coefficients has
been shown in [60] for chains of beads. The dynamics of some other granular
media seems to be less sensitive to the restitution model [Hl [62].

RR n° 0123456789
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When the colliding bodies can be well approximated by rigid bodies between
the impacts, usually the detailed information associated with the force/displacement
models has little significance on understanding the collision process. In addition,
the anticipation in many applications is how to grasp the overall characteristics
of systems at a more macroscopic level such as the impulse or the energy sense.
This motivates researchers to look for a feasible solution for multi-impact prob-
lems in the framework of rigid body dynamics that respect the basic physical
laws [I1, @, 11, T4, B, B, T2, 25, 26]. Model (iv) is a significant method that not
only allows one to model the local dissipated energy in a simple way, but also
can cope with the coupling between the normal and tangential motions. In the
simplest case, the Darboux-Keller dynamics merely says that an impact is rep-
resented by a first order differential equation of the form M j—}; =1, where M is
the mass, v is the velocity, and P is the impulse of the contact force. It has been
extended to more complex cases [0, B0, B, B8, 39, A0, ©1] of two bodies colliding
with friction. The energy local dissipation phenomena are so complex (plastic
deformation, viscoelastic behaviour, light, noise, etc [53]) that it happens to be
more reliable to shrink all these effects into a single coefficient: the energetical
restitution coefficient has proved to be a good candidate in many previous works
dealing with single impacts [0 BO] and relying on Darboux-Keller’s dynamics.
At present, this method is only available to solve the collisions with a single
contact point. How to extend it to multiple impacts is central in this paper.

Two factors should be carefully considered when impact/contact processes
are understood in the energetical sense: the local dissipated energy at con-
tact/impact points, and the global transfer of energy between various motions.
The common difficulties arising when using rigid body models are how to sepa-
rate the local dissipated energy from the total energy of the systems and how to
analyze the coupling of various motions. The first difficulty is associated with
the definition of a good restitution coefficient, and the second one is related
to the mechanism of energy transfer and waves. In the following the modeling
framework of multiple impacts is briefly introduced, as well as the contribution
of this work and a short review of the literature.

1.1 General features of multiple-impacts laws

Let us consider a mechanical lagrangian system with an n-dimensional general-
ized coordinate g and configuration space C. This system is supposed to have a
mass matrix M(q) = M7T(q) > 0, and is subject to several unilateral constraints
hi(q) > 0,1 < i < s, where the functions h;(-) are supposed differentiable and
the set & = {g € C| hi(q) > 0,h2(q) > 0,...,hs(q) > 0} has an interior with
positive volume. We define the s hypersurfaces ¥; = {¢ € C | hi(q) = 0}. A
multiple impact is an impact that occurs at the intersection of two (or more than
two) surfaces ;. Physically, this corresponds to have several points at which
contact is established simultaneously. There may be several types of multiple
impacts, as depicted in Figure [l that gives a schematic representation of the
system in the plane. We may name an impact that occurs at a codimension
my, < s surface, an mg-impact.

There are many properties and characteristics which are associated with a
multiple impact, independently of the chosen class of models (i)—(iv). Let us
provide a rapid summary:

INRIA
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I —> 3 : rocking impact

I —> 2 :slidng impact

I —> 3 : multiple rebound

1 —> 2 or 4 : sticking impact

Figure 1: Several types of multiple impacts.

1) the kinetic angle between the surfaces ¥; involved in the impact,

2) the continuity of the solutions with respect to the initial data,

)

)
3) the kinetic energy behavior at the impact,
4) the wave effects due to the coupling between various contacts,
)

5) the local energy loss during impacts,

(
(
(
(
(
(

6) the ability of the impact rule to span the whole admissible post-impact
velocities domain,

e (7) the ability of the parameters defining the impact rule to be identified
from experiments,

e (8) the (in)dependence of these parameters on the initial data,
¢ (9) the physical meaning of the parameters of the impact rule,

e (10) the ability of the impact rule to provide post-impact velocities in
agreement with experimental results,

e (11) the well-posedness of the nonsmooth dynamics when the impact rule
is incorporated in it,

e (12) the law should be applicable (or easily extendable) to general me-
chanical systems,

(13) the determination of the impact termination,

e (14) the impact law has to be numerically tractable.

RR n° 0123456789
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Finding a collision law that respects and fulfills all the items (3) through
(14) is quite a hard task. Item (6) means that the various impacts in Figure [l
should be covered. Items (1) (3) (6) enter into the geometrical considerations in
[B1] to develop a framework for multiple impacts, extending Moreau’s sweeping
process rule [B, (7). Property (2) is important, as it implies that sequences of
single impacts may completely fail to deduce the multiple impact law (moreover
in general impacts are not propagated in a sequential way through the contacts
25, 26, 28]). Tt is also related to (11) and to (1). Indeed under some conditions
on the kinetic angles, continuity of the solutions (2) may hold. These cases may
be considered as isolated cases, however. Item (4) implies that the coupling
between various contacts will generate possible “distance” effects, i.e. a collision
may be propagated through the system and induce a detachment at another
contact point. This implies that other relationships than the usual restitution
coefficients at each contact, have to be discovered. For instance Ceanga and
Hurmuzlu [I2] were the first ones to quantitatively study the coupling effects by
introducing an impulse correlation ratio (ICR), even though their theory has a
limited application due to some basic assumptions on the ICR to be valid for
triplets of balls, which is not satisfied in general [25], 26 28]. Another approach
using the ICR and a global energetic coefficient is proposed in [25, 26]. It
somewhat mixes (iii) and (iv) in the sense that the ICRs are computed from a
simplified second order compliant dynamics, and then injected into the algebraic
impact equations. Other examples with different “coupling” coefficients may be
found in [7 @], however they may fail to satisfy item (9), rendering (7) tricky.
Item (5) is related to the meaning of the restitution of coefficient. Newton’s
coeflicient reflects the local energy loss on the velocity level, while the Poisson’s
coefficient puts the energy loss on the impulse level. Obviously these variables
must change due to item (4) and may violate the basic law of energy conservation
B0, 7). Items (7) (8) (9) (10) are related to the choice of the parameters that
enter the impact law. They are fundamental from the point of view of the
practical usefulness of the law. For instance one may want that some parameters
be identified through simple experiments before being injected in a rule for a
more complex collision (e.g. identify restitution coefficients between pair of balls
and then use them in a chain of balls, or identify the ICR of [I2] between triplets
of balls, then use the obtained values in a complete chain with n balls). It is
noteworthy that the main drawback of models (ii) is the necessity to identify
stiffness and damping parameters, which is usually not easy when there are
many contacts with various materials. Item (12) is closely linked to (4), since
the wave effects may differ a lot depending on the bodies shapes, materials, etc.
Item (4) also indicates that a guideline should be established for item (13) since
the separations of contacts do not occur simultaneously. The last item is not the
least one. It has led several researchers to look for multiple-impacts laws that
lend themselves to a Linear Complementarity Problem formulation |31, €, [7],
and are extensions of the Newton or Poisson restitution models.

In the book [B] many constructive remarks on historical works related to
impact dynamics are made, and this may be the first time one points out that
the relative quantity of flexibility is a significant factor for multiple impacts.
It is also pointed out that contrary to the single impact frictionless case, the
energetical behavior is not sufficient to determine in a unique way the restitution
coeflicients. This looks like the situation of hyperstatic problems in rigid body
statics: one cannot determine the solutions of constraint forces even though all

INRIA
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energy is assumed to be stored in constraints, and some consistent conditions
depending on the constraint properties should be provided. Glocker and Pfeiffer
[9] proposed a general method based on the Darboux-Keller’s equations to solve
the multi-impact problems. However, the integrating process for the impulsive
process is ignored due to the assumptions adopted in their theory, which may
much influence the outcomes of multiple impacts. Pioneering works related to
the multi-impact problems can also be found in [29, B B (], etc, in which some
special situations related to multiple impacts were solved by introducing various
assumptions.

1.2 The necessity of a multiple-impact law

Let us clarify the role played by items (1) and (2) above. For this we consider a
chain of two balls which collide a wall, as in Figure The dynamics is given
by

miGi(t) = —mig+ M
maa(t) = —mag — A1 + A2

0<AM Lhi(@)=q1—q—Ri—Ry>0

0< XA Lhe(q) =q2—R2>0

with obvious notations. The kinetic angle between the two surfaces ¥, and
39 is given by

NG
T 0 @

so that m > 612 > 7. In such a case we may expect from the results in [65] that
solutions are discontinuous with respect to the initial data. This implies that
different sequences of impacts will produce different post-impact velocities, and
the limit of the process when all impacts occur simultaneously does not exist.
We associate a Newton’s impact law to each contact, with restitution coefficients
e1 and es, respectively. The upperscript — means pre-impact velocity, whereas
+ means post-imapct velocity. When there are several impacts we indicate it as
+-+ or +++. The sequence of impacts By /wall (X2) and By /By (X1) produces
the outcomes

cosfig = —

+ _ m—ey ;— 1+es - —
G =T —e21rnde

en 3)
++ . m e1) «— l—eym -—
dz - 1+m 4 — €2 1+m dz

with m = 2. The sequence of impacts B1/B> (¥1) and Ba/wall (¥2) and
then By/Bs (X1) again, produces the outcomes

++ _ m—e1 J m—eq ;— 1+e; — | 14+e; J m(l4er) .— l—eym +—
4 = T { Im N1 + 1+mq2} €2 1+m{ Tm 11 + Ttm 12

4)
c+++ _ m(l+er) J m—es 1— 1+er o— | l1—eym | m(l4er) -— l—eim +— (
d2 - 14m 1+m 4 + 1+m 4q; €2 1+m 1+m 4 + 1+m 4q;
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Clearly the final values in @) and (@) are not the same. For such a simple
system it is not possible to deduce a restitution mapping when the collision
occurs at 31 N Yy by studying sequences of impacts. One therefore has to follow
another path to obtain a multiple-impact law for this system. Most of the
mechanical systems that will be examined in the next sections have solutions
which are discontinuous with respect to the initial data. For such systems it
is hopeless to expect accurate numerical results with approaches (iii) or (iv)
without a good multiple impact law. Notice that using Poisson’s coefficient will
not change the conclusion since Newton and Poisson’s approaches are equivalent
for such impacts.

1.3 The importance of a good multiple-impact law

The energy of a mechanical system during a multiple impact is transferred and
re-distributed among the various contact points, except for the local dissipations.
Therefore, it is crucial to consider the wave effects when getting a good impact
law for multi-impact problems. This can be explained by using the classical
example of a Newton’s cradle with N balls, when the balls are attached to a
horizontal rod with strings, and are subjected to gravity.

Without going into further details, one may say that the usual outcome of
such a chain of IV balls when the first ball strikes the others, and all the other
N — 1 balls are at rest with closed contacts (that is an N — 1-impact), is that
the first NV — 1 balls are at rest (ball By stops and balls By to By—1 do not
move), while the last ball By takes all the kinetic energy. Then the process
is repeated in the other direction when the ball By comes to collide with the
chain of balls By to By_1 at rest. One easily concludes that this continues
indefinitely. However, the observation of most Newton’s cradle shows that after
a while, all the balls are stuck and the whole chain rocks (hence the name of
a cradle) [2]. The initial energy of the first ball has been transferred to the
chain with a certain length at first, then travels forward through the chain. A
close observation of what happens after the first collision (that is a multiple
impact) shows that balls By to By—1 have a very small but non zero post-
impact velocity. This is a scattering phenomenon due to the rebounding motion
of the balls after the wave passes through the ball, also known as the dispersive,
or bead detachment effect [42]. Despite almost all the kinetic energy has been
finally transferred through a wave to the ball By (typically 98% of the energy),
the remaining energy in balls By to By_1 plays a crucial role in the subsequent
motion of the whole chain.

The moral of the tale is that the first model provides an outcome that is
close in absolute value to the real outcome: the law may be considered good
from the quantitative point of view. However, this outcome is available only for
the Newton’s cradle with identical balls. If a different ball collides against the
chain, or the chain consists of beads with different size or materials, the situation
will be very far from the observed motion described in the tale. Thus the
impact rule is very bad from the physical point of view as it doesn’t discover the
essential mechanism driving the multiple impacts. In other words, the observed
motion in Newton’s cradle is only a special phenomenon that appears in a
uniform chain impacted by an identical particle. So the impact rule coming
from Newton’s cradle is subjective and brings nothing to the solution of the
multi-impact problem. In fact, multiple impacts are very closely related to the

INRIA



Multiple impacts 11

energy redistribution within the system during the collision, and often generate
an impulsive wave that travels through the contact bodies. This phenomenon
has been discovered in physics by using numerical simulation and experiments
E3, 28, 46, 47, B8, @2, B9, 60, 61]. For a uniform cradle with N balls impacted
by an identical ball, the energy will be distributed in the chain within five balls
and travel with an approximately constant velocity, which depends on the initial
impacting conditions.

Once the wave effects can be captured by a good impact law, the next ques-
tion is how to define the local energy loss at each contact since this energy
cannot be transformed into the kinetic form. If the colliding bodies are not
viscosity materials, the dissipated energy will mainly be due to the plastic de-
formation generated at the local contact region. Since the plastic deformation
usually depends on the static constitutive relationship at contact points, this
may provide a convenient way of applying an energetic constraint to confine the
local dissipated energy, such that the parameters added into the impact rule
can satisfy the requirement of items (7), (8) and (9) mentioned in above.

1.4 Contribution of the paper

For multi-impact problems, it is obvious that the transfer of energy is imple-
mented through the contact points. The exchange and distribution of energy
must depend on the collocation of contact constraints and the elastic properties
at the contact regions. Apparently, the information associated with the com-
pliance at contacts should be added into rigid body models in order to discover
the law of energy transfer and distribution during multiple impacts.

The properties of unilateral constraints can be represented by using some
centralized parameters, and are expressed by the constitutive relationship be-
tween contact force and indentation. Under the assumption that the elastic
vibration of colliding bodies can be ignored, the energy loss and transformation
will only depend on the properties of the contact constraints.

The mechanism of energy dissipation is complex for contact/impact problems
as illustrated in [B3], and an index to reflect the energy loss should be defined
for rigid body models (similar to the damping coeflicient used in structural
dynamics). Basically speaking, all kinds of restitution coefficients are just an
index that defines the energy loss on different mechanical variables. For instance
the Newton’s coefficient presents a kinematic constraint to define the energy loss,
while the ratio of impulses is used in Poisson’s one. In fact, the values of these
coefficients must be influenced by the transfer of energy between various contacts
and have to be modified according to concrete problems [33, B4, B2]. Stronge
defined a constant coefficient to establish a linear relationship between the input
and output of the energy for an impact with a single compression/expansion
cycle. Even though the relationship is nonlinear in nature according to FEM
simulations [34] [[3] and theoretical analysis 9, [[4], the value of Stronge’s
coefficient can be identified independently from experiments as it is related to
energy. Therefore, the energetical coefficient can be used as a constraint to
confine the local energy loss.

Except for the dissipated energy, another part of the energy will be trans-
ferred from one form to another (kinetic to potential, or potential to kinetic),
and be re-distributed among various contacts. The evolution of energy obviously
depends on the collocation of contact points and the constitutive relationship

RR n° 0123456789
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related to the contact properties. In order to discover the evolution law of en-
ergy, we stretch the time scale into an impulsive level, ¢ — fg A(7)dr, such that
the energy of bodies can be mapped into the impulse-velocity level. Considering
the variation of the normal impulses in space scale, we can establish the rela-
tionships between the increments of normal impulses at the same time interval.
These relationships provide a distributing law of reflecting the changes of nor-
mal impulses with the relative contact stiffness and the relative potential energy
stored at various contacts. If the normal impulse at the i — th contact point
changes, the normal impulses at other contacts will accompany the variation by
obeying the distributing law.

