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Abstract—Most of present work for autonomous navigation ~methods however, rely on a complete knowledge of the static

in dynamic environment doesn't take into account the dynamics  and dynamic environment and a deterministic representatio
of the obstacles or the limits of the perception system. To face of the world

these problems we applied the Probabilistic Velocity Obstacle ) . .
(PV O) approach [1] to a dynamic occupancy grid. The paper In this paper we propose a reactive obstacle avoidance based

presents a method to estimate the probability of collision where 0N & probabilistic framework such to make the connection
uncertainty in position, shape and velocity of the obstacles, between the perception and the navigation system of the
occlusions and limited sensor range contribute directly to the rgbot. In [1], the Probabilistic Velocity Obstacle apprbac
_computation. A simple navigation algo_rithm is_ then presented (PVO) has been proposed as an extension of the VOs to
in order to apply the method to collision avoidance and goal the case of uncertain estimation of velocity and of the
driven control. Simulation results show that the robot is able . X . ; .
to adapt its behaviour to the level of available knowledge and radius of circular obstacles. We combined this method with
navigate safely among obstacles with a constant linear velocity. the dynamic occupancy grid provided by a general sensor
Extensions to non-linear, non-constant velocities are proposed. system. The hypotheses on the robot and obstacle shape are
removed. The sensors provide a probabilistic estimation of
i . i ) the occupied and free space around the robot and of the
Mobile robots navigation in dynamic environments repy,e|ocity with which the objects are moving; the observagion
resents still a challenge for' rgal world apphcaﬂon_s. Th%pdate a 4D probabilistic occupancy grid (space and veloc-
robot should be able to gain its goal position navigatingyy 113); the probability of collision in time is estimatefor
safely among moving people or vehicles, facing the impliciby ey yeachable velocity of the robot. A simple navigation
uncerta!nty of the surrounding world and the limits of 'tsalgorithm is also proposed in order to apply the best control
perception system. L with respect to safety issues and convergence to the goal.
The problem of autonomous navigation has been deepliy jation results show how the developed algorithm takes
studied in literature and several techniques have been dgroqqy into account limited range and occlusions, uraiart
veloped. The global approaches (path planning algorithmgkyimation of velocity and position of the obstacles, alfay
compute a complete path from the robot actual position e rohot to navigate safely toward the goal and to modify
the goal [2]. In the case of moving obstacles, a COMMORs hehaviour according to the quality of its perception.
technique is to add the time d|m¢n5|on to the stgte SPagfe paper is structured as follows: in Section Il the Bayesia
and reduce the problem to a static one [3]. Also if globahc nancy Filter (BOF) and the Velocity Obstacle frame-
methods can provide optimal solutions, their major drawbaGy o are recalled and discussed: in Section Iil the develope
is that they assume a complete and deterministic knowledgg o is described in detail. In Section IV simulation re

of the environment: in practical applications they are Ugua ¢ its are shown and discussed. Section V closes the document
combined with local methods in order to avoid unexpectegii, remarks and purposes for future activities.

obstacles [4], [5]. These last ones, also called reactive
methods, generate just the next input control: they use only
the nearest portion of the environment and update the world

model according to the current sensor observation. Most of +1,o method here developed combines two existing frame-
the developed techniques, as the Dynamic window approagh s: the Bayesian Occupancy Filter [14] and the Lin-
[4], [6], the curvature velocity [7] and the lane curvalur€y,y vielocity Obstacles [9]. The Bayesian Occupancy Filter
method [8]. don't take mto.acc.ount the dynamic mformaﬂorkBOF) is a dynamic occupancy grid where an estimation of
of the environment, considering all the obstacles as statigocity is stored as well as the probability of occupation.
ones. On the other side, the Velocity Obstacles approa@ynqor gpservations are processed from the BOF and the
[9], [10], the Inevitable Collision States concept [11] andegiting grid is given as input to the obstacle avoidance
[12] use a deterministic kngv_vledge about the velocity of. th%lgorithm. The following paragraphs recall respectivedg t
obstacles to compute collision-free controls. All the dite g algorithm and the Linear Velocity Obstacles approach.

