
HAL Id: inria-00204118
https://inria.hal.science/inria-00204118

Submitted on 12 Jan 2008

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Safe Aspect-Oriented Programming Support for
Component-Oriented Programming

Nicolas Pessemier, Lionel Seinturier, Thierry Coupaye, Laurence Duchien

To cite this version:
Nicolas Pessemier, Lionel Seinturier, Thierry Coupaye, Laurence Duchien. A Safe Aspect-Oriented
Programming Support for Component-Oriented Programming. ECOOP 2006 - 11th International
Workshop on Component-Oriented Programming, Jul 2006, Nantes, France. �inria-00204118�

https://inria.hal.science/inria-00204118
https://hal.archives-ouvertes.fr

1

A Safe Aspect-Oriented Programming Support for
Component-Oriented Programming

Nicolas Pessemier(1), Lionel Seinturier(1),
Thierry Coupaye(2), Laurence Duchien(1)

(1) INRIA Futurs - LIFL, Project Jacquard/GOAL
59655 Villeneuve d’Ascq, France

(2) France Telecom R&D, 28 chemin du Vieux Chêne,
38243 Meylan, France

{pessemie,seinturi,duchien}@lifl.fr
thierry.coupaye@rd.francetelecom.com

Abstract— In this paper we show that Aspect-Oriented Pro-
gramming (AOP) can be safely supported by Component-
Oriented Programming (COP) by providing a way to control the
openness of a component with regards to AOP techniques. Our
proposal reconciles the intrusive nature of AOP with the ”black
box property” of components in COP. We build a compromise
between modularity and openness applying the open modules
approach to components. The experiment has been achieved
on FAC, our model that unifies the notions of component and
aspect. We show that most of open modules principles are directly
available within our approach, we then study requirements for
others. Once all these principles integrated, we are able to
tune the accessibility of the content of a component to AOP
during system runtime. Thus, components become grey boxes
with dynamic variation points accessible to AOP techniques.

I. I NTRODUCTION

Component-Oriented Programming (COP) proposes to en-
hance object-oriented programming by separating concerns
into clearly defined entities, called components. Reusable
components with contractually specified interfaces are defined
and composed together [13]. Nevertheless, whatever the de-
composition adopted to represent a system, it has been shown
that some concerns are mixed within a same component (code
tangling), and that some concerns are scattered across several
components [3], [6]. These concerns which are called cross-
cutting concerns hinder the reusability, the maintainability, and
the evolvability of applications.

To tackle these issues, some approaches have proposed
a support for Aspect-Oriented Programming (AOP) in
component-based systems [5], [7], [12]. AOP is a well-
known paradigm to overcome this issue by modularizing
crosscutting concerns using aspects [4]. The main issue of
these approaches is that AOP is applied regardless of the
components themselves, the aspects are woven on the objects
which implement the components. This intrusiveness breaks
the encapsulation property of components and consequently
their implicit contracts. This appears to be a major issue in
COP where contracts and encapsulation are fundamentals.

At the object level, solutions have been proposed to over-
come the issue of intrusiveness of AOP. For example, Aldrich
introduced the notion of open modules, a new module system

to open a program to AOP while keeping modularity by hiding
implementation details of the module [1]. A module is defined
as a set of entities which share a set of access points for the
join points (points in the program execution flow where aspects
will apply) exported by the module. Using this module system,
the content of a module can be preserved by designating only
the variation points where aspects can act.

In this paper we propose to push the open modules approach
a step further by applying it to COP. The objective is to provide
a safe way to support AOP in COP by controlling the openness
of a component with regards to AOP. This control over
variation points of a component can be seen as a compromise
between modularity and openness. Our study focus on an
extended component model for components and aspects which
is presented in [10]. Our model, named FAC, unifies COP
and AOP notions together by representing AOP notions as
component ones. We show that when components and aspects
are unified, some open modules properties are directly handled
as first-class entities in our model. We have then extended our
model to handle all open modules properties. A component
can declare its variation points. Since our model is dynamic,
this declaration can evolve at runtime.