The experimental observation of multiple impact processes show that the
impact duration can be considered infinitesimal and the displacements of the
system constant “during” the impact process [56]. Also the forces other than
contact forces (like gravity) can often be neglected [42]. This allows one to
conduct the following assumptions of rigid body dynamics into the multi-impact
process:

e (a) the position ¢ remains constant during the shock process,

e (b) the collision is made of compression/expansion phases during which
the impulse of the contact force is strictly increasing,

e (c) all other forces but the contact/impact ones are neglected,

In order to analyze the coupling between normal and tangential motions for
a single impact with friction, Darboux and then Keller developed a method by
making the normal impulse replace the time scale as a new integration vari-
able for the first order velocity /impulse dynamics obtained based on the above
assumptions [37, B8]. The advantage of this method is in the following;:

The unimportant information for the impulsive process, such as the displace-
ments at contact points and the forces except for the contact ones is completely
filtered out from the model, while the evolution of the motion at the contact
points can be well described as in a compliant model.

It is also worthy to note that the evolution in Darboux-Keller’s approach
is reflected in the impulsive-velocity level, while the one in compliant contact
model needs the extra information associated with the displacements and all
the forces, such that some numerical difficulties will be generated. This method
paves the way towards modelling the impact problems by using rigid body dy-
namics to consider the coupling between various motions, and have found suc-
cessful application in dealing with single impacts (without and with friction) and
the problems of tangential impacts [0, B4, {1, B2] and |5 for more references.

Combining the distributing law between various increments of normal im-
pulses with the velocity/impulse dynamical equations results in a set of first
order differential equations with respect to the normal impulses among which
only one can change as a “time-like” independent variable, such that the multi-
impact problem can be solved by using the Darboux-Keller’s approach. How-
ever, contrary to the collision between a pair of bodies where the exclusive
normal impulse can be selected, multi-impact processes will contain multiple
normal impulses (one at each contact), and the selection for the independent
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variable seems to be arbitrary. In order to avoid the numerical singularity gen-
erated by selecting the normal impulse at the contact point with relative small
potential energy, and to respect the fact that the multi-impact process should
be dominated by the contact point with the maximum value of accumulated
energy, we present a guideline for the selection of the independent variable: The
normal impulse at the contact point with mazximum potential energy is always
selected as the independent time-scale variable. This contact point is denoted
as the primary contact point, and obviously changes with the evolution of the
energy. Therefore, the Darboux-Keller ODE is a set of differential equations
with the integral variable that is changed during the course of the integration.
The integral interval is constrained by the energetical conditions in which the
potential energy at contacts should be completely transformed into the kinetic
form except for the local energy losses.

In summary, the main purpose of this paper is to solve the multi-impact
problems in the energy sense, and some new developments are made:

e (1) clarifying the physical meaning of restitution coefficient, and taking
the Stronge’s coefficient as the energetical constraint to define the local
energy loss during impacts.

e (2) stretching the time scale into the impulsive level to discover the prop-
erties of the energy evolution.

e (3) extending the Darboux-Keller’s method into the multi-impact prob-
lems to obtain a set of first order differential equations with respect to
the primary normal impulse, and solving the multi-impact problem at the
velocity-impulse level.

Compared to the approach in [25, 26], the algorithm proposed in this work
has the advantage of relying only on the stiffnesses ratios and on the local en-
ergetical coefficients to describe the multiple impacts. From a general point of
view, the problem of integrating stiff compliant equations can be avoided, and
the calculated outcomes are robust with respect to the uncertainties in the phys-
ical parameters. Moreover, this method can also present the information related
to the contact forces and the durations of impacts if the force/displacement rela-
tionships at contacts could be provided based on the properties of the unilateral
constraints. The contact forces are obtained from the absolute values of the
potential energy, and the duration at each impact is calculated by dividing the
impulses with contact forces.

1.5 Organisation of the paper

Section 2 is dedicated to study a simple chain of balls in order to highlight the
main features of such a 2-impact, following and extending similar developments
in B, 28] and [I2, A3]. In section 3, a general method to solve multi-impact
problems by using impulsive dynamics is developed, in which the ratios for the
distribution of the increments of normal impulses at all contact points are estab-
lished based on a nonlinear spring contact model for contacts. The post-impact
velocities can be obtained at the velocity-impulse level by integrating the differ-
ential equations and directly applying the energetical constraint to consider the
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local energy loss, which are energetically and kinematically consistent. Section
4 presents a similar relationship for the distributing law, which is deduced from
a bi-stiffness model that satisfies the energetical constraint. Section 5 provides a
procedure for the numerical algorithm related to the differential equations with
a changed integral variable and an integral interval depending on the integrating
process. Several typical examples like the N-ball systems and the Bernoulli’s
problem are presented in sections 6 and 7 to test the method by comparing its
outcomes with the solutions obtained from compliant methods and the experi-
mental results found in [T2]. The investigation of the robustness of the method
related to an example of a chain against a wall is carried out in section 8. The
application of the method in granular systems is presented in section 9, in which
the contact force at the wall impacted by a 1-D column of beads is obtained
according to the accurate contact model and is compared with the experimental
results presented in [A2]. Conclusions are given in the final section.

2 The effects of the compliance

In this section, a 3-ball system will serve as the example to illustrate the ef-
fects of the compliance. Han and Gilmore [29] have shown that this particular
system would yield two possible solutions for the post-impact velocities when
the assumption of either internal or sequential impacts was introduced. This
indeterminate situation of rigid body model can be avoided by adding some
compliance to the contact bodies [Bl 12, B3, 26].

2.1 The theoretical results for the 3-ball system with lin-
ear springs

Let us assume that the three balls are located in a straight line to ensure only
axial impact happens. Ball By with initial velocity vy and mass m comes to
strike other two stationary balls By and Bjs that take the same mass am. The
variables x1, x2, 3 and v, v2, v3 represent their center of mass positions and
velocities, respectively. The interaction between two balls is realized through a
linear spring in order to perform some analytical developments. The stiffness
coefficient between B; and Bs is k, while the one for the contact between Bs
and Bs is vk. The governing equations at the instant of impact are

%(t) = —k(z1(t) — 22(t))
L2 = M) - wa(t) — 1h(a(t) - 7s(1) ®)
dP;

E(75) = vk(za(t) — x3(t))

where P; = mvi, P = amvy and Ps = amuvs. More generally this can be
written as a piecewise linear system similarly to (5.37) in [B]. Let w? = k/m
and define the dimensionless displacements and velocities

o T2 T3 T._ P P P
T w18’ w18 v 1s| T

(6)

mug mug mug

In matrix notation, equation (@) becomes
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£[i-nll

with the initial condition qg = [0,0,0]7, o = [1,0,0]%. The analytical solu-
tion of equation (H) can be expressed as
q(t)] {qo]
) =exp(Ht 8
) = oo [& ®
Let us adopt the following notations:

A=\42 —dya+a?+20+1
a1 = (-A+2y+a+1)/2a, az=/(A+2y+a+1)/2a

Then the dimensionless displacements for each ball can be expressed as

t 1 [ « a? —2av] .
o) =57t aw [3ar1 (2a+1)A] sin(ar w)
1 [ « a? —2a .
+a2w [2a+1 * (20[—1—1)2] sin(azwt)
t 1 [ 1 30 +1— 2y
20 =37 " aw |32 r D 2a+1A}bmo‘“"t
1 1 3a+1—-2
Toew [20a+ D) T 22a+ DA 7] sinazwi) )
t 1 [ 1 a+1+2y
0 =307 " mw 2@+ D) T 2@at ) }Sma“"t
1 1 a+1+2y
Tasw [22a+ 1) 220+ DA }Sm(awﬂ

These expressions have been obtained with MAPLE. The dimensionless velocities
can be easily obtained from the time derivatives of the positions in expression
@. If one ball leaves the chain, the structure of the system will be changed into
a 2-ball system with only one contact. Which contact is lost depends on the
times t; and t5 when the first and second balls separate, and when the second
and third balls separate, respectively. Time t; is the solution of the following
equation obtained by setting g1 (t1) = ga2(t1):

A—(a—2y+1)
2

A+ (a—2y+1)

5 agsin (agwt)| =0 (10)

g sin (aq wt) +

Time ¢ is related to the solution of the equation gs(t2) = g3(t2):
[z sin (o wt) — agsin (aawt)] =0 (11)

Clearly the mass ratio o and the stiffness ratio v will significantly influence the
separating time. If ¢; < to, then By and Bj separate first and the post-impact
velocity ¢ = ¢1(t1) can be determined at the instant ¢;. After that the system
experiences a time-variable process, and we should reconstruct the matrix H to
form the governing equation for the two balls system with the initial conditions
g2(t1), g3(t1), ¢2(t1) and ¢3(t1). Finally, the multiple impacts finishes at the
instant when Bs and Bs have the same displacements. An analogous treatment
can be used for the case t1 > ts.
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2.2 Discussion on the theoretical results

Let us consider the special case of & = 1 and v = 1, widely studied by many
authors [B, [12, O, 29, B, 28, 6]. Based on the above theory, the velocities of
the identical balls can be expressed as the form with the following piecewise
functions.

. 2+ 1 cos(wt)+ 2 cos (V3wt) te0,t7]
qi(t) =
—0.1303 te(t*,00)
b4 cos (vBu) te ]
Q) =4 05651 - 03916sin(v2(wt =), g (12)
—0.1373 cos(v2(wt — t*)) ’
0.1502 t e (£, 00)
2 — 1 cos(wt)+ % cos (V3wt) te[0,t7]
G3(t) = ¢ 0.5651 4 0.3916sin(v2(wt — t*)) . pen
i te (t*,t*]
4+0.1373 cos(v2(wt — t*))
0.9801 te (£, 00)

In this situation, balls B; and By will firstly separate at t* = 2.5548 /w, and
then balls By and Bs lose contact at t** = 3.427/w as shown in [28]. It is
easy to obtain the final dimensionless velocities of the balls: ¢1(t**) = —0.1303,
Go(t*) = 0.152, ¢3(t**) = 0.9801. This result shows that the post-impact
velocities will not be affected by the absolute values of the mass and stiffness,
but only by the ratios o and ~. Usually w has a large value in mechanical
systems, such that the impact duration is very short and the displacement of
each ball changes very little on this period.

It may be interesting to study the limit cases for the 3-ball systems that
should exhibit the phenomena of internal and sequential impacts defined by
Han and Gilmore [29]. Let us set the mass ratio a = 1, but change the value
of the stiffness . In terms of the expression (5), the displacements before
separation are

1 1 1 1-2v9] . 1 1 1-2vy] .
t) ==t - — t - t
a(t) 3 +a1w {3 3A ]sm(ouw)—i—a?w [34— A _sm(agw)
1 1 1 2-~7. 1 [1 2-+] .
t)=-t—— | = — t) —— |-+ —— t) (13
(1) 3 e [6 3A}sm(o¢1w) - [6+ 3A_sm(042w)( )
1 L1 1+9] 1 1 1447,
t)=ct— — |- t) — L t
q3(t) 3 oW [6 N }sm(am} ) o [6 38 sin(ag wt)

where A, oy and as become A =24/42 —~v+ 1, a1 = \/—\/72 —v+14+94+1,

g = \/\/72 —~v+4+1+4+v+ 1. Let us consider the first case when v — oo, from
which we deduce that

lim A =2y, lim a3 =1, lim as =+/2v
y—00 y—00

y—00
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Obviously the last terms in expression (&) can be ignored due to ay — co. By
setting ¢1(t1) = ¢2(¢t1) and ga2(t2) = ¢3(t2), respectively, one can find

sin (o wty) =sin (g wtz) =0

This means ¢; and 2 must converge to the same value 7/ w, and the contacts
among the three balls will break simultaneously. The final velocities (denoted
with a superscript + to indicate the post-impact values) are therefore given by

G =-3tm/s ¢ =¢f =2m/s (14)

So the phenomenon of internal impacts [29] can occur only when the stiffness
between B and Bj is much greater than the one between By and Bs. Now let
us consider the case when v — 0 that will result in

lim A = 2, lim oy = 0, lim oy = v/2

v—0 v—0 v—0
The balls By and By will first separate at the instant t.,_q = 7/(v/2w) with the
following velocities

lim ¢1(ty—0) = 0, lim ¢2(ty—0) = 1, lim g3(ty—0) =0
7—0 7—0 7—0

After that, the balls By and Bs will continue to collide. Since the following
collision is fully elastic, the balls will take the following final velocities when the
multiple impact finishes:

lim ¢ =0m/s, lim ¢ =0m/s, lim ¢ = 1m/s (15)
v—0 v—0 v—0

This well coincides with the situation of sequential impacts given in [29]. So
the two solutions given by Han and Gilmore are just two limit cases for stiffness
ratio.

3 The multi-impact dynamics in multibody sys-
tems

Motivated by the theoretical results obtained by inserting a compliant contact
model into the simple 3-ball system, some facts arising in multiple impacts
should be paid attention: the duration of impacts is very small as w is very high
for a body that can be approximated as a rigid body. During such a short time
the displacement of the system is almost zero, while the velocities vary abruptly.
These facts allow us to make the assumption of a constant configuration during
multiple impacts.

3.1 The Darboux-Keller impulsive differential equations

Pfeiffer and Glocker [0, [T0] provide a general method to describe the kinematic
constraints and impulsive equations during impacts. Here we will use their
framework to establish the Darboux-Keller’s model of frictionless multi-impact
problems.

Let us consider a multibody body system with s frictionless contacts. The
maximum number of degrees of freedom n is obtained when none of the contacts
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is closed. In this state the system may be described by a set of generalized
coordinates q € R™, and the equations of motion take the form

M(q)d — h(q,4,t) = Y wi(g)A; =0 (16)
i=1

where M(q) is a symmetric and positive-definite mass matrix, h(,-,-) contains
the inertial and applied forces, and the sum relates to the contact forces. For
each contact point ¢, A; is the scalar value of the normal contact forces along
the common normal to the surfaces of the contacting bodies. The connection
between normal contact forces and the generalized forces is defined by w;(q),
which is related to the Jacobian matrices of the contact points.

The kinematic state of a contact is determined by the distance §;(q,t) be-
tween the contacting bodies. Clearly §; represents the normal elastic deforma-
tion when contact is established. The relative velocity of the contact points is
expressed as

di(a,t) = w (g, t)a + Wi(q, 1) (17)

where W;(q,t) is the nonlinear terms related to time, and often is zero if all
constraints excluding contact are ideal and time invariant. The directions of
the relative normal velocities depend on the contact kinematics as illustrated
in [B5], and we always define that §; > 0 for the colliding bodies approaching
(compression phase), while 8; < 0 for separation (expansion phase). In matrix
notation, equations () and [@) become (we drop the arguments)

Mg —h—WA=0 (18)

b=WTrg+WwW (19)

Let [to,tf] denote the time interval of the impact, which can be further di-
vided into much smaller intervals [t;,¢;+1]. According to the Darboux-Keller’s
model, an integration over [¢;, t;11] has to be done in order to achieve a represen-
tation of the equations of motion at the impulse level. Thus a set of differential
equations with respect to the normal impulses can be obtained:

ftim Mg —h —WJ\dt =M][q(tiy1) — 4(ts)] — WIP(tiy1) — P(tig1)]
(20)
=M.-dq—W-dP =0

The terms M, W remain unchanged during the integration thanks to the
assumption of constant configuration g on [to, ts]. The vector h consists of finite,
nonimpulsive terms and therefore vanishes by the integration. The quantities
dq and dP are the changes of generalized velocities and normal impulses during
[ti, tit+1], Tespectively.

