N

N

Separation Logic Contracts for a Java-like Language
with Fork/Join

Christian Haack, Clément Hurlin

» To cite this version:

Christian Haack, Clément Hurlin. Separation Logic Contracts for a Java-like Language with Fork/Join.
[Technical Report] RR-6430, INRIA. 2008, pp.101. inria-00218114v4

HAL 1d: inria-00218114
https://inria.hal.science/inria-00218114v4
Submitted on 27 Feb 2008

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

https://inria.hal.science/inria-00218114v4
https://hal.archives-ouvertes.fr

ZIINRIA

INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET EN AUTOMATIQUE

Separation Logic Contracts for a Java-like Language
with Fork/Join

Christian Haack — Clément Hurlin

N° 6430 — version 2

initial version Janvier 2008 — revised version Mars 2008

Théme SYM

apport

technique

ISRN INRIA/RT--6430--FR+ENG

SN 0249-0803

Separation Logic Contracts for a Java-like Language
with Fork/Join

Christian Haack* , Clément Hurlin*"

Theéme SYM — Systemes symboliques
Equipe-Projet Everest et Université Radboud de Nimegue

Rapport technique n°® 6430 — version 2¥ — initial version Janvier 2008 — revised
version Mars 2008 — 98 pages

Abstract: We adapt a variant of permission-accounting separation logic to a concur-
rent Java-like language with fork/join. To support both concurrent reads and informa-
tion hiding, we combine fractional permissions with abstract predicates. We present
a separation logic contract for iterators that prevents data races and concurrent mod-
ifications. Our program logic is presented in an algorithmic style, based on a proof-
theoretical logical consequence. We show that verified programs satisfy the following
properties: data race freedom, absence of null-dereferences and partial correctness.

Key-words: Program Verification, Separation Logic, Object-Orientation, Concur-
rency.

* Supported in part by IST-FET-2005-015905 Mobius project.
¥ Supported in part by ANR-06-SETIN-010 ParSec project.
* Corrections éditoriales.

Centre de recherche INRIA Sophia Antipolis — Méditerranée

2004, route des Lucioles, BP 93, 06902 Sophia Antipolis Cedex
Téléphone : +33 4 92 38 77 77 — Télécopie : +33 4 92 38 77 65

Contrats en logique de séparation pour un langage a la
Java avec fork/join

Résumé : Nous adaptons une variante de la logique de séparation avec permissions
a un langage a la Java avec fork/join. Afin d’autoriser les lectures concurrentes dans
le tas sans révéler I’implémentation, nous combinons les permissions fractionnelles
avec les prédicats abstraits. Nous présentons une spécification d’itérateurs concur-
rents qui empéche les data races et les modifications concurrentes. Notre logique est
présentée dans un style algorithmique, a partir d’un systeéme de preuve théorique. Nous
démontrons que les programmes vérifiés satisfont les propriétés suivantes: pas de data
race, pas de déréference de pointeurs nuls et correction partielle.

Mots-clés : Vérification de programmes, logique de séparation, orienté objet, concur-
rence.

Separation Logic Contracts for a Java-like Language with Fork/Join

Contents
1 Introduction

2 Separation Logic Contracts for Java-like Programs
2.1 Separation Logic — Formulas as Access Tickets
2.2 Separation Logic and Modifies Clauses
2.3 Separation Logic and Abstraction

2.4 Splitting and Merging Datagroups
2.5 Object Usage Protocols

3 The Model Language

4 Specification Formulas and Their Semantics

4.1 ReSOUICES v v v it e e e e e e
4.2 Predicate Environments,
4.3 Kripke Resource Semantics
4.4 Predicate Definitions,

5 Proof Theory

6 The Verification System

6.1 Method Types and Predicate Types
6.2 HoareTriples
6.3 Supported Formulas, Datagroup Formulas, Join Postconditions

7 Preservation
8 Comparison to Related Work and Conclusion

A Examples

A.1 A Simple Fork/Join Example
A.2 An Example with Recursive and Overlapping Datagroups
A.3 A Usage Protocol for Iterators
A.3.1 The Collection Interface
A3.2 Thelterator Interface
A33 TheNodeClass i
A34 TheListClass
A.3.5 ThelListlteratorClass

B Notational Conventions and Derived Forms

C Auxiliary Functions

RT n° 6430

4 Haack & Hurlin
D Typing Rules 39
D.1 Operator Types and Semantics 39
D.2 Type Environmentsand Types 40
D.3 Values, Expressions, Formulas 40
D.4 Runtime Structures it 41
E Operational Semantics 41
F Natural Deduction Rules 43
G Supported Formulas 43
H Datagroup Formulas 45
I Method and Predicate Subtyping 46
J Class Axioms 47
K Good Interfaces and Class Declarations 47
L Semantics of Expressions and Formulas 49
L.1 Semanticsof Values, 49
L.2 Semantics of Expressions 0. 50
L.3 Semantic Validity of Boolean Expressions 50
L4 HeaplJoining e 50
L.5 ResourcelJoining 52
L.6 Predicate Environments 54
L.7 Semanticsof Formulas 55
L.8 Semantic Entailment 55
L.9 Interlude: A Relaxed Fixed Point Theorem 56
L.10 Predicate Definitions 58
M Basic Properties of Typing Judgments 61
N Basic Properties of Logical Consequence 62
O Basic Properties of Method Subtyping 63
P Basic Properties of Hoare Triples 64
Q Basic Properties of Semantics 65
R Soundness of Logical Consequence 69
S The Formula Support 76
T Linear Combinations 77