Fulgenzi Chiara is supported by a grant from the European Carnu  Paragraph [1-C discusses the advantages of the combination
under the Marie-Curie project VISITOR MEST-CT-2004-00827 of the two methods.

I. INTRODUCTION

Il. RELATED WORKS



(b)

Fig. 1. Simulated detection of two cars crossing each otl{@)sSimulated environment : the robot equipped with a lasegeander detects a car
moving from left to right and a second car moving from right tfi.|éb) Dynamic occupancy grid: red is high, blue is low prottiabof occupation. The
space behind the cars has low probability of occupationC(ajtering: different colours characterise objects andunted or free space.

A. The Bayesian Occupancy lter (BOF) model. For each celt = [i;j ] and for each value of
o ] velocity v, = [di; dj ], an antecedent cell is considered
Probabilistic occupancy grids are well known structures - ¢ () = [i di:;j dj]. Under the hypothesis that

used for environmental representation. The space is divide each cell is independent, the predicted occupation of
in a nite number of cells, each representing a position in each cell is computed as follows:

the 2D plane(X;Y), X = [{lY = [ 1], whereq is the X
discretization step. The estimation of the state of theesyst Pe(Oco) = Pe,(m(0c9 Pe,ny(va) (1)
x(t) at timet is the list of the states of all the cells of n

the grid: Occ when the cell is occupied dEmp if the
correspondent space is free. Given a probabilistic sensor
model P (z(t)jx(t)) wherez(t) is the current observation,

the grid is updated following the Bayes rule. Under the hy- 3)
pothesis that each cell of the grid is statistically indegfeet

from its neighbourhood, each cell state estimation is wgutlat

The predicted probability distribution function of ve-
locity of a cell ¢ is obtained by a normalisation over

all velocity probability values? (v,) of eachc,(n);
Sensor data are acquired and an observed occupation
grid is built according to the probabilistic observation
model;

independentl_y [15]. . 4) The grid is updated following the Bayes rule:
If some moving obstacles is present, the precedent steictur
is not sufcient to describe the state of the environment P.(Ocqz(t)) /I Pe(z(t)jOce P(Oco) 2)

and it is necessary to introduce a description of velocity

and a dynamical model. To perform an estimation, the 5) The grid is searched for clusters: rst the 4-connection
state of the grid is rstly modi ed according the dynamical recursive algorithm is applied, than each cluster is
model (prediction step) and then compared with the acquired ~ checked for coherent velocity pro les. In case of two or
observation (updating step). These ideas are at the basis of more groups of cells with coherent velocity, the cluster
the Bayesian Occupancy Filter [13]. Each cell maintains not is divided again. Each cell is given a cluster index and a
only an estimation of its occupation probability, but also velocity pro le for each cluster is calculated according
a discretized representation of the probabilistic distitn to the estimation of each cell;

function (pdf) over velocities. A minimum and maximum ©6) Back to step 2.

velocity value is considered for eventual objects in thecepa For further details the interested reader may refere to the
so that the pdf is given by a nite histogram over velocityoriginal papers [14]. Fig. 1(a) shows a simulated environ-
valuesv, with n = 1::N. The discrete approximation is ment: the cycab is equipped with a laser range nder and
performed according to the spatial and time discretizatiomperceives two cars: the nearest moving from left to right
given the time step, only integer velocities in terms f and another just behind, moving from right to left. Fig.
are taken under consideration, in order to perform fast angb) shows the dynamic occupancy grid computed: red stays
rigorous prediction and updating steps. Here we presentfg high probability of occupation, while blue is for low
brief scheme of the algorithm: probability. Fig. 1(c) shows the clusters found on the grid,

1) At the beginning of the estimation, the occupancyrreéspondent to the two cars.
grid is initialised with the prior knowledge of the
environment: if no knowledge is available all the cells~
are initialised with a 0.5 probability of occupation and Here we describe the classical approach to VO in terms
a uniform distribution over velocities; that could help the understanding of the cell-to-cell appm

2) A prediction step is performed according to the statéhe original algorithm has been introduced by Fiorini and
of the environment and a constant velocity dynamicabhiller in [9].