The remainder of this paper is organized as follows. Sec-
tion II provides some background on our unified model for
aspects and components and on the open modules approach.
Section III shows how we have applied open modules to FAC.
Finally, Section IV concludes.

II. BACKGROUND

This section provides some background on our previous
work [10] on the unification of AOP and COP, and introduces
the principles of the open modules approach.

A. FAC: An unification of AOP and COP towards COP

Since COP fails in supporting crosscutting concerns [3],
[6], our motivation was to give a support to AOP in COP
but also to take advantage from the strong encapsulation
property of COP in AOP. Therefore, our proposal is built as a
twofold integration of AOP and COP which has the benefit of
representing AOP notions using COP ones. Thus, we introduce

2

three main concepts which are related to the general notionsof
component, binding and composite-component that generally
appear in COP [13].

• An Aspect componentis the representation of an aspect
as a component. It offers as a provided interface a piece
of advice code (the additional behavior to weave on other
components). Basically, an aspect component applies
around incoming and outgoing calls on component in-
terfaces. Because we represent an aspect as a component
we call our approach symmetric. Aspects and components
are components, and can interact together using bindings
(Figure 1 represents an aspect component connected to
other components using various types of bindings). Tradi-
tionally in AOP two dimensions are considered: the base
and the aspect dimension. Aspects are woven on the base
and the base if oblivious of the aspect dimension. In our
approach these two dimensions are unified to facilitate the
interactions between components and aspects and their
evolution.

• An Aspect domain is the representation of the domain
of action of an aspect. It is represented as a composite
component which contains the aspect component and
the components on which it is woven. The notion of
aspect domain can be seen as a reification of the notion
of pointcut in AOP. Usually a pointcut is a description
of a set of join points on which an advice code is
woven. In our model we reify this notion as a first
class entity (a composite-component) which contains the
aspect component woven, and all the components affected
by the aspect component. This clarifies the domain of
impact of an aspect component in a system. This explicit
relationship between advised code and aspects is a notion
currently missing in AOP. Figure 1 gives an example
of the aspect domain of thetransaction Aspect
Component which is woven on componentsC, D and
E.

• An Aspect binding is the representation of the implicit
link which exists between an aspect and a component on
which the aspect is woven. The aspect binding notion
can be seen as a more fine-grained notion than the aspect
domain to capture the interaction between a component
and a particular aspect component. Our philosophy is to
consider only one dimension (aspects are components)
and two types of interactions (regular bindings and as-
pect bindings). Aspect bindings are used to connect an
aspect component with a component. By this way, each
component can locally manage the aspects applied on its
incoming and outgoing interfaces.

We have successfully mapped this general model with its
three notions to the Fractal component model. Fractal [2] is
a reflective and extensible component model, where bindings
can be set and unset dynamically (at runtime); reflection is
available through the use of special kinds of meta-interfaces
called control interfaces.

We have extended this model by introducing our three main
notions. This extension is called Fractal Aspect Component
(FAC for short). We have used the provided notions of

component and composite-component to represent our notions
of aspect component and aspect domain. We have introduced
a new control interface called theweaving interface. This
interface, which appears on each component of the system, is
in charge of setting/unsetting aspect bindings and of weaving
aspect components. It has the benefit of locally managing the
ordering of aspects for a component.

In addition to the advantages mentioned in the description
of our three notions, the mapping onto the Fractal component
model allows setting/unsetting aspect bindings dynamically.
This makes our weaver dynamic and this opens the way to
dynamic adaptation [9].

The complete description of our general model for compo-
nent and aspect and its mapping to the Fractal component
model [2], named FAC is beyond the scope of this paper
and can be found in [10]. The next sub-section introduces the
open modules approach which allows controlling the degree
of openness of a module to AOP.