INRIA

Separation Logic Contracts for a Java-like Language with Fork/Join 5

U Preservation 80

V Data Race Freedom, Null Error Freeness, Partial Correctness 96

1 Introduction

As the trend to use multi-core hardware is growing, the need for verification of con-
current programs is becoming an important issue for mainstream programming. Pro-
gramming with concurrency primitives, such as threads or processes, however, is made
difficult by the possibilities of data races and deadlocks. To tackle these problems pro-
grammers often think in terms of permissions. To access a piece of memory a thread
must have the permission to do so. As objects are created and passed between threads,
permissions to access these objects are passed around. Ultimately, the use of a permis-
sion model eases verification of functional properties and prevents data races.

In separation logic, controlling access to memory space plays a prominent role.
Separation logic formulas represent access tickets to heap space and programs must
prove the possession of tickets before reading from or writing to memory. Separation
logic contracts specify access policies. Adherence to these policies is checked statically
by separation logic rules. Access policies are tightly coupled with assertions about
memory content, so that it is impossible to maintain assertions that can be invalidated,
for instance, by thread interference or memory updates through unknown aliases. Thus,
separation logic perfectly supports reasoning about access permissions.

Separation logic has been invented in the beginning of this millennium [17, 29]
as a formalism for reasoning about programs with aliasing and was originally ap-
plied to manually verify intricate pointer-manipulating algorithms (e.g., [32]). It was
later realized that separation logic can be extended to reason about concurrent pro-
grams [24, 10, 6, 11]. Among other things, concurrent separation logic can be used
to verify data race freedom (i.e., the absence of concurrent read/write or write/write
accesses to the same memory location). Data race freedom is notoriously hard to ver-
ify. It is an important property, because data races result in unpredictable program
behaviour [23, 30]. While the original work on separation logic was conceptual, more
recently an experimental automatic checker for a subset of separation logic has been
developed for programs written in a low-level model language [4]. Currently, the same
group of researchers combines ideas from separation logic with automatic program
analysis techniques in order to analyze systems code [14]. Separation logic has also
been applied to an intermediate language for a C compiler with the goal of producing
a fully verified compiler [2]. So far, only little work on applying separation logic to
object-oriented programs exists [26, 27], and this work has only been theoretical. In
addition, there are some recent object-oriented type and effect systems [9] and type-
state systems [5], which are related to separation logic. Thus, while it seems to be
apparent to a number of researchers that separation logic can be a very valuable tool
for verifying properties of object-oriented programs, much works needs to be done to
make this idea practical.

In this paper, we present an adaptation of concurrent separation logic to a Java-like
language with fork/join. We support concurrent reads by means of fractional permis-
sions [8, 6]. Furthermore, we support object-oriented abstractions through abstract

RT n° 6430

6 Haack & Hurlin

predicates [27]. Abstract predicates can be understood as a generalization of types-
tates [1 3], object invariants [3] and datagroups [22]. The combination of fractional per-
missions and abstract predicates proved a bit challenging. In order to split and merge
access permissions for entire datagroups, we had to treat datagroups in a distinguished
way. We combine fractional permissions with fork/join. As far as we know, until now
fractional permissions have only been formalized for languages with a parallel com-
position operator, which is both cleaner and easier to formalize, but less realistic. We
allow separation logic contracts to dereference final fields without any restrictions,
just like stack variables. This often makes contracts more readable. To be able to
verify abstract predicates in the presence of subclassing, we axiomatize the “stack of
class frames” [13, 3] in separation logic. We present a separation logic specification
of Java’s Iterator that statically prevents concurrent modifications of the underly-
ing collection. On the technical side, we present Hoare rules in an algorithmic style
based on a proof-theoretical logical consequence judgment. This differs from most
other presentations of separation logic, where logical consequence is defined model-
theoretically. We prefer a proof-theoretical logical consequence, because that seems
more amenable for algorithmic verification, which is our ultimate goal.

Section 2 informally introduces features of our system by example. The remainder
of the paper is technical: Section 3 presents a Java-like model language, Section 4 the
resource semantics of formulas, Section 5 their proof theory, Section 6 the verification
rules, Section 7 the preservation theorem. Section 8 concludes.

2 Separation Logic Contractsfor Java-like Programs

In this section, we show uses of separation logic contracts by example.

2.1 Separation Logic — Formulas as Access Tickets

Separation logic [17, 29] combines the usual logical operators with the points-to pred-
icate X.f — v, the resource conjunction F * G and the resource implication F —* G.

The predicate x.f — v has a dual purpose: firstly, it asserts that the object field
X.f contains data value v and, secondly, it represents a ticket that grants permission to
access the field x.f. This is formalized by separation logic’s Hoare rules for reading
and writing fields:

{Xf—_*Fixf=v{x.f—v*F} {X.f=v*Fly=x.f{x.f—vxv==y* F}

The crucial difference to standard Hoare logic is that both these rules have a precondi-
tion of the form x.f — _': this formula functions as an access ticket for x. f.