Linear Velocity Obstacle



predict the future state of the system with some level of
condence. Many approaches use a list of objects and
corresponding tracks and velocities which are considered a
_ priori known or are learned in an off-line phase. The major
drawback of these methods is that they are suitable only
/ v in industrial controlled environments, where a deterntitis

r ' r ' and complete knowledge on other agents is available. A
Fig. 2. Collision Cone for a punctual robot and a circulartable with second ,C,Iass of metho,ds rely on an _On_lme estimation of
linear velocityvo; v; is in collision. the position and velocity of each object. These methods

lie in general on a multi-target tracking algorithm and a
data association technique which can encounter problems in
Lets consider a punctual robetin [x; :y;] free to move cluttered environments and do not face the uncertainty due

in the 2D plane, and an obstaabeof arbitrary shape, with to the unobserved space. The advantage of considering a

centre in[xo; Y] and constant linear velocity, . With this dynamic occupancy grid is that the robot maintains a full
de nition of the robot, the con guration space ( i.e the Probabilistic information about the present occupatiotthef

space where each point corresponds to a con guration of tRace and an estimation of the velocity of each occupied

robot and obstacles correspond to con gurations in calfi}i cell in the spatial grid. The ab;ence of high Ieyel _models
is equivalent to the Euclidean space. The velocity space rigakes the robot able to cope with unexpected situations and

de ned as the con guration space where linear velocities arpreviously unknown obstacles. Furthermore, observations

described by vectors attached to the centre of objects. T 8ming from different sensors can be directly integrate!ed in
idea is to work directly in this space and determine the set & ebglrldk; so that the method is easy adaptable 1o different
all linear velocities that lead the robot to a collision inute ~ MOPNE Dases.

time (Velocity Obstacle). Let's then de ne the Collision @® The cell-to-cell approach to the linear velocity ob_stagles
CC,, of the robotr relative to the obstacle as the set of allows to reduce the hypothesis of the method, taking into

all relative velocities® = (v, Vo) that leads the robot in consideration robot and obstacles of whatever shape and
collision with o in futurre time: whatever discretized approximation of uncertainty in posi
n

0 and velocity of the obstacles. In contrast with the worsecas
CCro = VOjOt> O;(x + v? ity + v!?j t)y2o0 approaches [16], the non observed space contributes Igirect
| | (3) to the computation of the probability of collision, leaditwg
where i and j are the unity vectors ok andy a full probabilistic framework.
directions, respectively.

The CC,, is the positive angle with vertex ifx;;y,)
and rays the right and left tangent to object To know if a
velocity v, is in collision with the obstacle it is suf cient In this section we explain in detail the developed al-
to consider the relative vecto® = (v,  V,) and to verify gorithm. Paragraph Ill-A describes the generalisation of
if it points in the CC,, , i.e. check if the extension of the velocity obstacles to the cell-to-cell approach. Pardgrap
vector in the positive direction intercepts the obstacle. [1I-B explains how the probability of collision in time is

The velocity obstaclé/ O, is obtained translatin@C,,  computed. Paragraph IlI-C, nally, details how the control
by the obstacle velocity, : all and only the velocitiesr,  input is chosen for the obstacle avoidance.
pointing outside the cone are collision free. If more than
one obstacle is present in the environment, it is suf cient tA- Cell-to-cell approach

IIl. THE DISCRETE PROBABILISTIC VELOCITY
OBSTACLES

consider the union of each velocity obstacle [9] : The VO approach explained in the previous section is
[ a geometric method that determines if a linear velocity

VO = V O, (4) leads the robot to a collision in the future. In order to
k=1 K generalise the method for a probabilistic approach and to

