
HAL Id: inria-00204484
https://inria.hal.science/inria-00204484

Submitted on 27 Mar 2009

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Modeling of Immediate vs. Delayed Data
Communications: from AADL to UML MARTE

Charles André, Frédéric Mallet, Robert de Simone

To cite this version:
Charles André, Frédéric Mallet, Robert de Simone. Modeling of Immediate vs. Delayed Data Commu-
nications: from AADL to UML MARTE. ECSI Forum on specification & Design Languages (FDL),
ECSI, Sep 2007, Barcelona, Spain. pp.249-254. �inria-00204484�

https://inria.hal.science/inria-00204484
https://hal.archives-ouvertes.fr


Modeling of immediate vs. delayed data communications:
from AADL to UML MARTE

Charles André, Frédéric Mallet, Robert de Simone
I3S, Universit́e de Nice-Sophia Antipolis, CNRS, F-06903 Sophia Antipolis

Aoste Project, I3S/INRIA

E-mail: {candre,fmallet,rs}@sophia.inria.fr

Abstract

The forthcoming OMG UML Profile forModeling
and Analysis of Real-Time Embedded systems (MARTE)
aims, amongst other things, at providing a referential
Time Model subprofile where semantic issues can be
explicitly and formally described. As a full-size exercise
we deal here with the modeling ofimmediateanddelayed
data communications in AADL. It actually reflects an im-
portant issue in RT/E model semantics: a propagation of
immediate communications may result in a combinatorial
loop, with ill-defined behavior; introduction of delays
may introduce races, which have to be controlled. We
describe here the abilities of MARTE in this respect.

I. Introduction

The modeling phase in Real-Time Embedded design
is increasingly required to allow various types of tim-
ing analysis prior to final code production and testing.
AADL [1] and MARTE [2] are two such modeling
formalisms, in part similar in their objectives. They
both allow independent descriptions of the functional
applications and the execution platforms, and the possible
allocation of the former onto the latter. They also allow
the description of both the structural organization of
systems, and to some extent of their dynamic behaviors.

Our belief here is that AADL relies on a number
of assumptions that make the definition of dynamic be-
haviors visibly simple, but largely implicit and informal
(with the risk of ambiguity or misdesign, which various
analysis tools then try to spot and identify). Conversely,
MARTE explicit Time model with powerfullogical time
constraints allows to specify precisely and thoroughly
the scheduling aspects of application elements (which in-
duces a relevant definition apparatus). Multiform logical
time supported by MARTE, is inspired from the theory
of tag systems [3].

AADL applications comprise threads, often of peri-
odic nature (with distinct periods), connected through

event or data parts. Data communications can beim-
mediate or delayed. As can be seen here, the same
model provides structural information (the thread con-
nections) together with a crude abstraction of behaviors
usually needed for schedulability analysis (the relative
speeds of threads). Delayed communications are needed
in particular to break down cycle propagation of data.
They implicitly impose a partial order on how various
threads (and their containing processes) can be exe-
cuted/simulated in a simultaneous step. The issues of
priority inversion involved here are dealt with in [4].
AADL thread modeling thus requires the conjunct of two
MARTE models (one behavioral and one structural), with
the relevant logical clocks defining the relative ordering
of dispatch events for the threads according to the desired
semantics. The operational semantics is now explicit,
and the various protocols (immediate/delayed) can be
constructed in a formal way. This is the topic of the
current paper. The hope is that such construction can then
allow by analytic techniques to prevent non-determinism
and pathological priority inversions to occur, in a way
that is predicted and garanteed rather than monitored by
non-exhaustive model simulations.

II. Background

A. Time in MARTE
The metamodel for time and time-related concepts is

described in the “Time modeling” chapter of the UML
profile for MARTE, soon available at the OMG site. The
time chapter is briefly described in another paper [5].

In MARTE, Time can bephysical, and considered
as continuousor discretized, but it can also belogical,
and related to user-defined clocks. Time may even be
multiform, allowing different times to progress in a
non-uniform fashion, and possibly independently to any
(direct) reference to physical time. Thetime structureis
defined by a set ofclocksand relationson these clocks.
Here clock is not a device used to measure the progress
of physical time. It is a mathematical object lending
itself to formal processing instead. A clock that refers



to physical time is called achronometricclock. A distin-
guished chronometric clock calledidealClk is provided
in the MARTE time library. This clock represents the
“ideal” physical time, used, for instance, in physical and
mechanics laws. At the design level most of the clocks
are logical ones.