For the impacts with only one contact point, equation 0) can be thought
of as a set of differential equations with respect to the normal impulse dP, that
is an independent variable for the differential equation. Supposing that the
collision is made of a compression phase followed by an expansion phase allows
one to assert that the normal impulse P(-) is a strictly increasing function of
time, and may be used as a new time scale. However, the length of the collision
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process depends on the differential equations and must be determined using
an energetical coefficient of restitution (or Poisson’s one for a frictionless single
impact) to consider the dissipation of energy. Firstly the quantity of the normal
impulse during the compressional phase, P, should be calculated by summing
the increments of dP that correspond to the values from the beginning of the
impact to the instant of normal velocity vanishing. Then the total normal
impulse Py is obtained by using the coefficient of restitution. This value can
be used to define the length of the integration for the impulsive differential
equations.

Unlike the single impact situation, the impact differential equations for
multi-impact problems will have multiple normal impulses. It is obvious that
these normal impulses are not independent quantities since dP represents the
changes of normal impulses during the same interval of time. In other words, in
order to make the impact differential equations of multiple impacts solvable, the
distribution among the normal impulses that contains the wave effects should
be discovered. However, no information for the distribution can be found in
using fully rigid body models. Adding one way or the other some compliance
effects at the contact points is necessary when dealing with multiple impacts.

3.2 Distributing rule for the normal impulses in a mono-
stiffness model

We suppose that the force/indentation mapping at the contact point  is:

A = Ki(6;)" (21)
where K; is the contact stiffness, the exponent n determine the kind of contacts
between bodies (n = % is for Hertz contact, n = 1 is linear elasticity). The

variable ¢§; is the normal elastic deformation, which is assumed to be only a
function related to the generalized coordinates q. Therefore, the term of W; in
b; equals zero in (7).

This force/indentation mapping is denoted as a mono-stiffness model since
the ones for the compressional and expansional phases take an identical formu-
lation. The energy loss at the contact point 7 will be constrained, as shown in
the subsection §3.4, by a global index of the energetical coefficient of restitution.

Let P;(t) denote the total normal impulse accumulated during the time in-

terval [0,¢]: P;(t) = Pi(0) + [5 Ai(s)ds. So 4L:(t) = \i(t) and:
d\i _d\, dP _ d\

- sl 22
dt  dP; dt dp; (22)
In terms of the compliant model expressed by EII), we have
dX; : .
T nKi(8:)" "0 = nkK(6:)" ' w] @ (23)

Notice that §; can always be expressed as

5. = (;_1)% o

Substituting @4]) and @3]) into 22) leads to
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The initial value of the normal impulse can be set to P;(0) = 0, and the static
contact force before impact is \;(0) = 0 for the case without initial precompres-
sion energy. The integration of equation ([2H) leads to

n
n+1

Pi(t) |
M(P(1) = |+ 1) / K wladP, (26)
0

Noticing that \; = dP;/dt and only considering the variation in space, the ratio
of the changes of normal impulses at the contact points ¢ and j can therefore
be expressed as

_n_
ap; (E)T (fopi(t) W?qdﬂ>"+1 (27)

de Kj fOPj(t) W’j]"qdpj

We should note that dP; and dP; are the variations of the normal impulses of
the two contact points during the same time interval. Meanwhile, P;(¢t) and
P;(t) are the accumulated normal impulses during the same time interval [0, ¢].
The work functions are defined as:

Pi(t) P;(t)
E; = / w!qdP;, E;j= / w qdP; (28)
0 0

It is easy to find that E; and E; are just the works done by the normal
contact forces at contact points ¢ and j from the beginning of impacts to the
instant P; (resp. P;), in which the energy is mapped into the velocity-impulse
level.

These terms can also be thought of as the potential energy stored in the
springs at contact points ¢ and j. During the compressional phase, the spring
will transfer the kinetic energy of the contact point into potential energy, such
that F.) increases with P.y. Once the potential energy at contact point (-) is
saturated due to 5(.) = 0, the expansion phase of the spring will begin to release
the potential energy that have been stored, such that E., will decrease with
Py and the kinetic energy is transferred. Clearly the exchange process between
kinetic and potential energy will finish at the instant when E(.y = 0.

Remark The integrands have to be understood as functions of the new time
scale P;. Let P; : t — P(t) £, Fora given function of time f :t — f(t), one
gets f(1) = fo P (1), where the inverse function P, *(-) exists by assumption.
Therefore q in ([(Z8) denotes a function of T.

Let us introduce the ratios of contact stiffness v;; = K;/K;, and define

Pi(t) T
E; N wiqdP;

to represent a ratio of the energies stored at the contact points ¢ and j.
During the same time, the relationship between dP; and the changes of normal
impulses at other contact points can be expressed using [21) and Z9) as

dP; = 7T (Eji(P, P) T dP,, j=1,2,...,8,j #i (30)
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It is noteworthy that the above expressions are deduced from the force/identation
mapping at the contact points and represent the dynamical conditions for the
increments of normal impulses in space. In other words, if the normal impulse
at contact point 4 increases with a value of dP; at a certain time, the normal
impulses at other contact points during the same time interval must change to
the new values satisfying the relationships [B). Obviously these expressions
reflect the wave behaviors generated in multiple impacts and depend only on
the properties of the contact constraints: the relative stiffness and the relative
potential energies accumulated in the contact points. Since the potential energy
at contact points will change during impacts, the assumption that the distribu-
tion of normal impulses are constant (as stated in [I2] by defining a constant
ICR) is invalid in most cases. As indicated in A2, 1], the wave effects are due
to the elastic properties of the bodies, though, as we shall see later, the local
dissipations at the contacts may influence them.

3.3 The selection for the independent variable

Combining the distributing relationships ) with the Darboux-Keller’s model
1), it is obvious that the impulsive equations [0) can be expressed as a set of
first order differential equations with respect to a single integral variable related
to the normal impulse P;.

A problem arising when solving the first order differential equations is which
normal impulse among all the contact points can be selected as a ”time-like”
independent variable. Since all normal impulses are monotonously increasing for
the points keeping contact, in principle any one among all the normal impulses
can be taken as the independent variable. However, inappropriate selection
for the independent variable will result in certain numerical difficulties. For
instance, if the normal impulse at the contact point with little potential energy
is selected as the independent variable, it is clear from (B0) that the little change
of the independent variable will make the normal impulses at other contact
points vary abruptly. In order to avoid the numerical difficulties and respect
the physical meaning that the multiple impacts should be dominated by the
contact point that takes the maximum value of energy, we present a guideline
for the selection of the independent variable. If the energy at contact point ¢
satisfies

Elejv ]:1725787]7&2

then the normal impulse corresponding to this contact point can be selected
as the independent variable. We denote it as the primary colliding point. Since
the energy among contact points is transferred and exchanged during impacts,
the primary colliding point may change from one contact point to another during
the integration process. It is also noteworthy that in some cases there may be
several possible candidates for the primary colliding point (when equality holds).
There is no strict limitation for the selection of the primary impulse when E;
and E; are near the same value for some ¢ and j. The Bernoulli’s system treated
in section 7 exhibits such a situation, as the two contact points may have the
same energy. In a linear chain of balls in which a solitary wave is produced by
the impact, the primary colliding point corresponds to a peak in the acceleration
wave (and to a minimum of the velocity wave since a peak in the velocity wave
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corresponds to a maximum of kinetic energy, and consequently to a minimum
of potential energy).

Once the primary colliding point is determined, the impulse related to this
point can be considered to increase monotonously like the time variable. The
normal impulses at other contact points will increase according to the relation-
ship @B0).

At the beginning of impacts, a problem will arise for the selection of the
independent variable since no energy is stored at any contact point. This corre-
sponds to a singular point in the simulation. Let us denote AP;(1) and AP;(1)
the possible increments of the normal impulses. 5? and 89 are the initial relative

J
velocities at the contact points ¢ and j. In terms of ) and [[d), we have

AP() (KT (88R0)\ 7T
Aij‘(Kj) <5gA—pj(1>> (31)

This form can be further simplified to

INAOBE NS
AR K, (5‘) .

Obviously, the impact behaviors will be firstly dominated by the contact point
at which the relative velocity takes the maximum value. Therefore, the normal
impulse at this point can be selected as the initial independent variable. The
normal impulses at other contact points will vary with the independent variable
in terms of the expression ([B2).

Substituting expressions [B2) or [B0) into @20) leads to a set of differential
equations with respect to the independent variable dP;. This is a strongly
nonlinear differential equation since E;; varies during the impact process, and
the selection procedure is E;; > 1. Usually an analytical result is hard to obtain,
and numerical methods by discretizing the equations about the normal impulse
P; should be applied in order to obtain the solutions.

3.4 Energetical constraint for the local energy loss

The strong interactions between contacting points usually dissipate a part of
the energy that cannot be recovered by the expansion phase. During a con-
tact process with a single compression/expansion circle, the compression phase
will transfer the external kinetic energy into the potential energy of spring (the
elastic deformable potential of the colliding bodies), while the expansion phase
will make the deformable energy be released into the kinetic energy of the col-
liding bodies. For the colliding bodies that can be well approximated by rigid
body models, the input/output relationship between kinetic and potential en-
ergies will mainly depend on the contact properties. The energetical coefficient
es establishes a relationship between the input and output energies. Based on
the FEM results and theoretical analysis [I3l 9, [6], this relationship is usually
nonlinear, and can be approximately linear when ey is taken a constant value.
For the colliding bodies made of materials without viscosity, the dissipation
is mainly due to the plastic deformation at the local contact region [53]. So
the energetical coefficient can always be expressed as a function with respect
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to the work done by the contact force during compression phase (the potential
energy stored in elastic deflection) 9, 6]. Then, we can use e, as an energetical
constraint to define the local energy loss.

According to the definition given by Stronge [6] and his predecessors like
Routh and Boulanger (see [5, p.147]), the energetic constraint e, ; is given by:

Pj(te) ¢ Pj(te) T
62 = — WT,j = — 0 i 6'7de = — fO Wj quj (33)
S,7 . Pj (t ) & Pj (t ) .
Wc,j P; (tcf) 5deNj ij (tcf) W?qdpj

where W, ; > 0 and W, ; < 0 are the works done by the normal contact
force at point j during the compression phase [0,t.] and the expansion phase
[te, tf], respectively. Obviously W, ; also corresponds to the potential energy
accumulated during the compression phase, and can be obtained by summing
the scalar product of dP; and Sj(de) from the beginning of the impact to the
instant of P;(t.) that corresponds to d;(t.) = 0. Thus

P;(t,) = /tchj, 5;(P;(te)) =0 (34)
0

and
Pj(tc) . .

W, = / dP,6;(Py).  8;(P;(te) =0 (35)
0

If the contact point j is the primary colliding point, dP; defines the size of
the numerical step. Otherwise, dP; is calculated by the distributing rule in @B0).

The time t. can be thought of as an instant of the potential energy satu-
rated. After that, the potential energy will be transferred into the kinetic energy
through the expansion phase. Since e, ; can always be identified off-line (as a
function of W, ;), the total recovered energy W, ; can be determined by e, ; and
W, ;. For instance, W, ; equals W, ; for fully elastic impact, and W, ; = 0 for
plastic impact. At any instant during the compression phase P;(t), the residual
energy equals

Pj(t) .
B = [ dpd ). (36)
When P;(t) is located in the expansion phase, Ej is

Pj(tc) . Pj(t) .
B, = / dP;5,(P;) + / APy, (P). (37)
0 Pj(te)

Since 5j is continuous and equal to ijq, the expressions ([Ba) and B7) can
always take the same form as in ([28), and represent the potential energy stored
at the contact point j. If the normal impulse reaches the instant of P;(ty)
satisfying
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Ej(Pj(ty) = Wey = Wrj = Wei(1— e ) (38)

the process of energy transfer at contact point j will finish as the residual

potential energy E;(P;(ts)) will be dissipated based on the energetical constraint

expressed by [B3). At this time, the outcome of the post-impact velocities at this

contact point can be obtained if it doesn’t again participate into impacts, and

all the ones related to the termination of multiple impacts can be determined
when all the accumulated energy is completely released.

Remark The contact model expressed in ([Z1), denoted as mono-stiffness
model, takes the same force/indentation relationships for the compression and
expansion phases, in which the energetical constraint is not satisfied. So there
is some residual energy E;(P;(ty)) to be discarded at the end of the contact
in order to respect the fact of dissipation in the energetical sense. Physically
speaking, the energy loss should be consistent with the contact model. A bi-
stiffness contact model that satisfies the energetical constraint will be illustrated
in the next section.

Due to the time-variable characteristic of the multi-impact problems, some
complex situations may appear in the process. For example, the contact point
may experience multiple compression/expansion phases due to the interactions
between contact points i Le., the relative velocity 6; may change from d; < 0,
related to an expansion phase, to ) ; > 0 that corresponds to a new compressional
phase. We denote this as the multiple compressional phenomenon. In this case,
before all the potential energy W, ; is transferred into the kinetic energy (the
kinetic energy that can be transformed is equal to W, ;), the contact point may
experience a new compression phase to absorb the external kinetic energy. Let
us denote the beginning of the new expansion phase appearing at the instant

P;‘ , in which

Ey(P}) = E} > E;(Py(t;)) = (1= )Wey, §(P) =0 (39)
During the new compressional phase E; will increase again and obtain a new
value of E;(P;*) at the instant of P = P;(t..), in which Sj(PJ?‘*) = 0. We can
put the energetical constraint es ; on the potential energy FE;(FP;™) to define the
kinetic energy W:;(P;‘*), that will be recovered during a new expansion phase.
In other words, if

Ej(Pi(t})) = (1 — )W (40)
the impact at contact point j finishes at the instant P;(t}).

Remark When the force/indentation relationship in (Z1) is used, it is obvi-
ous that es ; cannot constrain the energy loss appearing in the first compression
phase. This flaw can be overcome by using the bi-stiffness compliant model in
the next section.

IInterestingly enough such phenomena have also been noticed for single-impacts with
Coulomb friction [A1].

INRIA



Multiple impacts 25

Another interesting phenomenon can also be found in the process of multiple
impacts. At the same contact point, bodies will participate again into impacts
after separation. We denote this case as a repeating impact. Obviously, a new
process of energy accumulation and transfer will appear at that point, and the
energetical constraints can be applied on each isolated impact based on the
potential energy obtained from the compression phases.

3.5 Summary and comments

Let us provide a compact formulation for the analysis procedure of multi-impact
problems. The multi-impact dynamics is summarized as follows:

o Contact parameters: 7,5, €55, 1 <i<m,1<j<m,n(=1or= %, or
other values).
e Dynamical equation:
dq dP . S,
with
de ﬁ n+1
P, =5 (Ej(Py, P)) (42)
EJZ—EJZ(PZ), 1_1§m,1§j<m (43)

Pj(t) - Pj(te) - Pj(ty) -
Ej(Pj) = A Wj qdpj, Wr,j = A Wj qdpj, WCJ‘ = /P o) Wj quJ(44)
Jj\lec

and the time t. at the contact j is calculated from d;(t.) = 0, while t; is

calculated from the energy constraint W, ; = —e?} We,j-

Remark The solution of the above set of ODEs is the function §(t) =
q o P;(t) on the intervals where P; is the dominant impulse. It is denoted as
the derivative of the position for obvious reasons, however it is to be considered
as the solution of this particular set of differential equations since the energy
is mapped into the velocity-impulse level. The assumption of the position being
constant is conducted for equation {£1), and the infinitesimal time interval for
the impact duration is adopted for the calculation of the outcomes of the post-
velocities.