If the robot is circular with centre irfx;;y;) , the corre- the input provided by an occupancy grid, we developed a
sponding con guration space is given by a punctual robdell-to-cell approach. In this paragraph we make reference
in (x;;y;) and all the obstacles enlarged by the radiuf¥ @ deterministic representation: the occupation of cells
of the robot. Under the hypothesis of circular robot angonsidered is?(Ocq = f0;1g and the velocity is a priori
obstacles, uncertainty in radius and in velocity can bertak&NOwWn: Pc(Vo) = 1;Pc(vn) =0 8n 6 o. The grid is relative

into account [1]. to the robot.
_ _ Lets consider the robot and the obstacles as clusters of
C. Discussion on the chosen methods occupied cells. The velocities we study for the robot are

To perform a safe navigation in a unknown or partiallyinteger linear velocities, = [i 4;j 9] wherei;j 2 N
known dynamic environment, the mobile robot has to rely The search space is reduced to the velocities reachable
on a feasible representation of the world constantly ugbatevithin the next time step: dynamic and kinematic constgaint
according to the sensor observations and that allows & a maximum acceleration value and a maximum and



minimum velocity in each direction are speci ed. Followingestimation of its state:
the framework detailed in the previous section, a velocity g value of probability of occupatioR (Occ) ;

( ir; Jr) leads the robot to a collision if it belongs to  a probabilistic distribution function on a histogram of
at least one of the/ O, , between one of the points of possible velocitied® (vn), n = 1::N;

the robotp, and an occupied cell of the grid,. Given an indexk = 1:0;::::K +1 , whereK is the

[ io; Jo] the velocity of an obstacle in the space, and  estimated number of obstacles in the space (clusters of
[ i; j] an admissible velocity of the robot, each relative  the grid); cells considered as free are giveh index,
velocity ( % 9)=( i io; | jo) is considered. cells occluded or not reached by the sensor range are
Reasoning in the velocity space, this velocity correspdads given index0; cells indicating the robot are given index
the vector attached to. =[x, ;y,] pointing[x, + %y, + K +1.

31. As shown in Fig. 3(a), this velocity belongs to thegjen a robot velocity, and an obstacle velocitys, the
VO relative top, iff there is at least an occupied cell with probability of collision of a cellr with a cell o in the

velocity ( io; o) in the positive direction of the extension SO(vyo: ) is:
of the velocity vector. ’

Peoil (Vi ; V1) = Po(OcQ Po(Vn) )]
- = as P, (Ocg = 1. Considering the whole robot dimension,
) ) the maximum probability of collision in the intervil 1;t]
. - is kept for each objedt :
‘ > Peonl (Vr;K;vn) = max Po(Occ) Po(vn) (ko) (6)
7/ & N, 020
/ Y /. '
: 74 : “/ RN whereo is each cell inNSO;(v;o;r) and (ko) =1 if kg = Kk,
" 2 3 4 5 6 7 8 8 10 W2 3« 5 s 1 8 DT O Otherw|se'
(@) (b) To compute the probability of collisioPeqy (Vi) of the

Fa 3 G i hed for abstacles: black ceth - absolute velocity at time instant all the possible velocities

Algp.oir;t of the oDt and e e ?és‘:)eit?\fe‘f;’Coﬁsﬁdecre@;;aacﬁg'?b)' of obstacles have to be considered. This value is computed

image. The arrow is the considered relative velocity while tad dotted as follows: for collisions with the same obstadke the

lines delimit searching areas for different times to collisio probability is given by the sum of the probability of each
velocity, asP (vijv;) =0 for eachi;j =1::N andi 6 j:

To consider all the points in the robot-cell centred in
(Xr;yr ) we have to check all the cells which fall (also
partially) between the two parallel lines tangent to thescel = Peoll (k) (Vr ; Vn) (7)
centred respectively inx(;y,) and & + %y, + §) n= N
in the positive direction. This region is the search obstaclif the collisions considered are due to different obstadles
region of velocity v relative to cell r and we denote it total probability is given b))é:

SO(v?%;r). To compute the probability of collision of the

relati\;e velocity at a given time instantin the future, we Peon (vr) = 1 @ Peai oy (V1)) (®)
consider the se80;(v?;r) that should be traversed by the KoL

robot in the intervalt  1;t]. The considered velocity is in Both equations 7 and 8 are presented and used in the PVO
collision if for at least one of the cell of the robot it is fodin approach [1].

one occupied cell with velocity (io; jo) . It is possible to A cumulative probability of collision from timé to the
introduce some simpli cation. For each velocity : time stept under investigation is recursively computed.