The mathematical model for a clock is a 5-tuple
(I, 4,D, λ, u) whereI is a set of instants,4 is an order
relation onI, D is a set of labels,λ : I → D is a
labeling function,u is a symbol, standing for aunit.
For a chronometric clock, the unit can be the SI time
unit s (second) or one of its derived units (ms, us. . . ).
The usual unit for logical clocks istick, but clockCycle,
executionStep . . . may be chosen as well. Since instants
of a clock are fully ordered,(I,≺) is an ordered set.

Clock area priori independent. They become depen-
dent when their instants are linked byinstant relations
imposing eithercoincidencebetween instants (coinci-
dence relation≡) or precedence(precedence relation4).
Clock relationsare a convenient way to impose many—
often infinitely many—instant relations. Examples of
clock relations are given in Section III-B.

A Time Structureis a 4-tuple(C,R,D, λ) whereC is
a set of clocks,R is a relation on

⋃
a,b∈C,a6=b (Ia × Ib),

D is a set of labels,λ : IC → D is a labeling function.
IC is the set of the instants of a time structure.IC is not
simply the union of the sets of instants of all the clocks;
it is the quotient of this set by the coincidence relation
induced by the time structure relations represented byR.
A time structure specifies a poset(IC , 4C).

During a design we introduce several (logical) clocks
that are progressively constrained. This causes strength-
enings of the ordering relation of the application time
structure.

B. AADL inter-thread communications
As a demonstration of the expressiveness of MARTE,

we take as an example the inter-thread data communica-
tion semantics of AADL.

Thread

Component property 

(e.g., frequency, 

subprogram ...)

immediate connection

delayed connection

Legendt1
fd

(a) Immediate (b) Delayed

read_data

t1
fd

read_data

t2
fc

control

t2
fc

control

Fig. 1. AADL inter-thread data communica-
tion.

In AADL, the communications can beimmediate
(Fig. 1a) ordelayed(Fig. 1b). The threads are concur-
rent schedulable units of sequential executions. Several
properties can be assigned to threads, the one of concern
here is thedispatch protocol. We actually consider only
periodic threads, associated with a period and a dead-
line, specified as chronometric time expressions (e.g.,

period=50ms or frequency=20Hz). By default, when the
deadline is not specified it equals the period.

« timedProcessing »
{ on = ^d, start = d }

read_data

« timedProcessing »
{ on = ^c, start = c }

control

« dataStore »
sample

Process

« clock »
t1:Thread

« clock »
t2:Thread

s:SharedVariable

« clockRefine » « clockRefine »« clockRefine »

« clockConstraint »
^t1 alternatesWith^d

« clockConstraint »
^t2 alternatesWith^c

Fig. 2. Application/Execution platform in
MARTE.

III. The explicit modeling of AADL commu-
nication aspects

A. Application and clock refinement
A first difference with AADL is that MARTE dif-

ferentiates the algorithm, which can be represented as an
activity diagram (Fig. 2, upper part), from the underlying
structure, which is modeled here as a composite structure
diagram (Fig. 2, lower part), and that implies a logical
scheduling. Each part has its own causality constraints.
MARTE refinement mechanism, and its associated clock
constraints, allows for expliciting relations amongst the
clocks of both parts. In MARTE, activation conditions of
all application model elements are represented by clocks
identified with the appropriate stereotypes, for instance
TimedProcessing. As a starting point, we consider the
clocks of each element as independent, then the context
(dependencies and refinement) constrains these clocks.
At last, a timing analysis tool may resolve the constraints
to determine a (family of) possible schedules. We strive
to avoid overspecification and keep the model as generic
as possible, adding only required constraints. From the
algorithmic point of view, the actionsread data andcon-
trol areCallBehaviorAction that execute a given behavior
repetitively according to their activation condition (clocks
d̂ and ĉ respectively).

B. Introducing clock constraints
From the structural point of view, the threadst1 andt2

are also associated with clocks (t̂1 and t̂2 respectively).
These clocks, purely logical, represent the dispatches of
the threads. In AADL, the period of a thread is expressed
as a chronometric time expression and therefore, at some
point, we need to establish relations between these clocks
and chronometric clocks. This aspect is addressed in
section III-E, but we need to set up some causality
relations first.