Comments: Multiple impacts will make the energy of systems transfer and
propagate among the contact points excluding the dissipation. So two significant
scenarios should be well reflected in dealing with the multi-impact problems: one
that is the wave effects due to the coupling between various contacts, the other
that is the description for dissipating energy. If colliding bodies can be well
approximated by rigid bodies models, the multi-impact process will only depend
on the constitutive relationship of the compliance inserted at the contacts. The
wave effects are reflected by the distributing law and the local energy loss is
constrained by the energetical coefficient. The inconsistence between energy and
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the force/indentation relationship can be overcome by modifying the compliant
contact model. One advantage of this method is that the wave effects can
be analyzed in the energetical sense and some small scales such as the elastic
deformation can be avoided. In summary the approach which is presented in
this paper brings a positive answer to the above items (4)-(10) and (12)-(14).

4 The distributing rule for the compliant con-
tact model satisfying an energetical constraint

The distributing rule presented in section Blis based on the assumption that the
compressional and expansion phases satisfy the same relationship between the
contact forces and the indentation. The energetical coefficient is applied as a
global constraint in the energetic consideration to take into account the local
dissipation of energy. Usually we should use two different modes of the contact
forces to represent the compressional and expansion phases, respectively, such
that the dissipated energy can be involved in the compliant contact model. In
this section, we will adopt a compliant contact model that satisfies the definition
in [B3) to discuss the distributing rule.

4.1 The compliant contact model

Based on experimental results, Lankarani and Shivaswamy [22, 21] constructed a
compliant contact model to represent the relationship between the contact force
and indentation for the compression and expansion phases, respectively. Their
model lacks of fundamental mechanical meaning as no material seems to satisfy
such laws, however it has been proved to be quite useful in various contexts of
impact dynamics [6, 66]. This bilinear model is the simplest means of represent-
ing plastic deformation. It has certain drawbacks such as not limiting maximal
force. Nevertheless, it gives correct form of dissipation for rate-independent
materials. It is not supposed to accurately represent any real material, and
may be seen as a crude representation of the plastic indentation effect in elastic
solids [B3), §6.4]. Figure @ shows the bi-stiffness compliant contact model by set-
ting different force/indentation relationships for the expansion and compression
phases. The relationship for the compression phase at the contact point j is
expressed as

Acj = Kj(0e,5)" (45)

and the one for expansion phase is

Sej—0rj \"
Mes = A ( s %) (46)

where ¢, ; is the plastic deformation, and A, ; and d,, ; correspond to the
maxima of the normal contact force and normal deformation at the end of the
compression phase, which corresponds to the values when §; = 0. Clearly the
dissipated energy is just the area enclosed by the compression and expansion
curves. In addition, we use different symbols to represent the variables of contact
force and deformation during compression and expansion phases in order to
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Am M,

(0] 6; Sm
Figure 2: The bi-stiffness compliant contact model

clearly indicate the states of the compliant model. For simplicity we omit the
subscript j in the following expressions (and also in Figure B).

The scalar §,. represents the permanent plastic deformation generated when
the compressional phase finishes. Its value should depend on the dissipated en-
ergy at the contact point, such that the energetical constraint should be applied
(in 22, the Newton’s coefficient is adopted as the constraint condition). Let us
first make an assumption for the contact processes:

e (a) the local dissipated energy is due to the plastic deformation at the
contact points,

e (b) there is no other initial energy than the external kinetic energy.

The external kinetic energy will be completely absorbed by the work W, done
by the contact force during the compression phase, and the recovered kinetic
energy after impact is related to the work done by the contact force during the
expansion phase, W,.. Integration of expressions X)) and EH) leads to

0
m 1
W, = Ae(6e)dbe = ——K;(6m)"!
| actbods. = =556,
0
" 1

W, = Ae(0e)dbe = ———K;(0)" (0, — Oy 47
A0 = K0 = ) (a7)

Based on the assumption in B3), W. and W,. can be connected by a function
es = f(W,). In the case of a constant es, we have from 1) and (B3
5 = Om(1 — €2) (48)

S

The indentation 8,, corresponds to the first instant ¢ such that §(t.) = 0, so
it is not a parameter of the impact dynamics. From ({8) neither is §,. When the
energetic coefficient takes a constant value, the energetical definition presents a
linear relationship between the local plastic deformation J,, and the maximum
indentation J,,, such that the dissipation of energy is reflected in an average
level.
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4.2 The potential energy at a contact point

The potential energy at a contact point will be accumulated during the com-
pression phase and released in the expansion phase. Let us pick a point p in the
curve of the compression phase. The potential energy E, at p is equal to the

work done by the contact force along the path Op.

E,(57) = /0 " (65 (49)

Let us assign a time factor on the compression process. 07 denotes the
deformation when the contact point moves along the routine Op to the point
p within a time interval [0,¢]. This means that at any instant 7 during the

interval [0, t], Ac(7) can always be expressed as A (1) = dz(:) , in which P(7) is
the normal impulse accumulated in the time interval [0, 7] C [0, ¢] corresponding
to a deformation d(7). Thus, we have

5P
B0n) = [ arn S (50)

Since P(7) and §(7) can be connected by a one-to-one mapping during the
compression phases, we can use the variable P(7) to replace §(7) as the integral
variable. Thus,

P(t) .
B, = / 5;(P(r))dP(r) (51)

where P(t) is the normal impulse that is needed to make the indentation
change from zero to §” by obeying the relationship [@H).

The accumulation of energy at the contact point j will be ended when the
compression process finishes. After that the potential energy will be released
through an expansion phase. Let us select a point R in the curve of expansion
phase mg as shown in Figure The work done by the contact force along
the compression routine O — M can be expressed as

oM
Wo(6ar) = / Mo(8)do (52)

This term is related to the potential energy accumulated in /t\he compression
phase, and corresponds to the area enclosed by the curve OMJy;. The total
energy that can be recovered through the expansion phase is e2W, based on
the energetic constraint and is associated with the area enclosed by the curve
OraMps.

When the contact point j moves from M to R along the expansion curve,
the recovered energy is |, 5615 Ar(0)dd, where g is the deformation related to the
contact force \g.

OR Or2 Or2 [ 3Ys Or2
A (6)dS = A (6)dS — A (8)ds = —e? Ao (8)ds — A (6)d6 (53)

Onm s ORr 0 Sr
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Figure 3: The potential energy when contact point is located at expansion phase.

The second term in expression (B3)) just equals the area enclosed by the
curve 57,2/]?53. Let us determine the value of the potential energy Er when the
contact point is located at R, which should make the expansion force to generate
the work with the value equal to the area enclosed by the curve §,2RdR, such
that the contact point can move from R to d,o along the expansion curve. The
following result is based on the properties of the contact force and the energetic
constraint and deals with the residual energy.

Theorem: When the contact point is expanded from M to reach the position
R, the residual potential energy Er at this point is equal to the work done by
the contact force along the compression routine moving from O to the position
R', in which the contact force takes the same value Ar as the one in position R.

Proof: Let us select a point R’ in the compression curve to make the contact
force with the same value Ap as the one at position R. The elastic deformation
at R' is 0%. If the compression phase stops at R’, the contact point will be

expanded along the routine R’S,;. From () and EH), the contact force A3
along the expansion curve 3 can be expressed as

_ n _ n
A3 = A\g (M) =\n <M> (54)

(SR/ — 5r1 62(53/

Because .R/(STQ is a piece of the expansion phase related to the compression
phase OM, the expansion force A4 of any point in Ré,.2 can be expressed as

54_57’2 K (54_5r2)n
A=\ 4 T2} — A =2 55
4 M (5M _5r2> M ezéM ( )

The expression [{H) for the compression mode yields the following relation-
ship

RR n° 0123456789



30 Liu & Zhao € Brogliato

For the identical expansion forces, i.e. A3 = A4, we can therefore obtain

n _ n
)‘_R — 5_R 01 — 01 (57)
Am oM 02 — Op2

i.e.
03 — 0p1 = 04 — Oy (58)

This means that the curve R/’(S\Tl is parallel to the curve R/(ig. This property
is provided by the compliant contact model to guarantee the permanent plastic
deformation with a constant value during the expansion phase. Thus we have
that the area S 5 T8 equal to the area S 5T So using (B3))

! S
2 OR's

SraRop

5o Ten (59)

The expression in (Bd) illustrates that the energy provided by a compression
phase through a routine OR’' can output the work done by the expansion force
along the routine .Rjig. In other words, the residual energy Er equals the work
done by the compression force along OR'.

The theorem indicates that the work done by the expansion force from R to
0,2 can be expressed as

Or2
/ A\-(0)d6 = —e*ER (60)
ORr

Substituting (B0) into ([&3) leads to

5M 1 5R
Er :/ Ac(0)dd + —2/ Ar(0)do (61)
0 s Jom
Similar to the compression phase, the residual potential energy for a dynam-
ical process reaching the position R within a time interval [0, ¢] can be expressed
as

P 1 [P,
Ba= [ P@EAPE) + 5 [ P@)PE) (62)

where P, is the normal impulse when the compression phase finishes (so
d = 0p), P(7) is an integral variable that is related to the normal impulse of
the contact force experiencing a time interval [0,7] by obeying the energetic
relationship defined by the compliant contact model.

Remark: Unlike the mono-stiffness compliant contact model in which the
coefficient ey is applied at the end of the impact to constrain the local energy
loss, the expansion phase in the bi-stiffness compliant model will be constrained
by the local loss of energy generated in the compression phase. So the form of
(&3) for the calculation of the residual potential energy is different from the one

of (T4 in section 3.

INRIA



Multiple impacts 31

4.3 The energetic constraint for the complex impact

In some cases, the contact point may take some initial energy due to the pre-
compression or the experience of a complex process with multiple compression
phases because of the coupling between the contact points. In a physical sense
it is obvious that the dissipated energy should depend on the energy stored at
the contact points. Here, we will extend the energetical coefficient ey into the
situations where the contact point has some initial energy, or is experiencing
multiple compression phases.

Let us assume that the contact point j has an initial pressure Ao that makes
the contact point with an initial energy Fy and an initial deformation Jy. Fur-
thermore, we suppose that Ay and Jp satisfy the compression relationship ex-
pressed in ([E&). Then integration yields:

do
= / Ac(0)dd = ———— >0 (63)
0

Under the initial pressure, the energetical constraint is defined as follows:
W, = —e2(W. + Ep) (64)

where W, = [ 55; Ae(0)d0 is the work done by the expansion force, and W, =

/. 550"’ Ac(0)dd is the work done by the compression force.

Involving the initial potential into the energetic constraint permits to use
the coefficient eg as the index to describe the local dissipated energy for the
contact point with multi-compression phases.

A
At M,
M2 Mo
AR R
N
[6) A = A\%B Om2 8 °
R M2 OMm1

Figure 4: The contact point with two compression phases.

Let us present a clear scenario by conducting an example of the contact
point j with two compression phases. Figure Bl shows that the contact point j
will first experience a compressional phase along the curve OMj, then begin an
expansion process from M; to R. Before the total potential energy is released,
a new compression phase starts at R, and the contact point will begin a second
compressional phase along the curve RMs. This second compression phase stops
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at Mz, and then the accumulated potential will be completely released through
an expansion phase along the curve MsB.

Let us assume that the relationship between the contact force and the inden-
tation is not changed for the second compression/expansion cycle. Therefore,
the residual potential Er at R can be thought of as an initial energy for a new
compression/expansion cycle. So from (G4l we get:

W, = —e2(W. + Eg) (65)
The energy Er can be obtained by using 1) or (B2), and

Sp Ony
W, = Ac(0)do, W, = Ac(0)do (66)
6]\42 51?
Let us set a time interval [0, ¢] on the micro-movement of the contact point,
and replace ¢t by P(t) = fot A(T)dT > 0. The potential energy at @ in different
phases can be expressed as

P() ——
Ey +/O 0(P(1))dP(1), Q€ OM,

P(t) _
En, + 6—2/ o0(P(1))dP(r), Q€ MR
E(P(t) = }SD(t)P.Ml - (67)
Egr —|—/ d(P(1))dP(T), Q€ RM,
Pr
1

P, /\
Eas, + / §(P(r)dP(r), Qe ILB
Phr,

S

where E(.y and P,y are the residual potential energy and the normal impulse
at the location (.) = My, R, My, respectively.

4.4 The distributing rule for the bi-stiffness compliant
contact model

Since the compression and expansion forces adopt different relationships, we
should separately analyze the evolution of energy during the compression and
the expansion phases. Let us suppose that the initial pressure at the contact
point j is Agj;, such that at the beginning of the impact process the point
will take the initial energy FEjy;, given by (E3J). Based on (28) and setting
A;j(0) = Ao ;, we can obtain:

1 n+1 n+1
_n_ T ;) m P; :
/\j(Pj(t)) = (1+n)n? Kj”+ <% + f() (t) 5j(Pj(7'))de(7')>
(n+ DK
= (L+m) 7 K7 (B(P;(1) 7

where E(Pj(t)) takes the form of the first term in (&7).
In terms of the compliant model expressed in (HH]) for the expansion force,
we can deduce

Si— 6, \"! 5.
)\e,jd)\gj = ’r]/\m’j <(5 J o ) s J de (69)

mj = Orj m.j = Orj

(68)
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: _ 2
Since Om,j — Or,j = €5 ;0m,;, and

0j =0rj [ Aey "
Omj —Orj <Am7j (70)

Expression ([B9) can be further simplified as

1 PR
(Ae,j)dAe,j = 1(Am,j)7 75 -dP; (71)
5,370
At the end of the compression phase, the maximum compression force A, ;
can always be expressed as

Am,j = K;(Om.5)" (72)
So,
1
(A, )d>‘a]_277( J)7 8;dP (73)
s.d

The initial value of the normal impulse at the beginning of the expansion
phase is set as P, ; that is related to §; = 0. The contact force at this instant
A(P.,j) can be obtained by (GS)

MP.y) = (L4 )7 KT (B(P. ;)7 (74)

Integration of ([Z3) and using ([ leads to

() T =(A(Pc7j))nTH+(77+1)(K)T 2 - [ 8;dP,

= (n+1)(K;)7T (EJ fP “)5 pP)) ) (75)
= (n+1) (K;)77 E (P())

Thus, the contact force at the impulse instant P;(t) is

Aoy = (L )T KT (B, (P () 7 (76)

Remark: The expressions (63) and (70) indicate that all the contact forces
in compression or expansion phases can take the form of a function with respect
to the potential energy.

Since the contact forces can always be expressed as the differential of the
normal impulse with respect to time, from ([Z0) the ratios between the incre-
ments of normal impulses among various contact points j can be expressed as

in @2, i.e.:

dpb; - el . .
b = (Eg(PaP), =12 i) (77)
J

The distribution of the increments of normal impulses depends on the relative
stiffness and the relative potential energy among various contact points.
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Remark: The distributing law in ([77) takes the same form as the one ex-
pressed in [Z) even though we adopt two different kinds of constitutive rela-
tionships for the compliances at contacts. This may gives us an expectation
that an impulsive process with any kind of compliance could be dominated by
the underlying law with the form expressed in [77). In other words, the evo-
lution of motion in an impulsive process just depends on the relativity of the
contact stiffness and the potential energy resided in the system. This may ex-
tremely facilitate the understanding of the energy transmit during a network of
contacts.