It is suf cient to consider just the 4-connected cells orf*PPIYiNg & velocityv; from present td leads to a collision
the contour of the robot. where collisions occur rst. T there is a collision in the intervgD;t 1] or if there is a

We can consider just the last contour cells in the velocitg©!lision at time instant:
direction. . PO:::t (Vr) = P0:::t l(Vr) + (1 P0::t l(Vr )) Pt (Vr) (9)
For what concerns the number of velocities to study, the ]
search space is reduced to the velocities that can be reacHé! the hypothesis thacor, 0 = 0. B
within the next time step. This dynamic window is centred9- 4 shows how the computation of the probability of
around the actual velocity of the robot and is limited by:olllsmn in time re ects the uncertain information abobet
the maximum acceleration that the motors can exert arffvironment. We simulated the input that could be provided

eventually the maximum allowed velocity in function of theby & distance sensor as a laser range nder or a radar. A
direction. maximum range oP0 qis considered. Since we are working

- o with a probabilistic representation, each cell has in gairer

B. Compute the probability of collision positive probability of occupation: the free space scarimed

As detailed in Section II-A, the environment is representethe sensor is characterised by a probability of occupatiah t
by a dynamic occupancy grid. Each cell stores a probalgilistis nearly0 while not sensed environment hBgOcc) = 0 :5.

Peot (k) (Vr) = Pg{)ll(k)(vr;vl)_:::_Pcoll(k)(vr;VN)
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Fig. 4. (a) Simulated occupancy grid: the robot in the centnegives free space all around, with limited range. (b) Thbgbility of collision for each
velocity of the robot considering T=2, (c) T=4, and (d) T=5.

For what concerns velocities, on each cell we will have a pdf T (V) <= Tsate (V), the velocity is considered danger-
more and more extended as the prediction is less reliableus and discarded, otherwise it'll be considered safe eémoug
in this example, free cells present uniform distributioreiov to be applied.

velocities invy = [ 3;3], vy =[ 3;3]. Cells that fall out For each time step, the admissible velocities of the robot
of the grid are giverP,(Occ) = 0:5 and a uniform pdf over are computed taking into account its kinematic and dynamic
velocities. Fig. 4(a) represents an occupancy grid whege tltonstraints. For each velocity, the next robot position and
robot, in the centre, observes the free space around. Theading are computed, so to calculate a utility value and
collision probability has been studied for velocities o€ th lead the robot toward the goal:

robot in the intervalvy, = [ 10;10], vy = [ 10;10] Fig. , ) )

4(b), (c) and (d) are plots of the computed values respdgtive U(v) = 1 H{dist(Robot; Goal; (12)
for T=2;T =4 andT =5 time steps. The probability |n the simple case, the functiatist(Robot; Goal; V) is just

of collision is bigger for bigger velocities in each direxti the Euclidean distance between the future robot positiah an
and it grows with the time of application: also if the robotthe goal location; in presence of local minima however, or if
stands still ¥x = vy = 0) the probability of collision grows some different optimisation parameter is considered, farif
with time as the hypothesis that some unseen obstacle cogi distance function could be de ned in a previous phase of
go toward the robot is considered. Also in the case of nfotion planning. The velocity with the maximum utility is
obstacles in the space, the robot will not move too fast if itsonsidered rst.Tsare (V) and Teon (V) are computed. If the
perception is limited to a short range or some portion of thgelocity is found to be safe enough it is chosen as the next

space is occluded. control for the robot, otherwise it is discarded. The altjoni
) ) is iterated until a safe velocity is found. The chosen cdntro
C. Choice of the control input is then applied and the algorithm is iterated. If none of the