Deciding that a given behavior (i.e., read data) is
executed by a periodic thread (i.e., t1) implies that each



thread dispatch (modeled by clock̂t1) causes and there-
fore precedes a new execution of subprogramread data,
and that this execution must complete before the deadline
(the next dispatch by default). In MARTE, we differen-
tiate atomic behaviors, for which the execution time is
considered negligible as compared to the period, from
non-atomic ones. If we consider the behaviors as atomic,
the association of a behavior with a thread is simply
expressed with the constraint given by Eq. 1. Note that
this constraint is not symmetrical sincet1 may caused,
but not the converse.

t̂1 alternatesWith d̂ (1)

If the execution time is not negligible, each action
can be represented by two events, the start (e.g., ds for
d, cs for c ) and the finish (e.g., df for d, cf for c), and a
duration. In that latter case, we need three constraints
to express that the behaviorread data is repetitively
executed on threadt1 (Eqs. 2–4).

t̂1 alternatesWith d̂s (2)

t̂1 alternatesWith d̂f (3)

d̂s isFasterThan d̂f (4)

The first two constraints express that the behavior
starts and finishes between two consecutive dispatches
of threadt1. The last constraint, which reads clock̂ds is
faster than clockd̂f , specifies that the actionread data
starts before it finishes; it is sufficient to impose that it
finishes within the same cycle of execution.

The next constraint comes from the communication
itself. We use a UML data store to mean that the action
read data can overwrite the existing value (in the object
node) without generating a new token and this very same
value can be read several times by the actioncontrol
(non depleting read). In UML, there must be at least
one writing before any reading (Eq. 5).

d̂[1] precedes ĉ[1] (5)

Let ŵr be the (logical) clock forsignificant writings
in the data store. There could be several consecutive
writings in the datastore before one reading. In that case,
only the last one is considered significant. Letr̂d be
the corresponding (logical) clock forsignificant readings
from the data store. When the same value is read several
times, only the first reading is considered to be signifi-
cant. Furthermore, AADL assumes that communicating
threads must have common dispatches. A simple way
to achieve that is if all threads start their execution at
the same time (they are in phase). The AADL standard
considers three cases:synchronousthreads with the same
period, oversampling(the period of control is evenly
divided by the period ofread data), undersampling(the
period of read data is evenly divided by the period of
control). Let q1 and q2 be natural numbers such that

fd/fc = q1/q2. They represent the relative periods
of read data and control. Section III-F discusses how
to computeq1 and q2 in the general case. When the
threads are synchronous (Eq. 6),q1 = q2 = 1. When
oversampling (Eq. 7),q1 = 1 and q2 > 1. When un-
dersampling (Eq. 8),q1 > 1 andq2 = 1. max(q1, q2) is
called the hyper-period. In Eq. 7 (resp. Eq. 8), the binary
word [6] following the keywordfilteredBy expresses that
each instant oft̂1 (resp. t̂2 ) is synchronous with every
q2th (resp.q1th) instant of t̂2 (resp. t̂1 ).

t̂1 ≡ t̂2 (6)

t̂1 ≡ t̂2 filteredBy (1.0q2−1) (7)

t̂2 ≡ t̂1 filteredBy (1.0q1−1) (8)

Selecting the significant writings and readings consists
in choosing one everyq1th instant ofd̂ (Eq. 9) and one
everyq2th instant ofĉ (Eq. 10).

Additionally, Eq. 11 states that each significant writing
must precede its related significant reading.

ŵr isPeriodicOn d̂ period q1 (9)

r̂d isPeriodicOn ĉ period q2 (10)

ŵr alternatesWith r̂d (11)

We restrict our comparison to the three cases consid-
ered by the AADL standard. However, in subsection III-F
we elaborate on the general case.

We have defined all general constraints. In particu-
lar, note that contrary to Eqs. 7–8, Eqs. 9–10 do not
specify which instant is chosen as a significant writing
or reading. The actual instant depends on the semantics
of the communication. The following two subsections
study the three different cases (synchronous, oversam-
pling, undersampling) with both an immediate and a
delayed communication, each subsection gives stronger
constraints compatible with Eqs. 9–11.

C. Immediate communication

read_data

control

(c) undersampling 

(q1=3, q2=1)

(b) oversampling 

(q1=1, q2=3)
(a) synchronous 

(q1=q2=1)

wr

rd

Fig. 3. Immediate communications.