5 The numerical algorithm

In this section, we will present a numerical algorithm to calculate the post-
impact velocities for multi-impact problems without friction. Obviously the
structure of the impact differential equations will change due to the separations
of the contact points and the integral dumb variable will vary with the evolution
of the potential energy. Moreover, since the ratios of potential energy are used to
define the ones of increments of normal impulses, at the beginning of impacts the
numerical simulation may be obscured by some singularities. Therefore, some
special attention should be paid to the realization of the numerical algorithm.

Let us denote n the number of steps, and adopt a step size AP. Obviously
the accuracy and efficiency of the numerical results depend on the selection of
n and AP. The normal impulse scale is associated with a concrete dynamical
process, and differs from the time scale. In order to choose reasonable values
AP and n, we can define the following norm to estimate the possible value of
the normal impulse at the momentum level:

n n

Pest = Z Z mij|¢?| (78)

i=1 j=1

where m;; is the ij—th element of the matrix M, and ¢° is the initial velocity
of the system. The step size can be set as

P
AP =t (79)

At the beginning of the impact, the primary contact point ¢ can be selected
as the point that takes the maximum value of relative velocity

80 >89, j=1,2,.,8)#1 (80)

and & is the initial relative velocities that can be obtained by using equation
([@). Then, the increment of normal impulse at contact point ¢ can be set as

Aﬂ(o) = AP, and the increments at other contact points can be determined
according to ([B2), in which

o\
APO — o (%) AP j10 £ (81)
7 _rYjZ 50 ) j - 7"'787] ?
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In most cases we can take a constant value AP as the step size. However,
we may change the step size in order to find some critical points. Let us denote
AP! the step size at | — th step and use the Euler’s explicit difference scheme
to discretize the impulsive differential equations @0). The quantities with the
superscript [ represent their initial values at [-th step, and the ones with the
superscript (I 4+ 1) represent the terminate values. The difference formulations
for @) can be expressed as

g = ¢® + Mm*wr®ap (82)

where T'® is a matrix related to the ratios of contact stiffness and the ones
of potential energy at the instant P i.e.

-1
PO =% AP (83)
j=1
Let us assume that ¢ is the primary contact point, then I'®¥ can be expressed
as
T
O = [(n) T (BN, i) T ED )51 (1) TTED) | (8)

where, v(.y; is the relative stiffness at contact point (-) comparing with the
primary contact point ¢, and E((l)) i is the relative potential energy of the contact
point (-) at the impulse step [. Once q<lf1> is obtained, we can use the expression
M) to obtain the relative velocity (W is set to zero and W7 is a constant

matrix) at the instant PU+1):

5(l+1) — WTq(l+1) (85)

If 5§l+1) > 0, the contact point j is located at the compression phase. Thus,
the potential energy of the contact j at the instant PU1) can be calculated by

5(l+1) + 5(1)

If 5§l+1) < 0, the work done by the normal impulse during the interval
AP' should be converted to the quantity of the potential energy that has been
released. Therefore, E§l+1) is

S04+1) (D)
168D 44
B = B 4+ 5L AP (87)

J

For the mono-stiffness model where the compression and expansion phases
take the same relationship as expressed in (1), e, ; is equal to 1 as the energet-
ical constraint is applied on the end of the impact. After that we can compare
the values of the potential energy among all the contact points to re-select the
primary contact point ¢ in order that
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BNV > B =12 s (88)

It is noteworthy that the stiff ODE problem arising by directly using the
compliant model [B8, Section VIL.7] can be avoided by this method since we can
set dP; = 0 if the ratio of the potential energies E;; approaches zero. Moreover,
the multiple compression phenomenon does not need any special treatment in
the calculation of the potential energy since its evolution is continuous during
impacts.

The termination of the impact can be identified according to the values of
E§l+1). For the mono-stiffness model, the impact at contact point j will be
terminated by the energetical constraint

B = (1 €2 )W,,;, and "V <0 (89)

where, W ; is the work done by the compression force, which is also related
to the maximum value of E; for an impact with a single compression/expansion
cycle (if the impact has a multi-compression phase, the value of W, ; will corre-
spond to the last compression phase). Since the energetical constraint has been
applied on the bi-stiffness compliant contact model, the terminating condition
can be expressed as

BV =0, and 6/ <0 (90)

In order to improve the accuracy of the numerical results, a variable step
size can be applied for searching for the critical points such as § = 0 and E; = 0.
If the energetical constraint is satisfied at contact point j, the contact point j
will remain open on some non-zero interval of time (i.e. h;(g) > 0), and the
accumulated normal impulse as well as the relative velocities, P and 5;”1)

will not change if separation at contact point j is kept ( 5;“1) is always less

than zero ). These values can be thought of as the outcomes of the contact
point j after multiple impacts. .

However, the relative normal velocity J; will be influenced by the motion of
the adjacent colliding bodies that still participate into impacts at other contact
points. Thus, the contact point j may participate into the impact again, and
the value of the Sj may change from negative to positive values. Based on the
assumption of impacts with infinitesimal time interval, the injected velocity Sj

+1)

for the new impact can be assigned as the value of (5]“ when the separation

occurs at the instant of P(+1),

Let us denote the impulse instant at which the new impact appears as P(™)
in which contact ¢ is the primary contact point with potential energy Ei(m) and
the step size at this instant is AP(™). Similarly to the situation at the beginning
of impacts, we have to determine the possible increments of normal impulse at
contact point 7 when it participates to the impacts again. The work done by
the compression force at the contact point j during the time interval [0, ] (resp.
AP(’”)) can be approximated as
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) _ [ NIy om)
wimt = | 8;dP; = 6™ AP (91)

where APjgm) is the increment of the normal impulse at the contact point j

when the normal impulse at point i increases by AP(™) during a time interval
[0,t]. Based on the distributing law @), or [(7), and using (@) we have

AP [§m A plm) T
J Y (92)

__ A nt+1 J
N Vi )

Thus, the possible increment of the normal impulse APj(m)

of the new impact can be expressed as

at the beginning

50m)

n
Apjim>:7j7i< J ) (APt (93)

@

Once APj(m) is obtained, we can modify the matrix I'™ and use the differ-

ence equation (82 to calculate the generalized velocities @+, and thus, the
quantities related to the next moment can be obtained.

In summary, the numerical procedure can be described as follows:

e (1) use the expressions ([[Q) and [[d) to estimate the step size,

(2) determine the initial primary contact point ¢ and the ratios of the
increments of normal impulses based on ) and &),

e (3) begin the numerical simulation and use expressions (&), ([83) and (84l
or (D) to obtain the quantities of velocities and the potential energy,

e (4) base on ([BY) to determine which contact point is selected as the pri-
mary point and use (8H) to determine other increments of normal impulses,

e (5) the impact at the contact point j will be terminated if the expressions
) or @) are satisfied, and the repeating impact can be solved by using
expression (@),

¢ (6) the outcomes of multiple impacts correspond to the instant when all
the contact points separate from each other.

The integration is done with the impulse time-scale and integration stepsize
AP. The “real” time-step h is given by h = % where A\ is the force. If X is
large then h becomes small. It is noteworthy that this has no influence on the
calculation process because one does not need to come back to the h-integration
to compute the post-impact velocities. Consequently the algorithm can be seen
as a black-box representing the collision mapping when inserted in a code for

the simulation of a multibody system.
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6 The problem of Newton’s cradle

The well-known problem of Newton’s cradle is a typical system with multiple
impacts (shown in Figure 5). This system has been studied by many authors
as a benchmark for multiple impacts [5] and also plays an important role for
many applications like granular material 43| 46, 47, 42, 60, [61]. In this section,
this problem is investigated by comparing the numerical results obtained from
compliant contact models (Hertz or linear springs) [28] and the experimental
results presented in [I2], with the results obtained from the integration of the
impulsive dynamics studied in the foregoing section.

Vi
—>
. ”...’

Figure 5: The problem of Newton’s cradle

6.1 Problem description

Consider a chain of balls that consists of N aligned balls B;. Initially all the
balls but B are at rest, in contact, and unstressed. The first ball B; with mass
mq and radius r; collides this chain with the initial velocity vg. Let us denote
x; the displacement of the mass center of the ball B;, with mass m; and radius
r;. When a compliant contact model is used, the contact force F; between the
balls Bz and Bi+1 is:

Fy = Ki(8;)" (94)

where K; and §; are the contact stiffness and the elastic deformation at the
contact point i. The exponent 1 determines the kind of contacts between the
balls. The kinematic state of a contact i is expressed as:

8i = (ws +1i) — (Tig1 —Tiy1) = ¢ — Giy1 + (i +7i41) (95)

If §; > 0, the balls B; and B,y are separated, while §; < 0 corresponds to the
closed contact situation between B; and B;;;. The dynamics can be expressed
as

ma 0 PN 0 (jl 11 _01 8 8 F1
0 my ... 0 || : " , F
: ’ o o0 ... 1 -1 ‘
0 0 ..o MmNy qN 0 0 0 1 Nx(N-1) FN,1
and the complementarity conditions
0<-F 1L -F,+K;()">0, 1<i<N-1 (97)
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During the first multiple impact, all the contacts are closed and the inte-
gration of (@H) over [t;,t;+1] yields the impact differential equations with the
following matrix notation:

Wo

W
Mdg=| . |dpP (98)

WN-2

According to ([@), the relative velocity at the contact ¢ can be written as:

i = Gi — Giy1 = Wiq (99)

Since the initial impact occurs between the balls B; and By, the impulse dP;
can be firstly specified as the independent variable for the impact differential
equations. Therefore, the distributing rule for the changes of normal impulses
at the other contact points is

AP, . CEay

Ki +1 v i dP1

dP; = (F)n <f0P1(t)(q q+1) ) dPlv 1=2,3,... (100)
! fo (QI - (12)dp1

Initially, the distribution of the change of normal impulses with respect to
Apl is

Ki 0 _ -0 n
AP = <71> <%) AP, i=23,... (101)
1 2

6.2 Numerical results

Case 1. Three-ball system

In [I2], Ceanga and Hurmuzlu presented an impulsive correlation ratio for
a triplet of identical balls. With the help of the Stronge’s energetic coefficient,
they showed that the post-impact velocities of the balls can be numerically
approximated. In their experiments, four types of balls, designated as A, B, C,
and D with masses ma = 45, mp = 53, m¢ = 53, and mp = 166 grams, are
used. The experimental results of ICR and e for the system with identical balls
are presented in Table 1 (see Tables 1 and 2 in [T2]).

Table 1: experimental results in [T2]

Ball Type A B C D
€s 0.97 0.36 0.27 0.85
ICR 0.167 0.310 0.338 0.080

Let us assume that the initial velocity of By is ¢¢ = 1m/s. According to
the values of ICR in Table 1 and using the expressions (31)-(33) in [I2], we
can compute the post impact velocities of the three balls, which are thought
of as the experimental outcomes reported in Table 2. Let us set n = 3/2 for
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Table 2: Outcomes for three ball system
Ball Results from experiment Theoretical prediction
Type
g\ ds ds 207 | 4 Gy ds > (¢)*

AAA -0.0747 | 0.0559 1.0188 1.046 -0.0466 | 0.0783 0.9683 0.946
BBB 0.1953 0.2733 | 0.5314 0.394 0.2513 | 0.2787 | 0.4700 | 0.362
CCC 0.2359 0.2905 0.4737 | 0.364 0.2798 0.3099 0.4103 0.344
DDD 0.0365 0.0863 | 0.8772 0.778 0.0306 0.1094 0.8600 | 0.752

the Hertzian contact and 12 = 1 due to the identical balls. The comparison
between the theoretical prediction according to the method described in sections
3-5 and these experimental outcomes is presented in Table 2.

The observation from Table 2 shows that theoretical results coincide fairly
well with the experimental results presented in [I2]. Clearly the qualitative
properties are comparable since the wave effects are present in both sets of
results in Table 2. The discrepancies between experiments and prediction for the
values of Y"(¢;")? are less than 10 percent, and may be due to the inaccuracies
induced by the transfer of the experimental signals to the digital values for the
velocities. For instance, the value of Y (g;")? related to the normalized value of
the post-kinetic energy of the system for type-A is greater than the initial value
(it is equal to 1) based on the data converted from experimental results (this
data is not credible since the kinetic energy of the system is created during the
impact).

Remark: Since the numerical results are not provided accurately in [19]
(only graphical results in Figures 10-12 are available in [19]), it is not possible
to make precise comparisons between the algorithm in [I2] and the algorithm in
this paper. At best one can compare some qualitative features of the schemes.

Figure [l shows the evolution of the velocities accompanying the normal
impulses for the ball of type A, calculated with the algorithm of section Bl At
the beginning of the impact, dP; is selected as the independent variable since
contact point 1 contains more potential energy than contact point 2. After
the end of the compression phase at contact point 1, its potential energy will
decrease, while the potential at contact 2 will continue to increase. When the
potential energy at contact point 2 is greater than the one resided in the contact
point 1, the independent variable dP; for the impulsive differential equations
will be changed into dP;. In this situation, dP; will depend on dP,. Clearly, the
ratio between dP; and dPs is not linear, but depends on the potential energy
stored at the two contact points. Before the compressional phase at contact
point 2 finishes, the ball B; will lose contact from the chain. Finally, all balls
will separate with different post-impact velocities.

Let us investigate the difference between the theoretical predictions obtained
from the bi-stiffness and mono-stiffness models, in which both the models are
set with the same exponent = 3/2 for the force/indentation relationships, and
€s,1 = €52 = 1. In the mono-stiffness model, the coefficients of restitution are
used as a global index to confine the local energy loss, while in the bi-stiffness
model the local energy loss is considered by using different force/indentation
relationships for the compression and expansion phases. As shown in Table
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Figure 6: The evolutions of the normal impulses and the relative velocities at
two contact points.

Table 3: The theoretical prediction by using bi-stiffness and mono-stiffness mod-

els
Ball bi-stiffness model (section Hl) mono-stiffness model (section B
Type
i ds a3 206)7 [ df Az a3 >4 )?

AAA -0.0520 | 0.0843 0.9677 0.946 -0.0466 | 0.0783 0.9683 0.946
BBB 0.2515 0.2775 0.4710 0.3621 0.2513 0.2787 0.4700 0.362
CCC 0.2798 0.3093 0.4109 0.343 0.2798 0.3099 0.4103 0.344
DDD 0.0218 0.1178 0.8603 0.7544 0.0306 0.1094 0.8600 0.752

3, the theoretical predictions obtained from different compliant contact models
with the same coefficients of restitution have only very small discrepancies for
the outcomes of the post-velocities. In other words, the method developed in this
paper can provide a relative precise information for an impulsive process even
though the constitutive relationship associated with the contacts is ambiguous.

Case 2. The particle chain with five balls
Complex behavior will appear when multiple impacts occur between differ-
ent types of balls. In particular, the mass ratios between the balls and the
stiffness ratios between the contact points will significantly influence the pro-
cess of multiple impacts. In the following a particle chain involving 5 balls will
be investigated by using the impulsive differential equations and the compliant

contact model.

Except for the imparting ball, the balls in the chain are assumed to be identical.
The mass of the first ball is set as m; = 1kg. The mass ratio and stiffness ratio

between the first ball and other balls is
mi
=01, =—", V=
my;
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Velocity

15000

Steps

Figure 7: Evolution of the relative velocities for the 5-ball system (o = 2, v = 1)

The contact forces are assumed to be linear elastic. This permits e, = 1
and the exponent 7 = 1. The initial velocity of the imparting ball is set as
vg = 1lm/s. For the case of @ = 2 and v = 1, figure [ shows the evolutions of
the relative velocities during impacts, using the impulsive model of section 3 (or
section 4 as the impact is fully elastic).