It is important that tickets are not forgeable. One ticket is not the same as two tick-
ets! For this reason, the resource conjunction * is not idempotent: F is not equivalent
to F xF. The resource implication —* matches the resource conjunction *, in the sense
that the modus ponens law is satisfied: F * (F —x G) implies G. However, F * (F —x G)
does not imply F *G. In English, F —x G is pronounced as “consume F yielding G”.
In terms of tickets, F —* G permits to trade ticket F and receive ticket G in return.

Separation logic is particularly useful for concurrent programs: two concurrent
threads simply split the resources that they may access, as formalized by the rule for
the parallel compositiont |t’ of threads t and t’ [24].

Ix.f + _is short for (3v)(x.f — V).

INRIA

Separation Logic Contracts for a Java-like Language with Fork/Join 7

{Fit{c} {F'}'{G¢}
{F*F'}t |t'{G*G'}

With this concurrency rule, separation logic prevents data races. There is a caveat,
though. The rule does not allow concurrent reads. Boyland [8] solved this problem
with a very intuitive idea, which was later adapted to separation logic [6]. The idea
is that (1) access tickets are splittable, (2) a split of an access ticket still grants read
access and (3) only a whole access ticket grants write access. To account for multiple
splits, Boyland uses fractions, hence the name fractional permissions. In permission-
accounting separation logic [6], access tickets X.f +— Vv are superscripted by fractions

/

. . 77/2 17/2 .. .
1. x.f 5 v is equivalent to X. f —— v * X.f 2 v. In the Hoare rules, writing requires
the full fraction 1, whereas reading just requires Some fraction TT:

(X Pl f=vix fesv s F} {xf 5 v* Fly=x f{x.f -2y % v==y * F}

Permission-accounting separation logic maintains the global invariant that the sum of
all fractional permissions to the same cell is always at most 1. This prevents read-write
and write-write conflicts, but permits concurrent reads.

In our Java-like language, we use ASCII and write Perm(x. f, 1) for x. f NN _,and
PointsTo(xX.f, V) forx.f —5 v.

2.2 Separation Logic and Modifies Clauses

Object-oriented specification languages, like for instance JML [12], use modifies
clauses to express frame conditions:

modifies this.f;
void set(int x) { this.f = x; }

Pre/postconditions in separation logic can be used to a similar effect:

req Perm(this.f,1); ens Perm(this.f,1);
void set(int x) { this.f = x; }

In separation logic, method preconditions specify what access permissions are required
to execute the method body. Method postconditions specify what permission are passed
back to the caller upon method return. Methods can loose permissions by forking new
threads that require permissions. Methods can gain permissions by joining threads and
picking up access permissions that the joined threads do not need anymore.

2.3 Separation Logic and Abstraction

Several object-oriented specification methodologies have abstraction features that al-
low exporting the name of an abstraction to object clients, while hiding its concrete
definition. Examples include the Inv predicate in the Boogie methodology [3] (which
indicates to object clients if the object invariant holds or not without exposing its def-
inition), typestates for objects [13] and datagroups [22]. Parkinson and Bierman [27]
study abstractions of exactly this kind, where the (hidden) concrete definitions of the
abstractions are given in terms of separation logic formulas. We build on their work,
by adding support for concurrency and fractional permissions.

In our model language, interfaces may declare abstract predicates and classes may
implement them by providing concrete definitions as separation logic formulas.

RT n° 6430

8 Haack & Hurlin

interface I { ... pred P<TX>; ... group P<Tx>; ... }
class C implements I { ... pred P<TX>=F; ... group P<T>=F; ... }

Like Parkinson/Bierman [27], but unlike the other examples mentioned above [3, 13,

], we allow abstract predicates to have parameters in addition to the implicit self-
parameter (as listed in the typed formal parameter lists T X). The types T for predicate
parameters range over all Java types and the distinguished type perm for fractional
permissions. Unlike Parkinson/Bierman, we differentiate between datagroups and ar-
bitrary predicates through the keywords group and pred. Both groups and preds
are defined by separation logic formulas, but the formulas that may define groups are
restricted. As a result of this restriction, we obtain an equivalence between formulas
0.P<m> and 0.P<711/2>* 0.P<71T/2> for groups P but not for preds P. This equivalence
is crucial for supporting concurrent reads in combination with abstract predicates.

We assume that the Object class declares a distinguished datagroup state:

class Object { group state<perm p> = true; }

The state datagroup represents the access permissions for the object state. The object
state often consists exactly of the object’s fields, but sometimes extends beyond the
fields to include owned objects. Every class must extend the state datagroup and
thereby define what the object states of its instances are. Our syntax for datagroup
extensions (and similarly for predicate extensions) is as follows:

class C extends D { ... extends group P<Tx> by F; ... }

Semantically the extension F of abstract predicate P gets *-conjoined with P’s defini-
tion in C’s superclass D. This is more restrictive than Parkinson/Bierman [27], who
allow arbitrary predicate redefinitions in subclasses. On the upside, this restrictiveness
enhances modularity by avoiding reverification of inherited methods, which is needed
in Parkinson/Bierman’s system.