An immediate communication means that the result
of the sending thread (hereread data) is immediately
available to the receiving thread (herecontrol). When
threads are synchronous (Fig. 3a), this is denoted by
“ ŵr ≡ d̂ ” and “ r̂d ≡ ĉ ”, or more precisely by
“ ŵr ≡ d̂f ”and “ r̂d ≡ ĉs ”. In case of oversampling



(Fig. 3b), the result of the actionread data must be
written in the object node early enough so that thefirst
(for eachq2-long hyper-cycle) execution of the action
control can use it. This is denoted by “̂wr ≡ d̂ ”
and “ r̂d ≡ ĉ filteredBy

(
1.0q2−1

)
”. The latter

constraint is stronger than Eq. 10: it implies it. In case
of undersampling (Fig. 3c), AADL specifies that the
execution of thefirst (for each q1-long hyper-cycle)
execution of the actionread data must complete before
the execution of the action control. This is stated by
“ r̂d ≡ ĉ ” and “ ŵr ≡ d̂ filteredBy

(
1.0q1−1

)
”.

D. Delayed communication

read_data

control

(c) undersampling 

(q1=3, q2=1)
(b) oversampling 

(q1=1, q2=3)

(a) synchronous 

(q1=q2=1)

rd

wr

Fig. 4. Delayed communications.

A delayed communication means the result of the
sending thread is made available only at itsnext dis-
patch while the receiving thread only readsafter its
own dispatch andultimately when the data is required.
The dispatches of the sending and the receiving threads
are not necessarily all synchronous, even if there must
be a synchronization at some point. When the thread
are synchronous (Fig. 4a), the constraint is denoted
by Eqs. 12–13. Note thatδ4 offers the possibility
to delay the actual execution ofread data. The thread
t1 can either be idle or be executing another action
before starting to executeread data. Eq. 12 states that
(∃δ4 ∈ N) (∀k ∈ N

?)
(
ŵr[k] ≡ t̂1[δ4 + k]

)
.

(∃δ4 ∈ N)
(
ŵr ≡ t̂1 filteredBy 0δ4 (1)

)
(12)

r̂d ≡ ĉ (13)

For oversampling (Fig. 4b), the result is available for
the first execution of the action control of thenext q2-
long hyper-cycle. This leaves lots of freedom to schedule
the actionread data anywhere within the current hyper-
cycle. We keep the relation Eq. 12 while Eq. 13 is
replaced by Eq. 14.

r̂d ≡ ĉ filteredBy
(
1.0q2−1

)
(14)

For undersampling (Fig. 4c), the result of thelast
execution (for eachq1-long hyper-cycle) of the action
read data is available for the actioncontrol at thenext
hyper-cycle. This is denoted by combining Eq. 15 with
Eq. 13.

(∃δ4 ∈ N)
(
ŵr ≡ t̂1 filteredBy 0δ4

(
1.0q1−1

))

(15)

Note that the relations are not fully symmetrical. This
is due to the AADL semantics that changes the rule
depending on the kind of communication.

Up to here, we have only defined logical constraints.
In some cases, these constraints are strong enough to get
a total order, and thus a possible schedule, on all instants
belonging to the defined clocks. For instance, in the
delayed synchronous case, whenever the first execution
of read data occurs, the first significant writing occurs
at the very next dispatch. However, in some other cases,
we need additional stronger constraints to get a schedule.
These constraints reflects additional choices that are
mainly implicit in the AADL semantics. Depending on
these choices we get different deterministic schedules.
These cases are studied in the next section.

E. Getting a schedule
Figure 3 shows that for immediate communications,

the constraints given define a total order between instants
of d̂ andĉ in both the synchronous and the oversampling
cases. Combining our constraints we get the same result
analytically. One question remains, it is whether or not
both executions (read data andcontrol) can be performed
within the period of threadt2. If not, there is no possible
schedule, otherwise, the schedule is given by Figure 5,
assuming both threads are executed on the same process.

data control synchronous

0s 0.1s

data control

0s

control control

0.1s

oversampling

data control

0s

data data

0.1s

undersampling (buffer=1)

data

0s

data data

0.1s

undersampling (EDF)control

Fig. 5. Schedules with immediate communi-
cations.

For delayed communications, additional constraints
are required to get a deterministic schedule. Several
criteria can be considered, like for instance, the size of
the buffer used for the communication, or applying a
well-know scheduling policy, like Earliest Deadline First
(EDF).

An apparent easy way to force a total order is to
project the logical clocks onto chronometric clocks.
Logical clocks only give an order amongst instants
(sometimes partial), while chronometric clocks give an
absolute position in time. The use of chronometric clocks
is implied in AADL because of the units used to describe
either the frequency (Hz) or the period (s). In MARTE,
we create models of chronometric clocks by discretizing
idealClk (Sec. II-A). For instance, we create three chrono-
metric clocksc100, c10 and c30 of respective frequency
100Hz, 10Hz and30Hz (Eqs. 16–18). Note that these are
relations, whence the definition of the30Hz-clock from
c10.