Velocity

| :
0 0.5 1 15 2 25 3 35 4 45 5 55
Time (s)

Figure 8: The relative velocities obtained from the linear compliant model (n =
1, KZ‘ =1 N/m)

Observation from Figure [ clearly shows that the compressional process be-
tween B and Bs finishes at point a. Then, the potential energy will be released
to make them separate. Before separation, however, ball By and B, will again
obtain the same velocities when normal impulse reaches the point b: a new
compressional process occurs between By and By. This process will change the
velocities of By and B and make them obtain the same value at point c¢. After
that, the potential energy will be completely released and the contact between
B1 and By will be finally open. Analogous process can also be found between
B, and Bs, where the instants for d; = 0 appear at point 1, 2 and 3, respec-
tively. These multiple compression phenomena can also be observed by using
the compliant contact model (shown in Figure B). The results of Figure B were
obtained with a stiffness of 1 N/m, which is not realistic, however the outcome
is independent of the absolute values of the stiffnesses but depends only on their
ratios in this example [28] 26]. This implicitly means that the small deformation
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at contact points has little influence on the multi-impact process, confirming the
validity of assumption (a) of section 1.3 in the impulsive dynamics of impact.

Velocity

Figure 9: Evolution of the relative velocities for the 5-ball system (oo = 1, v = 2).

The phenomenon that a repeating impact occurs at the same contact point
can be observed by setting o = 1 and v = 2, as shown in Figure[@ Clearly ball
B; and ball By will collide again at the point 1 on the curves. The outcomes of
post-impact velocities will change due to the second impact.

It may be helpful to compare the final outcomes of the post-impact velocities
obtained from the impulsive method and the one obtained from the compliant
model (ii). By changing the values of the stiffness and mass ratios, Table 4
presents the final velocities of the system by using the impulsive method. The
results obtained from the compliant contact model are presented in Table 5.
Clearly the results obtained from the two different methods agree very well.

Table 4: Post-impact velocities obtained from the impulsive dynamics.

(a, 7) g g g3 qs gt

(1,1) -0.1322 -0.0754 -0.0311 0.2958 0.9429
(2 1) 0.0140 0.0186 0.1469 0.4867 1.3198
(1,2) -0.1062 -0.0628  -0.0508 0.2644 0.9554
(2 2) -0.0341 0.0155 0.3516 0.3878 1.3132

Y

Table 5: Post-impact velocities obtained from the compliant contact model.

(a, 7) @ i i qf gt
(1 1) -0.1323 -0.0753  -0.0310 0.2962 0.9424

(2,1) 0.0139 0.0192 0.1463  0.4875 1.3192
(1,2) -0.1065  -0.0624 -0.0507  0.2646  0.9551
(2,2) -0.0400  0.0159 0.3748  0.3816  1.3078

Case 3 The impulsive wave in a long chain
As proved theoretically and experimentally by many authors, an impulsive
wave can be generated when a chain endures an impulse [45, B3, B0, A7, 48,
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42, h9]. Let us set a chain with 15 identical balls that are stationary and
keep contact with adjacent balls. The contact relationship between the balls is
assumed to be nonlinear elastic and satisfies Hertz assumption (i.e. n = 3/2).

Velocities of the ball
o
T

P R
4 ‘ /‘ Ptzf (] f‘ ’
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Number of the balls

Figure 10: The impulsive wave in the 15-ball system.

Suppose that two balls with the same velocity, |vg| = 1m/s collide against
the ends of this chain from two inverse directions. Two impulsive waves will be
generated at the ends of this symmetric structure, and are propagated through
the chain (shown Figure[[[). The five curves correspond to the velocities of the
balls at 5 different instants (different P;), where the solid line represents the
initial condition of the chain, while the other four lines describe the impulsive
wave behavior at different times.
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Figure 11: The impulsive wave in the 16-ball system.

Initially the imparting balls at the ends of this chain only influence the
adjacent balls with limited length, and then two impulsive waves are formed
due to the coupling between adjacent balls (self-organized behaviors among
balls), then travel through the chain with an approximately fixed length and
a constant amplitude (like a solitary wave). Meanwhile, the balls behind the
wave will rebound backwards with a small velocities, confirming the scattering
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phenomenon or bead detachment effect [42]. The length of the impulsive wave
is confined in five balls, that well coincides with conclusions obtained from
numerical results, theoretical analysis as well as the experiments reported in [A3,
47, 48]. The two impulsive waves originated from the ends of this chain will meet
at the chain center, in which the located particle always keeps motionless due
to the symmetric structure of the chain. After that, the waves with unchanged
shape will reflect from the center of the chain to make particles separate from
each other.

Velocities

Steps x 10
Figure 12: A regular wave in an 9-ball chain impacted by an identical ball.

If the number of balls in the chain is even, the two impulsive waves will
interfere with each other when the waves reach the center of the chain. This
phenomenon is well reflected in Figure [l obtained by setting the chain with
16 identical balls. When the two waves met at the center of the chain, the
velocities of the particles involved in the impulsive wave will abruptly decrease,
and thus the momentums resided in particles will be redistributed to form a
different shape of wave profiles. However, the variation of the wave profile has
little influence on the final outcomes of the velocities after impacts.

Case 4 n—ball chains impacted by m—ball chains

As shown in case 3 and discovered by many physical scientists, a compressive
wave with regular profile involving five particles can be formed when a uniform
ball-chain system is impacted by an identical particle. However, this regularity
of the wave behavior will be destroyed when the chain is collided by more than
one impacting particles.

Let us denote a system with 10 balls that are identical and satisfy the Hertz’s
contact relationship. The parameter ( is defined as the ratio between the num-
bers of the m impacting balls and the n impacted balls. For instance, 3 =1:9
means that the chain with nine stationary balls is impacted by one particle (i.e.
n=9and m = 1), § =2 : 8 is related to situation that two particles collide
against eight stationary balls (i.e. n = 8 and m = 2), etc. We will investigate
the impulsive behaviors by changing 8 from 1:9 to 4 : 6. Similar to the above
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Figure 13: the impulsive behavior of the chain with 8 =2:8 (ball 1 to 5)
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Figure 14: the impulsive behavior of the chain with =2 :8 (ball 6 to 10)

cases, the initial velocities of the impacting balls are set as vg = 1m/s and no
energy is dissipated during impacts: e, ; = 1 for all contacts i.

Figure [ presents the evolutions of the velocities and the normal impulses
for the case of the chain with parameter 8 =1 :9. Clearly a regular wave can
be formed and only three balls move forward when the impact finishes. The
values related to the final velocities for each ball are presented in Table 6, in
which the last row shows the percentages of the forward kinetic energy (the
sum of the kinetic energies of the balls with positive post-impact velocity) and
of the energy of the final ball with respect to the total energy of the system,
respectively. In this case, the percentage of the forward kinetic energy is about
99%, and the one of the final ball is near to 97.4%.
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Figure 15: the impulsive behavior of the chain with 6 =3:7 (ball 1 to 5)
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Figure 16: the impulsive behavior of the chain with 8 =3:7 (ball 6 to 10)

When the chain is impacted by two identical balls, there are four balls finally
moving forward, and the kinetic energy will be centralized in the last two balls.
It is obvious that the wave behavior is not regular due to the complex coupling
among various contacts. Figure [ and [[A shows that the evolutions of the post
velocities of balls and the normal impulses for balls 1 to 5 and for balls 5 to 10,
respectively. Although most of kinetic energy of the system is still kept in the
balls moving forward, the distribution of the post- velocities of the balls is much
different from the one in the chain impacted by an identical ball. The forward
kinetic energy is not concentrated in the last two balls, but will disperse in a
length with about four balls.

As m increases, the interactions between the contacts becomes more com-
plex, and the number of balls rebounding decreases. Figures [[H and [[@ present
the evolutions of the velocities and of the normal impulses for the balls from
No.1 to 5 and from No.6 to 10 in chain with § = 3 : 7, respectively. Observing
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Table 6: Outcomes of chains with different [.

6] (1:9) (2:8) (3:7) (4:6)

q;r -0.0710 -0.1126 -0.1441 -0.1706
ar -0.0303 -0.0481 -0.0612 -0.0729
qT -0.0159 -0.0248 -0.0312 -0.0373
ar -0.0089 -0.0133 -0.0169 -0.0146
a -0.0052 -0.0068 -0.0054 0.1274
da -0.0030 -0.0022 0.0996 0.4648
ar -0.0018 0.0497 0.4043 0.4847
g 0.0025 0.2893 0.5108 0.9111
da 0.1467 0.6570 1.0118 1.0928
qfro 0.9869 1.2118 1.2323 1.2145

Percentage (995, 97.4) (99.3, 73.4) (99.2, 50.6) (99.2, 36.9)

Steps x 10

Figure 17: the impulsive behavior of the chain with 8 =4:6 (ball 1 to 5)

the values presented in Table 6 we can find that the forward kinetic energy
changes little, while the number of balls moving forward is five and the kinetic
energy is dispersed in a more wide scope.

When m increases to four, the post velocity of the last ball changes very
little in comparison with the cases of a chain impacted by 2 balls or 3 balls,
while the forward kinetic energy will disperse in the chain with 6 balls as shown
in Table 6. The evolutions of the velocities of each ball and the impulses among
various contacts are shown in Figure [[] and

forward post-impact kinetic energy
total kinetic energy
remains constant ~ 99%. The number of balls with a positive post-impact veloc-

ity increases as m + 2. These results confirm that the proposed scheme is able
to reproduce the dispersive effects observed for such impacts [43, [61)].

Conclusions: Asm increases, the ratio
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Figure 18: the impulsive behavior of the chain with 8 =4:6 (ball 6 to 10)

7 The Bernoulli’s problem

The more general situation that the impacts between the balls occur in the plane
is also attractive and crucial for multi-impact problems in granular material. In
this section, the well-known Bernoulli’s example [2] will be analyzed.

7.1 Problem description

Two geometrically identical balls B; and Bj are stationarily placed on a smooth
plane. Let a ball By with mass mo and initial velocity v9 collide the two balls
along their symmetrical line. The masses for By and Bs are m; and mg, respec-
tively. The contact between the balls is assumed to be satisfied with the Hertz
model.

my

Ball 2

Figure 19: The Bernoulli’s problem
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Figure [d depicts the system for the Bernoulli’s problem. « is the angle
formed by the mass centers of the balls at the instant of collision. Let us set the
x axis along the symmetrical line. z; and y; represent the components of the
position of the mass center for the ball B;, i = 1,2,3. F; and F5 are the normal
contact forces between the balls By and Bs, and the one between By and Bs,
respectively. The governing equations for the three balls can be written as:

malia(t) = —Fy cosa — Fy cos a (102)
mafia(t) = —Fysina + Fysina

msxs (t) = FQ COos

mgyg(t) = —F1 sin «

where the contact forces satisfy a complementarity condition similar to ({@7).
If the three balls are identical and the dissipated energy during impacts is as-
sumed to be zero, Bernoulli [2] postulated that the impact outcome should be
symmetric, and presented a theoretical solution by using momentum and energy
conservations. This solution reads as:

2
C T
an® o
iy =v -+
27 3% tana (103)
-+ + 2tana
Y1 = Y3 = 2
L 3+ tan® o
Yy =0

Clearly this solution significantly depends on the symmetry conditions and on
the assumption of elastic collisions at both contacts. Any condition that destroys
the symmetry will make the real post-impact outcomes much different from the
results in (I3)). In the following subsection, the impulsive method based on the
method developed in sections Bl and Bl will be applied to the Bernoulli’s problem.

7.2 Numerical results for the Bernoulli’s problem

The impulsive differential equations for the Bernoulli’s problem can be easily
obtained from ([12):

mldx'l = dPl COS ¢

mldyl = dP1 sin o

madis = —dP; cosa — dPs cos a
madijo = —dP; sina + dPs sin«
madis = dPs cos «

msdys = —dP; sina

(104)

The relative velocity along the normal direction between the balls By and
B> and the one between the balls By and Bs can be easily expressed as:

610 = (@9 — d1) cosa + (2 — §1) sina
: 2 SR (105)
023 = (&3 — &) cosa + (Y3 — ¥2) sina
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Figure 20: The fully elastic impacts at two contact points.

Hertz model at the contact points and the identical materials for the balls yield
the following relationship between dP; and dP; (see B)):

5

P1 & 3

§12dP

P, = <w> P, (106)
o 0O23dP>

During the numerical simulation, either dP; or d P is selected as the independent
variable for equation ([04) based on the potential energy accumulated in the
contact points.
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Figure 21: The fully plastic impacts at two contact points.
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Let us set the three balls with identical mass m = 1kg and the coeflicients
of restitution in both contact points es; = ego = 1. The initial velocity of By
is set as v = 1m/s. This is a symmetric situation where a theoretical solution
could be obtained. Figure presents the evolution of the velocities during
impacts for the configuration with = 7 /6. Clearly the contact between B
and By and the one between By and Bs will reach the compressional point and
separate simultaneously, such that the outcomes for the post-impact velocities
are symmetric.

Table 7 presents the numerical results obtained from equation ([[04]) and the
analytical results obtained from equation ([{I3) of the post-impact velocities for
the system in symmetric situations with various angles a. The results coincide
very well.

Table 7: Post velocities [&], 91,43, 93, &4, 95 | in different o

Numerical results Theoretical results

[0.63,0.26, —0.26,0.00,0.63, —0.26]  [0.63, 0.26, —0.26,0.00, 0.63, —0.26

[0.60,0.35,—0.20, 0, 0.60, —0.35] 0.60,0.35, —0.20,0.00, 0.60, —0.35

[0.50,0.50, —0.00, 0.00,0.50, —0.50] _ [0.50, 0.50, 0.00, 0.00, 0.50, —0.50

e PN PN PN
PelA 3R] ©
~— | — | — | ~—|~—

[0.33,0.58,0.33,0.00,0.33, —0.58] 0.33,0.58,0.33,0.00,0.33, —0.58

Obviously, the symmetry of the system can be preserved if both collisions
between the balls are plastic impacts. The symmetric solution for the post-
impact velocities should also be anticipated. This situation is illustrated in
Figure 211 by setting @ = m/6 while the impacts at the two contact points are
fully plastic (es1 = es2 = 0) B. After impacts, the solution of the system is still
symmetric, while the kinetic energy preserved in the system becomes 0.185J due
to local energy dissipation (its initial value is 0.5J).

The difference of the dissipated energy at the two contact points destroys
the symmetry of the multiple impact. Let us consider a limit situation, in which
the collision between By and By is assumed to be elastic (i.e. es;1 = 1) while the
collision between By and Bs is plastic (i.e. eso = 0: there is only a compression
phase and the potential energy at the contact is dissipated completely). Figure
shows the evolution of the velocities during the impact for the system with
a = /3. During the compression phase, the evolution of the velocities related to
B and Bj is symmetric, and the velocity of ball B is located in the symmetric
line. However, after the compression phase finishes the motion of ball By will
diverge from the symmetric line and approaches the side of Bs. Before the
impact between B; and Bs finishes, B3 will participate in the impact again to
make Bs move towards Bj such that a little change for the velocity of By is
generated. Clearly, the outcomes for the Bernoulli’s problem are sensitive to
the configuration, the initial conditions, as well as the properties of the contact
points []].
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Figure 22: The influences of the coeflicients of restitution on the outcomes of
the post-impact velocities.
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Figure 23: Chains of balls against a wall.