We now borrow an example from Leino [22] to show how datagroups can be spec-
ified in separation logic style.

class Sprite implements SpriteInt ext Object {
protected int x,y;
private int col;

group position<perm p> Perm(x,p) * Perm(y,p);
group color<perm p> Perm(col,p);
extends group state<perm p> by position<p> * color<p>;

req position<1>; ens position<i1>;
void updatePosition() { }

req color<1>; ens color<i>;
void updateColor() { }

req state<1>; ens state<1>;
void update() { updatePosition(); updateColor(); }

req state<p>; ens state<p>;
void display() {...} // only read the state

INRIA

Separation Logic Contracts for a Java-like Language with Fork/Join 9

Here, the position datagroup consists of the position fields x and y, the color data-
group of the field c. The state datagroup is their union. The three update-methods
require write access to the corresponding datagroups. Hence, their preconditions ini-
tialize the datagroup permission parameters by 1. The display method is readonly.
Consequently, in its precondition the permission parameter of state can be an arbi-
trary fraction p. (Free variables in method contracts are implicitly universally quanti-
fied.)
The Sprite class implements the following interface:

interface SpriteInt {
group position<perm p>;
group color<perm p>;
req position<1>; ens position<1>;
void updatePosition();
req color<1>; ens color<i>;
void updateColor();
req state<l>; ens state<1>;
void update();
req state<p>; ens state<p>;
void display(Q);

}

As is, this interface does not reveal that both position and color are subgroups
of state. It is sometimes useful for object clients to know about this fact. Leino’s
language [22] can export facts about datagroup nesting to clients. In our language,
this is facilitated by class axioms. Class axioms export facts about relations between
abstract predicates, without revealing the detailed predicate implementations. Class
implementors have to prove class axioms and class clients can use them. To export
the fact that position and color are nested in state we add the following class
axioms to the interface SpriteInt (which uses a typed universal quantifier fa over
permissions p):

axiom (fa perm p) (position<p> ispartof state<p>);

axiom (fa perm p)(color<p> ispartof state<p>);

The formula “F ispartof G” is a derived form for G —* (F * (F - G)). Intuitively,
this formula says that F is a physical part of G: one can take G apart into F and its
complement F —x G, and one can put the two parts back together to obtain G again.

2.4 Splitting and Merging Datagroups

We show how our system supports concurrent reads in combination with datagroup
abstractions. To this end, we use an important law that we have shown sound. We call
this law the split/merge law and paraphrase it as splitting datagroup parameters splits
datagroups. Specialized to the state datagroup the law looks like this (where F *—* G
abbreviates (F -*xG) & (G-xF)):

0.state<p> *—* (0.state<p/2> * O.state<p/2>)

In order to ensure that this law holds, we have to restrict the formulas that define data-
groups. For instance, the following definition would, quite obviously, break the law:

RT n° 6430

10 Haack & Hurlin

group state<perm p> = Perm(x.f,1); disallowed!

The problem here is that state’s definition ignores the permission parameter, so that
splitting the permission parameter leaves the datagroup permission intact. Datagroups
must be fully parameterized on their permissions. We also disallow occurrences of
linear implications and disjunctions in datagroup definitions and only allow existen-
tials with unique witnesses. Without these restrictions, our soundness proof for the
split/merge law would not work.

To demonstrate a use of the split/merge law, consider the following example:

class Screen<perm p> extends Thread {
final public Sprite sprite; // object to display
req x.state<p>; ens sprite.state<p> * x==sprite;
Screen(Sprite x) { this.sprite = x; }
req sprite.state<p>; ens sprite.state<p>

void run() { sprite.display(); }
}

We sketch a proof outline for a Screen client that forks two threads that concurrently
display a sprite and then joins them again to gain the full permission on the sprite
back. The example also illustrates how we deal with the concurrency primitives fork,
join and run: Because fork calls run, we use run’s precondition as the precon-
dition of fork. Because join waits until the run method has terminated, we use
run’s postcondition as the postcondition of join. In order to avoid that several threads
that all call X.join() on the same receiver simultaneously use the postcondition of
X.run(), Thread constructors “return” a single ticket Perm(X[join], 1) which is re-
quired when X.join()’s postcondition is used. Our proof rules even allow to split this
join-ticket and split join’s postcondition correspondingly. This is useful in situations
where several clients join the same thread X and then want to read-access X’s state.
In order to facilitate this kind of “read-only multi-joining”, we impose restrictions on
run’s postconditions, similar to the restrictions on datagroup definitions.

{ s.state<1> }
(split/merge law from left to right)
{ s.state<1/2> * s.state<1/2> }
Screen<1/2> scrl = new Screen<1/2>(s);
Screen<1/2> scr2 = new Screen<1/2>(s);
{ scril.sprite.state<1/2> * s==scrl.sprite * Perm(scri[join],1) *
scr2.sprite.state<1/2> * s==scr2.sprite * Perm(scr2[join],1) }
scrl.fork();
{ s==scril.sprite * Perm(scri[join],1) x*
scr2.sprite.state<1/2> * s==scr2.sprite * Perm(scr2[join],1) }
scr2.fork();
{ s==scril.sprite * Perm(scri[join],1) *
s==scr2.sprite * Perm(scr2[join],1) }
scrl.join();
{ s==scrl.sprite * scrl.sprite.state<1/2> *
s==scr2.sprite * Perm(scr2[join],1) }
scr2.join();

INRIA

Separation Logic Contracts for a Java-like Language with Fork/Join 11

{ s==scrl.sprite * scrl.sprite.state<1/2> *
s==scr2.sprite * scr2.sprite.state<1/2> }

(substitutivity)

{ s.state<1/2> * s.state<1/2> }

(split/merge law from right to left)

{ s.state<1> }

Note that in this proof outline and in the postcondition of the Screen constructor, we
dereference the final fields scrl.sprite, scr2.sprite and this.sprite. Usu-
ally, in separation logic dereferencing is only allowed in the leftmost argument of
PointsTo. We support unrestricted dereferencing of final fields: this makes con-
tracts more readable and final fields are common in Java programs.