Now, we replace the three equations (Eqs. 6–8) by
the three following constraints.̂t1 ≡ t̂2 ≡ c10

(synchronous),̂t1 ≡ c10 andt̂2 ≡ c30 (oversampling),
t̂1 ≡ c30 and t̂2 ≡ c10 (undersampling). The only
additional information we have here is the distance (ex-
pressed in seconds) between two consecutive dispatches.
This information is useful for comparing the duration of
executions with the period of the threads, however it does
not change in any way the causality relations expressed.

c100 ≡ idealClk discretizedBy 0.01 (16)

c10 ≡ c100 filteredBy (1.09) (17)

c10 ≡ c30 filteredBy (1.02) (18)

For the immediate undersampling, we can infer from
the specified constraints that, for each hyper-cycle, the
first execution ofread data must complete before the exe-
cution ofcontrol. However, we cannot decide when to ex-
ecutecontrol relatively to other executions ofread data.
We need another criterion. For instance, we choose to
minimize the actual size of the buffer used for the
communication. To get this buffer as small as possible
(size=1), we have to schedulecontrol before the second
execution ofread data. Were we to schedule according
to an EDF policy we would get another schedule, see
Fig. 5.

For a delayed communication, we just have partial
orders and we need additionnal criteria. For synchronous
threads, the use of an EDF policy is of no help. However,
reducing the size of the communication buffer gives a
schedule (top-most part of Fig. 6). For oversampling,
both criteria are compatible and we get the second
schedule on Fig. 6. For undersampling, we get two
different schedules depending on whether we apply an
EDF policy or we attempt to reduce the buffer size.

data synchronous

0.1s

datacontrol

0.2s

data control

0.1s

control control

0.2s

oversampling (EDF&buffer=1)data

datacontrol

0.1s

data data

0.2s

undersampling (buffer=1)data

data

0.1s

data data

0.2s

undersampling (EDF)data control

Fig. 6. Schedules with delayed communica-
tions.

F. Generalization
We can generalize the constraints to get only two sets

of constraints, one for the immediate communication and
one for the delayed communication.

In this section we do not restrict to the three special
cases addressed in the AADL standard. This generaliza-
tion does not assume that the frequencies of the threads
are natural numbers, it just assumes that they are rational
numbers. It also assumes that in the notation of our

binary wordsY.x0 = Y , for any binary wordY and
any bit x.

Let fd = nr/dr and fc = nc/dc, fd/fc =
(nr ∗ dc) / (nc ∗ dr) with nr, nc, dr, dc ∈ N

?. Let r1 =
nr ∗ dc and r2 = nc ∗ dr. We chooseq1 and q2 such
as q1 = r1/ gcd(r1, r2) andq2 = r2/ gcd(r1, r2). Note,
that we still havefd/fc = q1/q2 and that the constraints
given by Eq. 15 and Eq. 14 are general. However, Eqs.6–
8 are replaced by a single one, Eq. 19.

t̂1 filteredBy
(
1.0q1−1

)
≡ t̂2 filteredBy

(
1.0q2−1

)

(19)
Again, these constraints are purely logical. In the

general case, these constraints are not strong enough
to identify deterministically the significant writings and
readings. If we take for instance, the case whereq1 = 2
and q2 = 5 (Fig. 7). If we apply the AADL semantics,
we can only say that, within an hyper-cycle (of period
lcm(q1, q2)), the first execution ofread data produces
the sample for the firstcontrol, but we cannot know
what sample is used by other executions ofcontrol. In
particular, there is no relation betweent1[2 ∗ n + 1] and
t2[5 ∗ n + 2].

read_data

control

general (q1=2, q2=5), immediate

wr (sample)

rd (sample)

t1[2*n] t1[2*n+1]

t2[5*n] t2[5*n+1] t2[5*n+2] t2[5*n+3] t2[5*n+4]

Fig. 7. General case with immediate com-
munications and purely logical clocks.