8 Chains of balls against a wall

Let us consider chains of balls that collide into a rigid wall as shown in Figure Z31
A funny experiment consists of a 2-impact between a big ball, a small ball, and
a ground. For instance one may take a tennis ball and a basket ball, and drop
them while stuck together on the ground. When the tennis ball is on the top
(case (b) in Figure 23)), the post-impact outcome is that the tennis ball usually
jumps very high (several meters), while the basket ball has a very small post-
impact velocity. When the basket ball is on the top (case (c¢) in FigureZ3), then
the impact is no longer that spectacular as the basket ball rebounds just a little.
In this section we show that our approach can well describe such phenomena
and be used to determine the important parameters of such 2-impacts.

2The curves in Figures BTl Tl and P2 are parameterized with P;, i.e. the start corresponds
to P;(0) = 0 and the end corresponds to P;(ts).
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8.1 Dynamics and simulation of the tennis-basket balls
system

For a ball with internal pressure p contacting with a rigid contact surface, the
centralized contact force Fy can be approximately expressed as

F, =pS (107)

where S is the contact area between the ball and the rigid contact surface.
We suppose that the radius of the ball is R and the displacement of the center
of the ball is represented by § (6 < R). Under the assumption that the internal
pressure p is preserved to be constant and ignoring the term related to 62, the
contact force Fy can be connected with the displacement & by the following
expression

F, = pr(R%* — (R — 6)?) 2 27pRé (108)

So, the contact stiffness of the compliance between a rigid contact surface
and a ball with internal pressure is

K, = 2mpR (109)

Let us set the tennis ball with radius R; and mass m;, and the basket ball
with radius R, and mass my, respectively. Considering a simple situation where
the tennis ball and the basket ball take the same value of the internal pressure
p leads to a simplified relationship for the contact force F' and the displacement
0¢.» between the tennis ball and the basket ball

F n F
2tpRy  27wpRy

Otp =0+ 0p = (110)
where d;p is measured from the centers of the balls. Therefore, the contact
stiffness of the compliance between the tennis ball and the basket ball is

RiRy

Ko =2mp 1

(111)
For the case (b) of the tennis ball set on the top as shown in Figure Z3 the
stiffness ratio 7;,s between two contacts is

Kvs Ri+Ry R,
ey = s T g T 112
R R; R, (112)

The stiffness ratio yp¢,s for the case (c) shown in Figure B3 reads as

K:s R:+Rp R
s=—=———=1+4+— 113
The radius of a basket ball is much larger than the one of a tennis ball, such
that ¢, s will much exceed the value of 3+ ;. The difference between ;4 s and
Yb,t,s induced by the contact sequences setting on the balls will dramatically
influence the dynamical behaviors when the balls stuck together collide against
a wall.
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According to the information obtained by surfing on internet, the tennis ball
may rebound with a hight of (134.62 ~ 147.32¢m) when falling from a hight of
254cm, while the basket ball can detach away from the ground with a height
of (1.2 ~ 1.8m) if it is released from a height of 1.8m. So the coefficient of
restitution between the tennis ball and the rigid ground, e; changes approxi-
mately in a scope of (0.52 ~ 0.58), and the one for basket ball, e, is limited in
(0.67 ~ 1). Let us set e; = 0.55 and e;, = 0.8, and assume the coefficient of
restitution between the tennis and basket balls e, equals 0.326 (we estimate
the value of e;p by 1/e¢p = 1/e; + 1/ep). Other parameters related to the sizes
and masses of the tennis and the basket balls are: m; = 58gram, R, = 3.25cm,
myp = 580gram, R, = 38cm.
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Figure 24: The case of the tennis ball on the top simulated by the bi-stiffness
model.

The impulsive method with bi-stiffness mode (the force-indentation relation-
ship in expansion phase is determined according to the restitution coefficient as
shown in (HH)) is adopted to simulate the 2-impact process. The initial veloc-
ities of both the tennis ball and the basket ball are set with the same value,
v = 1m/s and v) = 1m/s.

For the case of the tennis ball setting on the top and the basket ball colliding
against the wall, Figure 4] presents the evolutions of the velocities and impulses
during the 2-impacts. Numerical results indicate that in this case the tennis
ball rebounds backward with a speed v;” = —1.1460m/s, while the basketball
detaches from the wall with a speed v;r = —0.6394m/s. Although the total
kinetic energy of the system decreases due to local energy dissipation with a
variation from its initial value 0.319 J to 0.1567 J when impacts finishes, the
tennis ball will gain energy through the impacts, and rebounds back with a
speed larger in absolute value than its initial value.

If we alter the sequence of contacts by setting the basketball on the top and
make the tennis ball impact into the wall, the dynamical behavior of the 2-
impacts will dramatically change as shown in Figure 23 for the evolutions of the
velocities and the impulses during impacts. The outcomes of the 2-impact are:
v;” = —0.1034m/s and v;" = —0.1178m/s. Both the tennis ball and basketball
leave from the wall with very small velocities, and more energy will be dissipated
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during impacts (the kinetic energy of the system after impacts decrease to 0.0043
J, which is much less than its initial value, 0.319 J).
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Figure 25: The case of the basketball on the top simulated by bi-stiffness model.

The reason for the discrepancy of the energy outcomes between two cases
can be explained as follows: In case (b), Figure 24 shows that there is only one
instant when the tennis ball and the basket ball reach the same velocities. This
means that the contact between balls consists of a single compression/expansion
cycle. In the situation of case (c¢), however, the phenomena of complex impacts
with multiple compressional phases will appear (the tennis ball and the basket
ball reach the same velocities at six instants as shown in Figure BH). According
to the compliance model, each circle of compression and expansion will dissipate
a certain energy in the system, such that less energy can be recovered in the case
(c) for the system of two balls against a wall. Obviously, the multi-compression
phenomenon is closely related to the stiffness ratios among the various contacts.

8.2 Robustness analysis

It is interesting to investigate the robustness of the method with respect to the
uncertainties of modeling and physical parameters. The results of Table 3 in
section Bl have already shown that the algorithm is robust with respect to the
contact/impact model. The robustness (or the insensitiveness) can be further
investigated by setting the compliance at contacts with a mono-stiffness model
and taking the coefficients of restitution as a global index to constraint the local
energy losses. We apply the same parameters as used in the above simulations
with the bi-stiffness model, to the method with the mono-stiffness model. The
numerical results for the two situations of the system with different contact
sequences are presented in Figures B0l and

In the case of the tennis ball on the top, the post-velocities of the tennis ball
and the basket ball are v;7 = —1.146m/s and v;” = —0.6357m/s, respectively.
The discrepancies between the two models are very small and a good robustness
of modeling is reflected. Let us set the basket ball on the top and make the
tennis ball collide against the wall. The outcomes of the impact are: v;t =
8.6 x 1075m/s, v = —1.73 x 10~ *m/s. The kinetic energy of the system before
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Figure 26: The case of the tennis ball on the top simulated by the mono-stiffness
model.
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Figure 27: The case of the basketball on the top simulated by the mono-stiffness
model.

and after 2-impacts varies from 0.319 J to near zero. Comparing with the
first case of the tennis ball on the top, this time complex impact phenomena
appears at contact points. The outcomes of the system will be slightly influenced
by the mode of the compliant model due to the multiple compression phases
among contacts. The discrepancy between the two models is due to the forced
energetical constraint applied in the mono-stiffness model to make the system
with more local energy losses. However, the global behavior of the system is
still fairly well reproduced by the numerical simulations.

It is easy to understand that the real system with 2-impacts should not
be sensitive to the little changes of the physical parameters (the masses and
sizes of the balls as well as the coefficients of restitution of each contacts), since
the impact dynamics is a first-order ODE. In the following, we will investigate
whether the impulsive method can well keep the essential mechanical features
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by setting the system with uncertainties of physical parameters. The numerical
simulation is carried out by using the bi-stiffness mode.

Let us first consider the uncertainties of the radiuses of the basket ball and
the tennis ball, which are changed from R, = 38 ~ 39cm, and R, = 3.2 ~ 3.3cm.
Other parameters are kept in the same values as in above simulations. For the
two cases of the system with different contact sequences, Table 8 clearly shows
that the outcomes of the 2-impacts are robust with respect to the variations of
radiuses of the balls.

Table 8: The theoretical prediction for the system with uncertainties in radius

case no. | R¢(ecm) | Rp(em) tennis ball on top basketball on top
Vt,b,s ’U;— U;_ Vo, t,s ’U:— U;_

1 3.2 38 12.875 -1.1485 | -0.6350 | 1.084 -0.1019 | -0.1169

2 3.2 39 13.187 -1.1489 | -0.6339 | 1.082 -0.1026 | -0.1176

3 3.3 38 12.515 -1.1479 | -0.6364 | 1.087 -0.1008 | -0.1161

4 3.3 39 12.818 -1.1486 | -0.6352 | 1.085 -0.1014 | -0.1168

The investigation of the robustness for the uncertainties of masses is carried
out by setting the mass of the basket ball changing in the scope of mp = (570 ~
660gram). The numerical results presented in Table 9 illustrate that the system
has a good robustness with respect to little variations of the masses.

Table 9: The theoretical prediction for the system with uncertainties in mass

case no. | my mp tennis ball on top basketball on top

Ve b, v vy Voot v vy
1 57 590 12.875 -1.1522 | -0.6424 | 1.084 -0.1170 | -0.0902
2 57 600 12.875 -1.1536 | -0.6456 | 1.084 -0.1171 | -0.0840
3 57 620 12.875 -1.1570 | -0.6517 | 1.084 -0.1172 | -0.0711
4 57 640 12.875 -1.1602 | -0.6573 | 1.084 -0.1170 | -0.0572

8.3 The identification for the parameter ¢,

The value of the parameter e; ; used in above simulations is estimated from the
values of e; and ep, and may not well reflect the real dissipation of energy loss
between the tennis ball and the basket ball. In the following let us investigate
the robustness of the model with respect to the uncertainties of the coefficients
of restitution by assigning e, ; with different values, and provide a way of identi-
fying the parameter e;; from the 2-impacts system. All the parameters except
for e;; are kept the same values as used in above simulations: m; = 58gram,
my = 580gram, e, = 0.55, e = 0.8, vp,s = 12.875, 51,5 = 1.084. The drop
velocity of the balls stunk together is set as vo = 1m/s. Table 10 presents the
variations of the post-velocities of the tennis ball and the basket ball for the two
different contact sequences when e;p varies from 0.3 to 0.6.

We can find from Table 10 that in the case of the tennis ball on the top the
absolute value of the post-impact velocity of the basket ball will decrease, while
the one of the tennis ball will increase when e;; is larger. This can obtain an
explanation from the viewpoint of the energy that less dissipation between the
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Table 10: The theoretical prediction for the system with uncertainties in e

case etb tennis ball on top basketball on top
no.

eb vy vy et v vy
1 0.3 0.8 -1.1111 | -0.6394 | 0.55 -0.0934 | -0.0723
2 0.4 0.8 -1.2536 | -0.6252 | 0.55 -0.1822 | -0.1693
3 0.5 0.8 -1.3966 | -0.6109 | 0.55 -0.2729 | -0.1917
4 0.6 0.8 -1.5396 | -0.5966 | 0.55 -0.3580 | -0.2207

tennis ball and the basket ball will make more energy be transmitted into the
tennis ball through a relative higher value of the stiffness ratio. In other words,
the energy resided in the colliding system will flow into the contact bodies with
softer stiffnesses. In the case of the basket ball on the top of this chain, both the
absolute values of the post-impact velocities for the tennis ball and the basket
ball increase very little even though the value of e;; increases. The small value
of the stiffness ratio will generate multiple compression phases that can dissipate
most energy of the system during impacts.

Table 11: The outcomes of balls dropping from a height h = 1.5m

case etb tennis ball on top basketball on top
no.

v, hf v, h; vy hf v hy
1 0.35 -6.21 1.97 -3.47 0.61 -0.56 0.016 | -0.64 0.021
2 0.4 -6.78 2.35 -3.41 0.59 -0.92 0.043 | -0.99 0.05
3 0.5 -7.55 2.91 -3.33 0.57 -1.04 0.055 | -1.48 0.11
4 0.55 -7.93 3.21 -3.33 0.55 -1.11 0.06 -1.72 0.151

It may be interesting to investigate the phenomena of the 2-impacts system
by dropping the balls stunk together from a usual height (the initial height can
be set with a value near to 1.5m). In this case the spectacular scene observed
in reality can be well reproduced if the value of the parameter e;; is near to
the real value. Contrarily, if the rebound heights of the tennis ball and basket
ball after impacts could be measured accurately, the real value of e;; can be
extracted from the simple experiment. Let us set the dropping height A = 1.5m,
that will make the initial velocity of impacts equal vg = 5.4m/s. The numerical
results obtained from our method for the two cases of the system with different
contact sequences are shown in Table 11, in which all the parameters except for
etp are kept in the same values as in above simulations.

Although we don’t carry out a experiment to certify the accurate values of
the rebound heights of the balls, Table 11 clearly tell us that the results from
simulations do qualitatively represent the reality very well, and the parameter
of e; seems to be near 0.55. By setting e, with this value and the initial
dropping height with the value of 1.5m, the evolutions of the impacts for the
two cases of the system with different contact sequences are shown in Figure
and B9 respectively.

Comments: The method developed in this paper keeps the essential mechan-
ical features of the real system since the dynamical behavior is described at the
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Figure 29: The case of the basketball on the top simulated by setting e; ;, = 0.55.

velocity-impulse level and respects the evolution of motion in the energy sense.
Therefore, one may calculate the impact outcomes without going into a compli-
cated and usually very delicate procedure to identify the physical parameters and
the compliance model.

9 Calculation of the contact forces

As we have illustrated in sections 2, 3, and 4, and examined by numerical results
for the examples mentioned above, the evolution of an impulsive process only
depends on the mode of the potential energy accumulation (the exponent in the
force/indentation relationship) and the relative quantities of the contact stiffness
among various contacts. Thus, the post-impact velocities of the systems after
impacts can be calculated by using the differential impulsive equations with
respect to the primary normal impulse, a ”time-like” independent variable used
for ODEs.
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Wall

Figure 30: A column of beads colliding against a wall.

Let us recall equations ([28), ([8) and (@) in which the contact force A;
is expressed as a function of the potential energy with respect to the normal
impulse. If the value of the contact stiffness K; can be estimated, the value
of the contact force \; at the instant of P;(t) can be obtained according to
the potential energy E;(P;(t)). Furthermore, the time ¢ related to the normal
impulse P;(t) can also be extracted by using ¢t = P’)\—g) This is a postprocessing
associated with the impulsive differential equations. I.e. we store the informa-
tion of the potential energy at each numerical step for the ODEs, then carry out
an algebraic operation to obtain the values of the contact force and the corre-
sponding time. In this section, we will apply our method to a one-dimensional
column of beads colliding against a fixed wall, an example with experimental
results presented in [A2].

9.1 A column of beads

Figure Bl shows the granular system studied by [42], in which N identical stain-
less steel beads, each one 8mm in diameter, are put together to form a column
colliding against a fixed wall. The column of beads leaves the wall with a height
h and starts its free fall to collide against the wall. The number of beads may
vary from N =1 up to N = 40 for experiments, and the contact forces felt at
the wall are recorded by a force sensor.