2.5 Object Usage Protocols

Often one wants to constrain object clients to adhere to certain usage protocols. Usage
protocols can, for instance, be specified in typestate systems [3] or, using ghost fields,
by general purpose specification languages [28]. A limitation of these techniques is
that state transitions must always be associated with method calls. This is sometimes
not sufficient. Consider for instance a variant of Java’s Iterator interface (enriched
with an init method to avoid constructor contracts).

interface Iterator {
void init(Collection c);
boolean hasNext();
Object next();

void remove();

}

If iterators are used in an undisciplined way, there is the danger of unwanted concurrent
modification of the underlying collection (both of the collection elements and the col-
lection itself). Moreover, in concurrent programs bad iterator usage can result in data
races. It is therefore important that Iterator clients adhere to a usage discipline. The
following simple discipline would be safe for an iterator without remove: retrieve the
next collection element; then access the element; then trade the element access right
for the right to retrieve the next element; and so on. Although such a discipline is sim-
ple and makes sense, it cannot be specified by existing typestate systems and it would
be very clumsy to specify it with classical specification languages.

We have designed a usage protocol for the full Iterator interface with remove.
Its state machine is shown in Figure 1. The dashed arrows are the ones that are not
associated with method calls, and are hard to capture with existing object-oriented
specification systems. Note in particular, that according to this protocol an Iterator
client can keep the access right for a collection element that he has removed. This pro-
tocol can be expressed quite straightforwardly by a separation logic contract (making
heavy use of linear implication).

interface Iterator<perm p, Collection iteratee> {
pred ready; // prestate for iteration cycle
pred readyForNext; // prestate for next()

RT n° 6430

12 Haack & Hurlin

_ abandon
l1)terlzitor and
et back access .
£ right forc hasNext()==false

N
N

init(c) hasNext()==true
y

abandon access
right for ¢

init

element=next()

abandon access!
right for element ‘|

Figure 1: Usage Protocol of the Iterator interface

pred readyForRemove<Object element>; // prestate for remove()
axiom ready —* iteratee.state<p>; // stop iterating

req init * c.state<p> * c==iteratee;

ens ready;

void init(Collection c);

req ready;

ens (result -* readyForNext) & (!result -* ready);

boolean hasNext();

req readyForNext;

ens result.state<p> * readyForRemove<result> *
((result.state<p> * readyForRemove<result>) -* ready);

Object next();

req readyForRemove<_> * p==1;

ens ready;

void remove();

}

The interface has two parameters: firstly, a permission p and, secondly, the iteratee. If
the permission parameter is instantiated by a fraction p < 1, one obtains a read-only
iterator, otherwise a read-write iterator. The states are represented by three abstract
predicates. The class axiom expresses that whenever the client is in the ready state,
he has the option to abandon the iterator for good and get the access right for the iter-
atee back. The precondition of init () consumes a fraction p of the access right for
the iteratee and puts the iterator in the ready state. The init predicate in init()’s
precondition is a special abstract predicate that every object enters right after object

INRIA

Separation Logic Contracts for a Java-like Language with Fork/Join 13

creation and that grants access to all of the object’s fields.” The most interesting part
of the Tterator contract is the postcondition of next (). It grants access to the col-
lection element that got returned, represented by the special result variable. Fur-
thermore, it grants permission to remove this element. However, by the precondition
of remove, this permission can only be used if the class parameter p is 1, i.e., the it-
erator is read-write. Finally, next ()’s postcondition grants right to trade the tickets
result.state<p>and readyForRemove<result> for the ready state.

We have implemented this interface for a doubly linked list implementation of the
Collection interface (see Appendix A.3).

3 TheModel Language

We use the same syntax conventions as Featherweight Java (FJ) [16]. In particular, we
indicate sequences of X’s by an overbar: X. We sometimes write X;on for X’s prefix
of length n. We also use regular expression notation: X? for an optional X, X* for a
possibly empty list of X’s, X | Y foran X oraY, and X Y for X followed by Y. For any
syntactic object X, we let fv(X) be the set of free variables of X. We often write X ¢ X
to abbreviate x & fv(X).