In the dynamic and probabilistic case, the navigation okdmissible velocities is safe enough, the robot performs an
the mobile robot has to attend two major issues: minimisemergency braking manoeuvre, i.e. reduces at minimum the
the risk of collision and reach the goal position. The methothodule of its velocity.
described in the previous section gives us a tool to compute IV. SIMULATION RESULTS
the probability of collision in time for each admissibledar |
velocity of the robot, but it is not enough to perform safe e implemented the algorithm in a Matlab application and
navigation. We consider the robot safe if it can stop befortested it in various simulated environments. The following
running into a collision. This means a velocity can be paragraphs show and discuss the obstacle avoidance gtrateg

applied for an interval if the robot will not run into collision N two scenarios and at the variation of the perception
up to: capabilities of the robot.

Tsate (V) =+ Tprake (V) (10) A. Occlusion

where Torake (V) is the minimum time to stop applying the This experime_nt shows how the occlusion i.n uences thg
maximum negative linear acceleration. To have an estimati¢oPot strategy. Fig. 5(a) shows the complete simulated-envi
of the time to collision a threshold of probability of coliss ~ fonment: the robot is the circle at the bottom and has to go
is a priori chosen. This threshold de nes the maximum risklP toward the goal. The initial velocity of the robot is 0. A
we want to keep while navigating and we calPifye . We  Circular obstacle is moving in the d_|rect|on.W|_th velocnyl

call Tpreq, the interval of time for which the hypothesis of Vv = 3. The robot can't steer and its admissible velocities
constant motion models is reliable. For a given velosity &€V« =0,0 vy 5 amaximum acceleration & q per

the probability of collision is recursively computed foroea IMe step in they dlre_ct|on is cons_ldered. The velc_>cmes_that
time stept; when Py 02t (V) > Psare then the time of Can be represented in the dynamic occupancy grid are integer

collision is estimated as the minimum betweteand Tyeq:  Values inthe interval, =[ 44 vy =[  4;4]; a maximum
time of prediction is xed aT = 5 and the probability

Teon (V) = min (Tpred ; tj Peoli; 0:t (V) > P sate ;) (11) threshold is xed at0:1. Two different sensor input are



@) (b) (©)

Fig. 5. The robot has to move up to the goal, while an obstacieeso S0 20 0 40 50 60
from the left. (a) A perfect knowledge of the world is simuttéb) the €)) (b)

robot accelerates and passes before the obstacle, redbkiggal (c). . ) ) )
Fig. 7. (a) The robot is the circle at the bottom. It faces a snuesd with

two obstacles moving in opposite direction. The goal locai®the point
at the top of the image. (b) Input occupancy grid in case of éthitange:

. . . . . entering the crossing, the robot doesn't see the moving clesten the left.
simulated: in the rst case (Fig. 5) the input grid represent 9 9 9

the whole environment: the velocity of the obstacle is known

with certainty and there are not occluded zones. The robot

perceives the moving obstacle and knows its Ve|ocity, SO ﬁre not occluded zones. In this case the robot performs the
can safely accelerate at maximum speed and reaches the gi¥tacle avoidance passing near the obstacles and reaching

passing before the obstacle (Fig. 5(b), (c)). In the secorfie goal with a short trajectory: it deviates from the sthaig
line just to avoid the obstacle coming from the right. In

the second experiment (Fig. 8(b)) a Gaussian uncertainty on

obstacles velocity is simulated. The medium value is the rea
| velocity value, while the standard deviation is= 1:5 gq=.