In order to reproduce the experimental results reported in [42], we use the
bi-stiffness relationships expressed in equations ) and H) to model the in-
teractions at contacts, in which the local energy loss is taken into account by
the restitution coefficient e, for particle to particle and e, , for particle to
wall, respectively. Let us number the contact bodies in a sequence from the
wall assigned with 0 to the last bead with N. The contact points are denoted
in a sequence with number 1 for the contact between the wall (0-th contact
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Figure 31: the contact force at the wall during the collision of a column of
N =1,2,---,8 beads with fall height h=3.1mm, and e, ;, = 0.96, e, = 0.92.

body) and the 1-th bead, and number N for the contact between (N — 1)-th and
N-th beads. According to the Hertz’s theory, the exponent 7 equals 3/2 for the
non-conforming contact mode between bodies, and the contact stiffness K; at
the contact point ¢, is expressed as

4

33;%155, i=1,.,N (114)

K; =

where R} and E are the equivalent contact radius and the equivalent Young
modulus between adjacent contact bodies, respectively.

RiR;—1

Rf=—"—— i=1,.,N 115
(3 Ri+Ri71’ ? ? k) ( )
1 1-v2, 1-u?

— = T L, i=1,.,N 116

The mass of a stainless steel bead used in experiment is m = 2.05 x 10~3kg.
The Young modulus and Poisson ratio for stainless steel are Es = 21.6 x
10'°N/m? and v, = 0.276, respectively. Thus, the value of the contact stiff-
ness, K;(i = 2,---, N) for sphere-sphere contact is 6.9716 x 10°N/m3/2. For the
contact between the bead and the wall made of stainless steel, the value of the
contact stiffness K for the sphere-plane contact is 9.858 x 109N /m?/2.

9.2 The contact force felt at the wall during the collision

Based on the description in [#2] for the experiments, two cases are investigated
in the following numerical simulations: a column of N beads free fall to collide
against the wall with two different height h = 3.1lmm and A = 5.1mm, corre-
sponding to the impacting velocities of the column (vim, = v2gh) 0.246m/s
and 0.316 m/s, respectively.
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Figure 32: the contact force at the wall during the collision of a column of
N =5,6,---,12 beads with fall height h=>5.1mm, e, ;, = 0.96, e, , = 0.92.

-3
S

50

401

301

20+

10

Contact force between the bottom ball and the rigid wall (N)

Time (s)

Figure 33: the contact force at the wall during the collision of a column of
N =1,2,---,8 beads with fall height h=3.1mm, e, s = 0.92, e, , = 0.92.
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Figure 34: the contact force at the wall during the collision of a column of
N =5,6,---,12 beads with fall height h=>5.1mm, and e, , = 0.92, e, ), = 0.92.

For the columns of beads with N changing from 1 to 8, colliding against
the wall with A = 3.1mm, Figure Bl shows the outcomes of the contact forces
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at the wall. It is clear that our numerical results can well reproduce the ex-
perimental phenomena discovered in [42], in which the maximum force F, 4y is
approximately equal to 52N and very little influenced by N, while the duration
of impact increases linearly with N. Moreover, the contact force oscillates with
a period of P ~ 32us (the experimental value in 2] is P = 32.4 + 1us), and is
damped like the response of the motion describing the damped free vibrations
of a system with viscous damping.

Let us set the fall height h = 5.1mm for the column of beads with various
number of N = 5,6, --,12, colliding against the wall. The numerical results
obtained from our method is shown in Figure B2 in which the maximum force
Fq0 is approximately equal to 71N and the period P for the oscillation of the
contact force is around 31us. This well agrees with the experimental results in
2.

Since the value of the restitution coefficient is often estimated from an in-
dependent experiment, it may be interesting to investigate its influence on the
contact force at the wall by setting e with a little perturbation. Let us set both
the values for particle-particle coefficient of restitution and the particle-wall one
as es = 0.92. Figures and B4l present the numerical results for the contact
forces felt at the wall that is collided by the column of beads with two different
fall heights h = 3.1, 5.1mm, respectively. Comparing them with Figures BIl and
B2 we can find that the little change of the coefficient of restitution has no
identifiable influence on the value and the shape of the curves of the contact
forces at the wall.

9.3 Distribution of the post-impact velocities
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Figure 35: Result of numerical simulations: velocity of the ith bead, at the end
of the collision with fall height h=>5.1mm, as a function of the bead’s number i,
for different values of N = 5,6, --,12 beads, and e5 s = 0.96, e5, = 0.92

As illustrated in [42], at the end of the collision the beads in the column

will detach from each other due to the energy redistribution within the system.
This is easy to be understood from the viewpoint of our method: the kinetic
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energy of the column will be first transferred into the potential energy among
various contacts, then the evolution of the energy is dominated by the primary
contact point to make it propagate through the chain (as pointed out earlier,
the primary contact point evolves like the accceleration wave). Obviously the
evolution of energy depends essentially on the distributing law discovered by
our theory (i.e. the intrinsic nature of the interaction law between contact
bodies, stated by Falcon [2]). In this subsection, we will apply our method
to investigate the phenomena of the detachement effect found in [A2, 1] by
presenting the post-impact velocities of the beads after collisions.
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Figure 36: The coefficient e.s; for the column with different IV dropped from a
height h = 5.1mm, and setting e, s = 0.96 and e, , = 0.92.
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Figure 37: The coefficient e.s; for the column with different IV dropped from a
height h = 5.1mm, and setting e, s = e, = 0.92.

The definition of the end of the column-wall collision given in E2], in which
the collision is assumed to be finished at the time at which the bead at the
bottom leaves the wall, is different from ours: we use the energy calibration to
define the end of the column-wall collision, corresponding to the instant when
all the potential energy among various contacts is completely released. Figure
B shows the post-velocities of the beads obtained from the simulation for the
column free falling from a height h = 5.1lmm. It is clear from this figure that
the upper beads of the column go away with velocities greater than v, =
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0.316m/s, while the lower beads have velocities smaller than v;y,,. Moreover,
we can also find that the post-velocity of the last ball will increase with N, and
reach the maximum value at N = 8, then decrease when NV is further enlargered.
Unlike a uniform chain impacting by an identical particle, where a regular wave
could be formed and confined within five particles, the wave behavior in the
column is complex and unregular like the phenomena discovered in section 6.2
for case 4, in which n-ball chains are impacted by m-ball chains. However, we
can still observe the following interesting phenomena: If N < 8, the beads will
separate one after the other from the top of the column. For N > 8, some beads
separate, while others are leaving in a cluster since the discrepancies between
the post-impact velocities of the beads are very small. If N > 8, the local
energy loss will make the post-impact velocity of the top-bead decrease. Due to
the local energy loss, it is imaginable that the top-bead will not bounce if the
column is long enough.

The effective coefficient of restitution for the whole chain, proposed in [61]
and then applied in [F2], is defined as:

N + N
U, 1
Ceff = Zﬁv‘l Y v, (117)
D im1 Vi Vimp ;=
where v;" corresponds to the post-impact velocity of i-th beads after collision.

It is noteworthy that the value of v} is different from the one of vlf in eq.(7)
of [42], where all the values for each Ulf correspond to the instant when the
force felt at the wall equals zero. Figure BB presents the value of e.;y varying
with N for a column free fall with a height A~ = 5.1lmm. The tendency of the
variation of e. s well agrees with [42, Figure 11]. However, when N > 4 there is
an obvious discrepancy between the value of e.¢s obtained from our numerical
results and the one shown in [#2, Figure 11]. This can be attributed to the
different definitions for v} in the two figures for the calculation of e. .
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Figure 38: The coeflicient e.sy for the column with different IV dropped from a
height A = 5.1mm, and setting e, s = 0.7 and e, , = 0.92.

In comparison with Figures BIl to B3, and Figures B2 to B4l we can find that
the variation of the value of the restitution coefficient e, s has little influence
on the value of the contact force at the wall. However, it will change the
distribution of the post-velocities of beads (the dispersion effect) that seems not
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to be ignorable. Let us only change the value of es s from 0.96 to 0.92 while
keeping other parameters with the same values as used for Figure We can
find from Figure B7 that the curve of e.¢s has an identifiable variation due to
the little change of e; s. This means that the local energy loss will influence
the distribution of the post-impact velocities of the beads, and can be further
confirmed by the following Figure B8, in which e, is assigned as 0.7, and
the effective coefficient of the whole column, e.fy for N = 20 is near to 0.1,
corresponding to the column with a small bounce.

Table 2. Experimental results during the collision between N
stainless steel beads and a force sensor covered with various
material sheets, for a fixed height of fall A = 2.9 mm.

Material |Thickness| Ng |Tmaz(N =1)|Tmaz(N = Na)
(mm) (ps) (us)
none - 1 17 17
brass 1.2 2 47.5 46
adhesive tape 0.3 4 47.5 112
PVC 1 6+1 67.5 171+ 19
PMMA 1 8+1 69 228 £11
cardboard II 0.5 11+1 191 396 + 21
beech 2 15+1 127.5 468 + 26
cardboard I 0.8 2242 227 743 + 23
rubber 1 28 +4 221 950 + 57

Figure 39: Table 2 in [A2].

9.4 Influence of the mechanical properties of the wall

The mechanical property of the wall will significantly influence the collision
processs as exhibited in [42]. Further investigations can also be found in recent
studies in the physics community (48, @7, [63]. For instance, Job et al [48§]
performed a precise experiment to reflect the dependence of the impulsive wave
on the wall mechanical properties. Similar phenomena are also found in the
experiments by Daraio et al [64].

In [#2], Falcon et al carried out different experiments by setting the column
of beads colliding against the wall with different materials. According to the
output signal from the force sensor they found that the rigidity of the wall will
much influence the collision behavior. For example, experimental results show
that the maximum contact force felt at the wall will depend on the number
N when a soft material sheet is stuck on the sensor. Figure presents the
experimental results (Table 2 in [42]) obtained for the column of beads colliding
against a plane covered with various material sheets.

Since the mechanical parameters for the materials covered in the wall are
not provided in [42], we use the duration for one bead colliding a plane to
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Figure 40: the contact force at the wall with PVC during the collision of a
column with N =1,2,---,16, h = 2.9mm, e, s = 0.92, e5, = 0.7

estimate the contact stiffness between the bead and the plane covered with
various material. According to Hertz theory, the contact time 71 between a
bead dropped from a height h and a plane assumed of infinite mass, can be
approximately expressed as

2
_ Sm \® 15
1 =2.94 <4K1> Vimp (118)

For a bead with mass m = 2.05 x 10~ 3kg falling from a height h = 2.9mm

(Vimp = v2gh = 0.2385m/s), Table 12 presents the values of K7 extracted from
the Timae (N = 1) in Figure BY and expression ([[IJ).

Table 12: The value of the contact stiffness K; estimated from experiments.

Index Material Tmaz () K1 (N/m?/?)
no.

1 steel 17 1.15x1010
2 PVC 67.5 3.67x10%

3 beech 127.5 7.5%x107

4 rubber 221 1.89x107

We can find from Table 12 that the value of K; extracted from the exper-
iment of the stainless steel bead colliding with a stainless steel plane is larger
than the theoretical value (K; = 9.858 x 10°N/m?/?), so it is not possible to
provide a precise comparision for the contact force between our numerical re-
sults and the experimental ones in [42, Figure 13]. At best one can compare
some qualitative features of the collision due to the variation of the material in
the sheet.

Let us first investigate the contact force at the wall covered with PVC (re-
lated to the index 2 in Table 11) by setting a column of beads with various
N free falling from a height ~h = 2.9mm. From Figure B the experimental
phenomena discovered in [42] are well reproduced in our numerical results, in
which the maximum force increases with N at low values of IV, until it becomes
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Figure 41: the contact force at the wall with beech during the collision of a
column of N =1,2,---,16, h = 2.9mm, e; s = 0.92, e5 , = 0.92

independent of IV, finally the contact force will slightly decrease with N like a
damping response.

If the wall is covered with softer material, it is imaginable that the number
N related to the maximum independent force will increase, and the amplitude
among all the maximum forces will decrease due to the small value of the con-
tact stiffness between the bead and the wall. Figures Bl and B2 show the re-
sults obtained from our numerical method for the column of beads with various
N-chains colliding against a wall covered respectively with beech and rubber
materials. The qualitative charateristics discovered in [A2] are well reproduced
even though the values of the contact stiffness K7 are roughly estimated with
possible large errors compared with practical situations.

)
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@

.
)

i
I

-
N

.
1)

Contact force between the bottom ball and the Rubber wall (N)

05 1 15
Time (s) -3

o

Figure 42: the contact force at the wall with rubber during the collision of a
column of N =1,2,---,16, h = 2.9mm, ez s = 0.92, e5, = 0.92

Comments: The impulsive behavior of an alignment of grains held within
boundaries is not only closely related to the classical problem of multiple impacts
in the field of non-smooth dynamics, but also has attracted significant attention
in the physics community due to the rich phenomena that seems to be domi-
nated by a underlying physical law. The method proposed in this paper clearly
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states that the mechanical energy transport in granular medium just depends on
the relative stiffness and the mode of the potential energy accumulation among
various contact points. This may highlight a way of better understanding the
complex phenomena exhibited in granular systems and pave the way to deter-
mine the micro-parameters of the particles that can excite a special behavior of
the global motion that is anticipated to appear in the system.

Based on this algorithm, the local energy loss can be easily taken into ac-
count by using energetical constraints and the information related to the contact
force and the duration of impact could also be extracted from the solutions of the
differential impulsive equations through simple algebraic operations. The com-
parisons between our numerical results and the experimental ones in [{Z] show
good agreement and confirm some conclusions proposed therein.

10 Conclusions

This paper presents a method based on energy constraints to solve multi-impact
problems. Based on the constitutive relationship of contact force/indentation
at contact points and mapping the time variable into a impulse variable to
stretch the integral scale, the evolution of the energy can be mapped into a
velocity-impulse level. Then the properties of the distribution related to the
increments of normal impulses in space are discovered, which are associated
with the relative potential energy and the relative stiffness between various
contact points. Combining the distributing law with the impulsive dynamics,
one can deduce a set of first order nonlinear differential equations with respect
to an independent ”time-like” normal impulse. A guideline for the selection of
the independent normal impulse is presented, in which it is selected as the one
in the contact point taking the maximum value of the potential energy. The
local dissipated energy is described by using an energetical constraint that can
be defined by Stronge’s energetic coefficient. The advantages of this method
are:

e (a) the distribution of the normal impulses can be inserted in the rigid
body model so that wave effects are modelled.

e (b) the kinetic energy that is dissipated locally at the contact points can
be confined by energetic coefficients such that a consistent solution for the
outcomes is calculable.

¢ (c) integrating stiff compliant problems is avoided as the small displace-
ment and large contact force are not needed.

¢ (d) the calculated outcomes are robust w.r.t. uncertainties in the param-
eters (stiffnesses ratios, energetic restitution coeffcients).

e (e) the algorithm is easy to be implemented since the integral process
respects the physical meaning of the multiple impacts dominated by the
primary colliding point.

Experimental and numerical results published elsewhere confirm that the
distribution of kinetic energy in chains of balls and the detachment effect, are
due to the elastic properties of the materials which are responsible for the wave
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effects. Dissipation however influences the dispersion in the chain. The model
in this paper clearly separates dissipation effects (b) and wave effects (a). A
numerical scheme is developed and comparisons with the experimental results
published elsewhere and the numerical results obtained with compliant models,
validate the proposed algorithm. The examples of the Newton’s cradle and
the Bernoulli’s problem illustrate the developments. The investigation related
to the uncertainties of the physical parameters and the compliant model in
a system of a chain colliding against a wall is carried out. The phenomena
discovered experimentally in exsisting literatur [A2] are well reproduced by the
numerical algorithom. This may highlight the way of better understanding the
mechanism for the generation of the solitary wave in granular systems with local
energy dissipation. It is expected that a generalization of the method to the
situation with friction may be implemented and would then significantly enlarge
the scope of applications in multibody systems.
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