Identifi er Domains:

I

C,D € Classld class identifiers (including Object)

1,J € Intld interface identifiers

s,t € Tyld = Classld U Intld type identifiers

0,p,q € Objld object identifiers

f € Fieldld field identifiers

m,n € Methld method identifiers

P& ¢ Grpld datagroup identifiers (including state)
P € Predld D Grpld predicate identifiers (including init)

I € RdVar read-only variables (including this)

¢ € RdWrVar read-write variables

aPe™ ¢ PermVar logic variables for permissions

a*?' e LogValVar logic variables for values (including result)
a € LogVar = PermVar U LogValVar logic variables

X,Y,z € Var = RdVar U RdWrVar U LogVar variables
L

We distinguish between read-only variables |, read-write variables ¢ and logic vari-
ables a. Method parameters (including this) are read-only. Logic variables can only
occur in specifications and types. They range over both fractional permissions and val-
ues (like integers, object identifiers and null). The special variable result is used in
method postconditions to refer to the return value.

nelint integers b € Bool = {true,false} booleans
uvyweVal == null |[n|b|o]|I values
n € logVal = a% | v logic values
mPeM e Perm = aP*™ | 1 | split(mPe™) permissions
meSpecVal = mv | pPerm specification values
TUVWeTy == void | int | bool | t<7> | perm types

2Qur model language does not have constructors.

RT n° 6430

14 Haack & Hurlin

We include read-only variables (but not read-write variables) in the syntax domain
of values. This is convenient for our substitution-based operational semantics. Frac-
tional permissions are represented symbolically: split"(1) represents the concrete
fraction 2—1n In examples, we sometimes write zln as syntax sugar for split"(1). Spec-
ification values union logic values and permissions. For later convenience, we extend
the syntactic split-operation to specification values: split(7P®™) = split(mPe™)
and split(1¥®') = 2!, Interfaces and classes are parameterized by specification values.
Correspondingly, object types t<7> instantiate the parameters. We usually omit the
angle brackets, if the parameter list is empty.

Interface Declarations:
I 1

F € Formula ::= ... specification formulas (defined in Section 4)
spec ::= req F;ens F; pre- and postconditions

mt == <T a>specU m(V D) method types (scope of a,Tis T,spec,U,V)
pmod ::= pred | group predicate modifiers

pt ::= pmod P<T a> predicate types

ax ::= axiomF class axioms

int € Interface ::= interface I<T a>ext U {pt* ax* mt*}

interfaces (scope of @ is T,U, pt*,ax*, mt*)

Syntactic restriction: The type “perm” may only occur inside angle brackets or formulas.
L]

Method types include pre- and postconditions and are parameterized by logic variables.
In examples, we often leave these quantifiers over logic variables implicit, but prefer to
treat them explicitly in the formal language. Class axioms can export useful facts about
predicate implementations to class clients, without exposing predicate implementations
in detail. In class axioms, we often omit leading universal quantifiers, if the type of
these variables can be inferred from the context.

Class Declar ations:

I
fin ::= final? optional final modifier

fdo=Tf field declarations
pd ::= predicate definitions
fin pmod P<T a>=F root definition (scope of @ is F)
fin ext pmod P<T @> by F extension (scope of @ is F)
md ::= fin <T a>spec U m(V D {c} method (scope of @,Tis T,spec,U,V,c)

cl € Class := fin class C<T a> ext U impl V {fd* pd* ax* md*}
class (scope of @ is T,U,V, fd* pd*,ax*, md*)
ct C Interface U Class class tables
Syntactic restrictions:
e The type “perm” may only occur inside angle brackets or specification formulas.

e Cyclic predicate definitions in Ct must be positive.
L]

The first syntactic restriction ensures that fractional permissions do not spill into the
executable part of the language. The second syntactic restriction ensures that predicate
implementations (which can be recursive) are well-founded. This restriction is more
liberal than Parkinson/Bierman’s restriction [27], who entirely prohibit predicate oc-
currences in negative positions (i.e., to the left of an odd number of implications) in

INRIA

Separation Logic Contracts for a Java-like Language with Fork/Join 15

predicate implementations. We allow negative dependencies of predicate P on predi-
cate Q as long as Q does not also depend on P. We need this additional freedom in the
implementation of our Iterator interface

We use the symbol < for the order on type identifiers induced by class table ct.
We often leave the subscript ct implicit. We impose the following sanity conditions
on Ct: (1) = is antisymmetric, (2) if t (except Object) occurs anywhere in Ct then t
is declared in ct and (3) ct does not contain duplicate declarations or a declaration of
Object. We write dom(ct) for the set of all type identifiers declared in ct.

Subtyping is inductively defined by the following rules:

T<T T<UU<V =TV S<T &> ext t<77> = s<ip> <: < [f/a)>
t<i> <:0Object t<T &> impl IKT> = t<i> <: I<7[7/a]>
We assume that class tables always contain the following class declaration:

class Thread ext Object {
final void fork(); final void join();
req false; ens true; void run() { null }

}

The methods fork and join do not have implementations. Instead, the operational
semantics treats them in a special way:

» 0.fork() creates a new thread, whose thread identifier is 0, and executes 0.run ()
in this thread. The 0.f ork-method should not be called more than once (on the
same receiver 0). A second call results in blocking.

* 0.join() blocks until thread 0 has terminated.

The run-method is meant to be overridden. The pre/postconditions for Thread . run ()
are chosen so that they do not impose any restrictions on overriding this method. The
pre/postconditions for fork and join are omitted, because our verification system
ignores them anyways. Instead, it uses the precondition for run as the precondition for
fork and the postcondition for run as the postcondition for join.