B. Open modules approach

The concept ofopen moduleshas been introduced by
Aldrich to limit the access to join points of a system, which are
accessed intrusively in AOP. With this approach any exposed
join points has to be declared within a module, a special set of
classes, to be accessed by aspects. Theopen modulesapproach
is defined by Aldrich as follows:”Open Modules describes a
module system that:

• Rule 1 allows external advice to interactions between a
module and the outside world (including external calls to
functions in the interface of a module)

• Rule 2 allows external advice to pointcuts in the interface
of a module

• Rule 3 does not allow external modules to directly advise
internal events within the module, such as calls from
within a module to other functions within the module
(including calls to exported functions).”

We intentionally add rule numbers on items to facilitate the
discussion in the following sections. The complete description
of this module system can be found in [1].

More recently, the concept of open modules has been
applied to AspectJ [8]. In this study, authors have extended
the concept with new interesting features. Most of them are
specifically related to AspectJ in order to support AspectJ
pointcuts. Nevertheless it seems to us that some can be
generalized out of the context of AspectJ. Thus, the most
important feature with regards to our application of open
modules to COP is the ability to open and not only to reduce
the visibility on join points of a module. This can become
extremely useful when using for instance debug aspects, or
when considering dynamic adaptation using AOP. Among new
features provided by this study, an interesting one is the ability
to designate to which a pointcut is exposed to using a pattern
language based on package hierarchy.

To help the discussion of the next section we will call the
ability to designate which aspect has access to a moduleRule
4, and the ability to open a module by exposing join points
Rule 5.

3

c r o s s c u t t i n g c o n c e r n : t r a n s a c t i o n
r e g u l a rb i n d i n gr e g u l a rb i n d i n g

t r a n s a c t i o np o l i c y 1C D E
a s p e c tb i n d i n g t r a n s a c t i o np o l i c y 2

t r a n s a c t i o nA s p e c tC o m p o n e n ta s p e c tb i n d i n g
a s p e c tb i n d i n g

a s p e c t d o m a i nb a s e a r c h i t e c t u r e
A
B

Fig. 1. Aspect binding best practice

III. A PPLYING OPEN MODULES TOFAC

In this section we detail how we have applied the open
modules approach to FAC. Some of the rules defined in open
modules are directly mapped to existing notions of our model
(Section III-A), some others require the introduction of new
features to be correctly managed (Section III-B).

A. Similarities

The first obvious similarity is related to the notion of a
module and a component. A module in the open modules
approach is a collection of classes which share a set of
access points to AOP. A component in COP is a contractually
specified entity which provides and requires services by means
of interfaces. A component is a black box which naturally
hides its implementation details as required byRule 3 of
open modules. Given that in FAC, join points are incoming
and outgoing calls on component interfaces, the definition
remains correct with regards toRule 1, 2 and 3. Rule 1
and 2 are understood in FAC by the fact that an aspect
component only applies to client and server interfaces (Rule
2). Following the definition ofRule 1, an aspect component
interacts between a module (component) and the outside world
(other components).Rule 3 is preserved as soon as we do
not want to break encapsulation in FAC. Join points are not
points inside a component. However, when applying aspect
component behavior on component external interfaces, we may
consider that the original behavior of the component is altered
by the aspect component. Thus, the behavior expected from
a given component may be different. It seems important that
the weaving of aspect component on provided and required
interfaces of a component should be better controlled in order
to provide a safer integration of crosscutting concerns. We
elaborate more on that particular point in Section III-B.

The second similarity is related toRule 4which has been
defined to the particular use of AspectJ but can be also used
within our system. This rule allows to clearly designate which

aspect can apply on a given exported join point of a module.
A regular expression is given as a parameter of theexpose
to declaration which designates a set of packages that are
authorized to access the module. In FAC we have a very
similar notion: the aspect binding. An aspect binding is set
between a component and an aspect component using the
weaving interface of the component. Because the weaving
interface is a kind of meta interface, we can consider that the
access policies defined on components are of the same type of
meta-informations than the ones corresponding to theexpose
to definitions used in the extension of AspectJ supporting
open modules. This means that we can considerRule 4 as
naturally handled by each individual component which are able
to choose the aspect to be impacted by.