(@i Since the beginning the robot tries to keep its trajectory
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* m= = further away from obstacles; the path results longer as the
" robot performs wider curves to avoid collisions. In the dhir
o % m e w % e s o experiment (Fig. 8(c)) a distance sensor input is simulated
(a) (b) (©) The visible distance is limited by a short ran@®(qg) and

Fig. 6. (a) Occupancy grid in the case of occlusion: the rabott observe the occluded zones hl,de obstacles and, their shape (Fig. 7(b)
the moving obstacle. (b) The robot maintains a low speed appigthe The obstacles velocities are known with the same Gaussian
static obstacle and brakes when it sees the moving one gétrass before uncertainty of the second experiment. The robot goes slower
reaching the goal (c). as it approaches the crossing it still doesn't see the olestac

on the left and enters the crossing; when it perceives the
experiment (Fig. 6) a distance sensor is simulated: theestapbstacles it is forced to escape from it and reaches the goal
obstacle hides the moving one. The robot maintains a low@ply after waiting the right obstacle to leave the crossinig.
speed as the probability of collision given by the occludeffowever able to reach the goal and, more important, it relacte
space forbids higher speeds. The robot arrives later at tR@propriately to the unexpected obstacle. Tests with arlowe
crossing and brakes to let the obstacle pass (Fig. 6(b)n Theange cause the robot to perform an emergency manoeuvre
the robot passes also and reaches the goal (Fig. 6(c)). (brake and stop) before facing the crossing.

B. Crossroad

In this example the robot faces a crossing. Fig. 7 shows the "
complete simulated environment: the robot is the circléat t i
bottom and has a positive velocity in tlyedirection. Static MR
obstacles delimit the environment and two other obstacles, “
respectively at the right and left of the image move toward
the centre of the crossing. The robot goal location is on the
upper part of the crossing. The admissible velocities fer th
robot are 5 vy 50 vy 5 and an admissible
acceleration oR q per time step in botlx andy direction Fig. 8. The robot trajectory with (a) precise estimation oftables
is considered. As in the previous paragraph, the velocitieslocities; (b) Gaussian uncertainty on obstacles veszit(c) Gaussian
that can be represented in the dynamic occupancy grid df&ertainty and limited visibility range.
integer values in the interval, = [ 4,4], vy = [ 4;4];

a maximum time of prediction is xed & = 5 and the

probability threshold is xed aD:1. In the rst experiment V. CONCLUSIONS AND FUTURE WORK

(Fig. 8(a)) the input grid represents the whole environment In this paper we proposed a method to compute the prob-
the velocity of the obstacles is known with certainty ande¢he ability of collision in time for linear velocities of the raip
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and a reactive algorithm to perform obstacle avoidance in4]
dynamic uncertain environment. The novelty of the method
consists in the explicit consideration of uncertainty i th
perception system, rising both from the errors and noise ins]
the model of the environment and from occlusions, sensor
range, noise and failures. The input to the algorithm is an
occupancy grid, it is highly reactive to the environmental [6]
changes and is well suited to be applied in various sensor
settings. The developed algorithm computes a probabdity t 7]
collision in time working directly in the velocity space. &h
dynamic and kinematic constraints of the robot are so taken
into account and the study is reduced to the current reaehab[
velocities. The case of holonome robot and linear constant
motion of the obstacles has been analysed in this papel]
future work will deal with the generalisation of the method
following the Non Linear Velocity Obstacle approach [10],[10]
[17]. For what concerns the navigation algorithm, the simu-
lation results show that the robot is able to navigate amorjg
static and moving obstacles facing unexpected situatinds a
moving toward the goal. The robot adapts its behaviour t[ciz]
the quality of information received and modi es its trajet
according to the incomplete and uncertain perception of the
environment. However, due to the reactive nature of th@3l
algorithm and to the limited knowledge of the environment,
there is no guarantee that the robot achieves the goal or that
it doesn't put itself in emergency conditions that could édnav
been avoided. In order to achieve a better performance, \Hél]
plan then to integrate the information of the probabilitydan
time to collision in a motion planning algorithm able to face
more complex scenarios, combining a priori knowledge an[&sl
on-line perception, and to test the method on a real mobifes]
base (Cycab [18]).
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