Commands:
I 1
opeOp D {==,1,%,1} U {C isclassof |C & Classld }
ceCmd:= commands
v return value (or null in case of type void)
TY;c local variable declaration (scope of ¢ is C)
final T 1=/;C local read-only variable declaration (scope of I is C)
unpack (exT a) (F);c unpacking an existential (scope of o is F, C)
hec; ¢ first do hc, then do ¢
hc € HeadCmd ::= {¢=v | £=0p(V) | ¢=v.f | finv.f=v | {=(T)v | £=newC<iD> |

if (V) {c}else{C'} | £=v.m<i> (V) | assert(F)

Synt. Restr.: Logic variables that occur in =new C<7> must be bound by class parameters.
L]

For brevity, we leave the return-command implicit. Values are included in the
syntax domain of commands, so that a terminating, non-blocking execution of a com-
mand results in the return value. Methods of type void return null, which is the only
member of type void. We usually omit terminating occurrences of null.

RT n° 6430

16 Haack & Hurlin

In local variable declarations, we treat £ and 1 as binders with scope c. We identify
commands up to renaming of bound variables, provided the renaming maps read-only
to read-only and read-write to read-write variables.

The operator for existential unpacking has no effect at runtime. It makes the ex-
istential variable a available in the continuation C for instantiation of logic method
parameters. In examples, we often omit explicit existential unpacking and instantiation
of logic method parameters. Making these explicit helps with the theory, but ideally in
practice an algorithmic static checker would infer these.

Our language has no composite expressions (e.g., X.f.g.m()), but instead requires
that intermediate results are always assigned to local variables. Furthermore, all vari-
ables that occur on right-hand sides of assignments are read-only. These syntactic
requirements simplify the verification rules, but are not true restrictions, because pro-
grams without these restrictions can be translated to our core language by inserting
assignments to local variables.

Field assignments can optionally be preceded by a final modifier to indicate that
this is the last assignment to the field. Afterwards, the field is final, that is, perma-
nently read-only. Assignments to final fields are forbidden and this policy is statically
enforced by our verification system. Our final fields generalize Java’s final fields.
The difference is that Java’s final fields have to be read-only right after object con-
struction, whereas, in our system, fields can be finalized at an arbitrary execution point.
This can be particularly useful for arrays and matrices, because Java provides no way
to declare their fields final.

There is one (and only one) rule, where our operational semantics depends on class
parameters, namely in the reduction rule for type casts. Downcasts to parameterized
types require a runtime check that looks at the type parameters, which the standard
JVM does not keep track of. There are at least three ways how one could deal with that
in practice: Firstly (and most pragmatically), one could simply forbid downcasts to
reference types that have a non-empty parameter list. (We did not use any downcasts to
parameterized types in our examples.) Then our type cast operator would degenerate to
Java’s standard cast operator. Secondly, one could develop an enhanced virtual machine
that keeps track of class parameters. Although this solution is both clean and general,
the drawback is that it restricts verified code to run on such enhanced JVMs (if we
want soundness). Thirdly, one could devise a sound syntactic translation that erases
class parameters such that the target of this translation throws a ClassCastException
whenever the source of the translation does. A possible translation would encode class
parameters as ghost fields and translate type casts of the form “¢= (C<7>)V” to class
casts “/=(C)Vv” followed by a sequence of tests that compare ¢’s ghost fields with the
class parameters 7T and trigger a class cast exception if one of these tests fails.

Runtime Structures:

I

ClVal = Val \ RdVar closed values
s € Stack = RdWrVar — ClVal stacks

t € Thread = Stack x Cmd ::= sinc threads

ts € ThreadPool = Objld — Thread ::= 0yist; | --- |Onisty thread pools

0s € ObjStore = Fieldld — ClVal object stores

obj € Obj = Ty x ObjStore ::= (T,05) objects

h € Heap = Objld — Obj heaps

INRIA

Separation Logic Contracts for a Java-like Language with Fork/Join 17

st € State = Heap x ThreadPool ::= (h,ts) states

prog € Program = ClassTable x Cmd ::= (ct,c) programs
L]

Each thread s in C” consists of a thread-local stack s and a process continuation C.
In thread pools, each thread t is associated with a unique object identifier, which serves
as a thread identifier. The dynamic semantics of our language is a small-step opera-
tional semantics St —¢ St’ and can be found in Appendix E. We map commands to
initial states: init(c) = ({main — (Thread,®)}, mainis (0 in ¢)), where main is some
distinguished object id for the main thread. The main thread has an empty set of fields
(hence the first 0), and its stack is initially empty (hence the second 0).

Below, we define a verification system whose top level judgment is prog : ¢ (read:
“prog is verified”’). We have proven a preservation theorem from which we can draw
several corollaries, namely, data race freedom, null error freedom and a variant of
partial correctness. With the model that we have developed up to here, we can state
the first two corollaries; for partial correctness, we have to wait until we have presented
specification formulas and their semantics.

A pair (hc,hc’) of head commands is called a data race iff hc = (fin 0.f =v) and
either he' = (fin’ 0.f =V') or h¢ = (¢=0.f) for some o, f,v,V', ¢ fin, fin".

Theorem 1 (Verified Programs are Data Race Free)
If (ct,c) : ¢ and init(c) —% (h,ts| 0y is (s; in hcy;cy) | 0z s (S in hey;cy)), then
(hcy,hcy) is not a data race.

A head command hc is called a null error iff hc = (¢=null.f) orhc = (finnull.f =v)
or hc = (¢=null.m<i> (V)) for some ¢, fin, f,v,m, 7, V.