At this point we have seen thatRule 1, 2, 3, and 4 are
naturally handled by our model and its mapping to FAC. In the
next section we study the requirements to manage remaining
rule, Rule5.

B. Dissimilarities

We have seen that in our model and in its mapping to Frac-
tal, FAC, the considered join points are incoming and outgoing
calls on component interfaces. Thus,Rule 3 is implicitely
preserved when considering components as modules. However,
this also means that the join points inside the component are
not exposed. The original idea of open modules is to define
some pointcuts and join points and make them available by
means of interfaces of a module. In our case, the content
of a component is implicitly protected, but we still need a
support to give an access to other join points,i.e., join points
inside a component. Nevertheless, associating the level of
implementation of components and the level of interaction
between components (more architectural) takes part in our
global vision of what really means applying AOP to COP that
we have exposed in [9]. The unification of these two levels will
allow us to look inside components and to externalize some

4

v o i d o p e r a t i o n 1 ()v o i d o p e r a t i o n 2 (). . .v o i d o p e r a t i o n 3 ()i n t o p e r a t i o n 4 (). . .
b o o l o p e r a t i o n 5 ()v o i d o p e r a t i o n 6 (). . .b o o l o p e r a t i o n 7 ()v o i d o p e r a t i o n 8 (). . .

o p e n A c c e s s (o p e r a t i o n , i n t e r f a c er e d u c e A c c e s s (o p e r a t i o n , i n t e r f a c eW E A V I N G I N T E R F A C E

C O M P O N E N T = M O D U L E
I N T E R F A C E A
I N T E R F A C E B

I N T E R F A C E C
I N T E R F A C E Di n c o m i n g c a l l s(p r o v i d e d i n t e r f a c e s) O u t g o i n g c a l l s(r e q u i r e d i n t e r f a c e s)

Fig. 2. A conceptual view of Open Modules applied to FAC. A component is a module which controls the access to its provided and required interfaces by
means of the weaving interface. The content of the componentis not exposed to aspects.

join points. We believe that these internal join points must
also be controlled by the weaving interface. Thus, we would
be able to fulfill needs for accessing internal join points, while
preservingRule 3by means of the weaving interface to control
what is accessed or not. This approach has limitations with
regards to legacy components that would not have be able to be
instrumented to support AOP techniques. In our approach, we
only consider a full-fledged component and aspect approach,
where the design of the system follows the same formalism,
the same design model.

The remaining rule (Rule 5) states that the open modules
should not be limited to reducing the access to aspects but
also to opening it. In Section II-A we have defined the
role of the weaving interface as an interface to manage the
setting/unsetting of aspect bindings, the weaving and the
ordering/re-ordering of aspect components. We have extended
the role of this interface to also manage the openness of a com-
ponent to AOP. A conceptual view of the role of the weaving
interface is presented in Figure 2. The weaving interface isable
to prevent the weaving of aspects on a particular operation of
an interface. Because FAC is a fully dynamic framework, these
policies can be changed during runtime. A component can
then be adapted to open or reduce the access to its join points.
Moreover, since we have discussed it in Section III-A, weaving
an aspect component on component external interfaces may
change the expected behavior from other components as soon
as it intercepts communications between interfaces. The idea
of controlling the external join points which are accessible or
not by other components seems interesting even if it was not
originally considered by Aldrich in the first version of open
modules.

IV. CONCLUDING REMARKS

We have seen that AOP and COP can be reconciled on
the particular issue of the intrusive property of AOP versus
the strong encapsulation property of COP. To do so, we have
applied the open modules approach to FAC, a unified model
for components and aspects. Following the open modules

philosophy our approach is able to open a component to
AOP while keeping its content hidden from the outside. This
compromise opens the way to a safe integration of AOP in
COP. It is safe in the sense that the intrusiveness of AOP is
finely managed on each individual component. Moreover in the
case of FAC, we have seen that the openness of a component
to AOP can be managed at runtime, allowing a component to
adapt to unanticipated requirements. Black box components
become grey box components providing variability points
where AOP can access.