To get a deterministic behavior, we need to give more
constraints. For instance we can project our clock to
chronometric clocks and we model as an example the
case wherefd = 10Hz andfc = 25Hz. We proceed by
using the clockc100 defined in Eq. 16 and we add two
new constraints given below.

t̂1 ≡ c10 (20)

t̂2 ≡ c100 filteredBy (1.03) (21)

With such constraints, we get a total order (Fig. 8) and
then there are two possible cases. The first case appears
when duration(read data) + duration(control) ≥
0.02s. Then, we exactly get the result presented in Fig. 8,
where, within an hyper-cycle, the third execution of
control uses the sample computed by the first execu-
tion of read data and the fourth execution ofcontrol
uses the sample computed by the second execution of
read data. In the second case, ifduration(read data)+



duration(control) < 0.02s, the third execution of
control should use the sample computed by the second
execution ofread data. However, note that such systems
that very much depend on the exact duration of tasks are
not very robust.

read_data

control

wr (sample)

rd (sample)

0s 0.1s

0s 0.04s 0.08s 0.12s 0.16s

0.2s

0.2s

Fig. 8. General case with immediate com-
munications and chronometric clocks.

If we now take a look at the situation with a delayed
communication, there are several possible interpretations
of a generalized AADL semantics. The simplest interpre-
tation is that the data is made available (written in the
object node) at the first dispatch (of the sending thread)
following the execution of the behavior that has produced
it (read data). And the data is read at the first dispatch
of the receiving thread following the writing (see Fig. 9).

read_data

control

wr (sample)

rd (sample)

0.2s 0.3s

0.2s 0.24s 0.28s 0.32s 0.36s

0.4s

0.4s

Fig. 9. General case with delayed communi-
cations (first interpretation).

A second interpretation could be that the data is read
at the first dispatch of the receiving thread following
the actual production of the data (not waiting for the
following dispatch of the sending thread). This inter-
pretation leads to make the second significant reading
synchronous the third instant ofcontrol (for each hyper-
cycle) instead of the fourth as in Figure 9. These cases
are studied in detail in [5]. Note these two interpretations
can all be valid and deterministic. It is just a matter of
making explicit the semantics. The first interpretation is
very simple to implement and the second one requires to
be able to control very tighly the communication times.

A UML object node has two interesting attributes: it
has an upper bound, possibly unlimited, and it can order
events, by default according to a FIFO policy. Thus, there
is no reason to assume that the threads are in phase, the
sending thread writes (and possibly overwrites) tokens
in the object node, while the receiving thread reads them
when required. Our definition of the significant writings

and readings helps defining when the token is the same—
the content must be ovewritten—and when the token is
different, which implies that a new token must be created.
Actually, the occurrence of̂wr should create a new token.

IV. Conclusion

We have briefly introduced the Time model of
MARTE and we have illustrated its use on an example
taken from AADL. We think that our clock constraint
language could be used to make formal the semantics of
UML-like graphical representations that is often partially
implicit. In this language, we borrowed some notations
on binary words from the N-synchronous approach but
in our case we do not limit ourself to synchronous
relations. We have implemented a constraint parser that
has been made available with the XMI of the Time
subprofile on the OMG website. This parser can be used
to parse constraints extracted from UML models. Some
analytic tools should reduce the constraints or compute
new ones and put them back in the models. For now,
all these formal computations are manual but we intend
to transform our constraints into languages amenable to
clock computations (time automata or synchronous lan-
guages like Signal or Esterel). Ultimately, our constraint
language could be used to drive a UML simulator, in a
constructive way, according to the model time semantics
rather than an untimed event-driven semantics.

References

[1] S. Standards,SAE Architecture Analysis and Design Language
(AADL), June 2006, document number: AS5506/1. [Online].
Available: http://www.sae.org/technical/standards/AS5506/1

[2] OMG, UML profile for Modeling and Analysis of Real-Time and
Embedded systems (MARTE), Request for proposals, February
2005, oMG document number: realtime/2005-02-06.

[3] E. A. Lee and A. L. Sangiovanni-Vincentelli, “A framework
for comparing models of computation,”IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems,
vol. 17, no. 12, pp. 1217–1229, December 1998.

[4] P. H. Feiler, D. P. Gluch, J. J. Hudak, and B. A.
Lewis, “Embedded System Architecture Analysis using
SAE AADL,” Carnegie Mellon University, Tech. Rep.
CMU/SEI-2004-TN-005, June 2004. [Online]. Available:
//www.sei.cmu.edu/pub/documents/04.reports/pdf/04tn005.pdf

[5] C. André, F. Mallet, and R. de Simone, “Modeling time(s),” in
MoDELS 2007, October 2007.

[6] A. Cohen, M. Duranton, C. Eisenbeis, C. Pagetti, F. Plateau,
and M. Pouzet, “N-synchronous kahn networks,” inPOPL 2006,
January 2006.