This integration of open modules approach to FAC takes
part of our overall vision of applying AOP to COP presented
in [9]. This vision is based on three levels: (1) An architectural
level which is achieved with FAC where aspects notions
are mapped on component ones; (2) A control level where
aspects can be used to inject the control level of components
into the remaining level, (3) the level of implementation of
components. In [11] we show how AOP can be used for (2).
In this paper we present a link between the architectural and
the implementation level: Opening a component to expose
internal join points and then, weaving architectural aspects to
this internal join points (link between (1) and (3)). Our next
step is to make all this three levels work together, allowinga
coherent weaving of aspects whatever the chosen level.

ACKNOWLEDGMENTS

This work was partially funded by France Telecom under
the external research contract number 46 131 097.

REFERENCES

[1] J. Aldrich. Open modules: Modular reasoning about advice. In ECOOP
2005 - Object-Oriented Programming, 19th European Conference, Glas-
gow, UK, July 25-29, 2005, Proceedings, volume 3586, pages 144–168.
Springer, 2005.

[2] E. Bruneton, T. Coupaye, M. Leclercq, V. Quema, and J.-B.Stefani. An
open component model and its support in Java. InProceedings of the
International Symposium on Component-based Software Engineering,
Edinburgh, Scotland, May 2004.

5

[3] F. Duclos, J. Estublier, and P. Morat. Describing and using non
functional aspects in component based applications. InAOSD ’02:
Proceedings of the 1st international conference on Aspect-oriented
software development, pages 65–75, New York, NY, USA, 2002. ACM
Press.

[4] G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten, J. Palm, and W. Gris-
wold. Getting started with AspectJ.Communications of the ACM,
44(10):59–65, 2001.

[5] B. Lagaisse and W. Joosen. Component-based open middleware sup-
porting aspect-oriented software composition. InCBSE, pages 139–154,
2005.

[6] K. Lieberherr, D. Lorenz, and M. Mezini. Programming with Aspectual
Components. Technical Report NU-CCS-99-01, College of Computer
Science, Northeastern University, Boston, MA, March 1999.

[7] M. Mezini and K.Ostermann. Conquering Aspects with Caesar. In
Proceedings of the 2nd International Conference on Aspect-Oriented
Software Development (AOSD’03), pages 90–100. ACM Press, March
2003.

[8] N. Ongkingco, P. Avgustinov, J. Tibble, L. Hendren, O. deMoor, and
G. Sittampalam. Adding Open Modules to Aspectj. InProceedings of the
5nd International Conference on Aspect-Oriented SoftwareDevelopment
(AOSD’03). ACM Press, March 2006.

[9] N. Pessemier, O. Barais, L. Seinturier, T. Coupaye, and L. Duchien. A
three level framework for adapting component-based systems. InSecond
International Workshop on Coordination and Adaptation Techniques for
Software Entities (WCAT05), Glasgow, Scotland, July 2005.

[10] N. Pessemier, L. Seinturier, L. Duchien, and T. Coupaye. A model
for developing component-based and aspect-oriented systems. In Pro-
ceedings of the 5th International Symposium on Software Composition
(SC’06), Lecture Notes in Computer Science. Springer, Mar. 2006.

[11] L. Seinturier, N. Pessemier, L. Duchien, and T. Coupaye. A component
model engineered with components and aspects. InProceedings of the
9th International SIGSOFT Symposium on Component-Based Software
Engineering (CBSE06), Lecture Notes in Computer Science, Stockholm,
Sweden, jun 2006. Springer.

[12] D. Suve, W. Vanderperren, and V. Jonckers. JAsCo: an aspect-oriented
approach tailored for component based software development. In
Proceedings of the 2nd International Conference on Aspect-Oriented
Software Development (AOSD’03), pages 21–29. ACM Press, 2003.

[13] C. Szyperski.Component Software: Beyond Object-Oriented Program-
ming. Addison-Wesley Longman Publishing Co., Inc., 2002.