Theorem 2 (Verified Programs are Null Error Free)
If (ct,c) : o and init(c) —§ (h,ts|ois (sin hc;c)), then hc is not a null error.

4 Specifi cation Formulasand Their Semantics
Specification formulas contain expressions:
ecExp == m| | op(€) |ef expressions

Unlike in standard separation logic, we allow expressions to contain field references.
Our verification rules ensure that expressions in program derivations only refer to
final fields. Although our special treatment of final fields does not increase the
expressivity of separation logic (because in separation logic one can follow reference
chains into the heap by combining the points-to predicate with existential quantifica-
tion), directly referring to values that final fields point to, often makes specifications
more readable.

Specifi cation Formulas:

I
lop € {*,-*,&, 1} logical operators qt € {ex,fa} quantifiers
K € Pred ::= predicates
P P at receiver’s dynamic class
PeC P atclass C
E.F,G,H € Formula ::= specification formulas
e boolean expression

RT n° 6430

18 Haack & Hurlin

PointsTo(e[f],me") e.f points to &’ and the access permission for e. f is 77
Perm(e[join], M) permission to use a split of join’s postcondition
Pure(e) e is invariant under heap updates and evaluates normally
TLK<TT> predicate TT.K applied to 7T

Flop G binary logical operator

(qtTa) (F) quantifier

Syntactic restriction: In (qt T a) (F), o does not occur inside field selection expressions €. f.
L]

In concrete syntax, we often write PointsTo(e.f, 1,€’) for PointsTo(e[f],me’).
(We choose square brackets in abstract syntax, because the syntactic restriction for
quantifiers is easier to state that way.) The following derived forms are useful, too:

F*xxG=(F-*xG)& (G-xF) F assures G =F —* (FxG)
F ispartof G2 G -* (F* (F -*G))
Perm(e[f],7m) = (ex T a) (PointsTo(e[f],m,a)) where T ise.f’s least type
e.kK<T> = (exTa) (a==e * a.k<7>) where T is e’s least type

4.1 Resources

For the interpretation of resource conjunction, we define a heap joining operator. We
want to allow splitting heaps on a per-field basis. To this end, it is convenient to define
a function that maps heaps to functional relations. A functional relation is a downward
closed subset h of Objld x Ty x (Fieldld x ClVal), such that (0,T,1),(0,T’, L) €h
implies T =T’ and (0, T, (f,v)),(0,T,(f,V')) € himplies v =V'. Let FunRel be the set
of all functional relations. We define the following bijections:

\\: Heap — FunRel \h= { (0,T,x) | h(0); =T A xeh(0),U{L}}
J/ : FunRel — Heap /h(0); =T, if (0,T, L) €h Jh(0), = {(f,v) | (0, /h(0);,(f,v)) €h}
Now, we can define a partial operator * that joins heaps and a heap order as follows:

#=2{(hh) | \hU\N €FunRel } *:#—Heap h*h’Z J/(\hU\N)
h<h iff \hC\N

We note that * is commutative, associative and monotone with respect to <, that
h <h"iff h" = h*h” for some h”, that arbitrary greatest lower bounds exist, Ajc; hi =
// Nici \i, and that least upper bounds of bounded sets exist, /¢, hi = /Ui \hi.

Our semantic domains for fractional permissions are permission tables. Let [0, 1]
be the set of real numbers between 0 and 1: [0,1] = {x € R|0 <x < 1}.

Definition 1 (Permission Tables) A permission table is a total function of type Objld x
(Fieldld x {join}) — [0,1]. Let PermTable be the set of all permission tables. Let
meta-variables &7, 2 range over permission tables.

Addition and subtraction on permission tables are defined pointwise. Obviously, these
operations are partial, because & + 2 does not necessarily map into [0, 1], and simi-
larly & — 2. We write Z#2 whenever & + 2 € PermTable. Division by 2 is also
defined pointwise and is obviously total: if &2 maps into [0, 1], then so does %9 0
is the constant zero-function on Objld x (Fieldld x {join}) and 1 the constant one-
function. The order < on permission tables is defined pointwise, # A 2 and A;jc| &

INRIA

Separation Logic Contracts for a Java-like Language with Fork/Join 19

are the greatest lower bounds with respect to <, and &V 2 and /| & the least upper
bounds.

In our model, resources are triples (h, &, 2) of a heap and two permission tables.
Intuitively, &2 is a local permission table for a single thread: it records the thread’s
access permissions to heap cells in h. The global permission table 2 is an upper
bound on the sum of all permission tables of all threads. If a cell gets finalized, its
entry in 2 drops below 1 and the cell can be shared freely from that point on.

We define: A triple (h, &, 2) € Heap x PermTable x PermTable is sound when-
ever the following conditions hold:

(a) fstohkh:o

b)) <2

(c) Forall o € dom(h) and f € dom(h(0),), either #(0, f) > 0or 2(o, f) < 1.
(d) Forall o ¢ dom(h) and all k in Fieldld U {join}, 97(0,k) = 0 and 2(0,k) = 1.
(e) Forallo,f,if 2(0,f) < 1then o € dom(h) and f € dom(h(0),).

Condition (a) says that h must be well-typed. Condition (b) is a sanity condition
that ensures that our intuitive interpretations of &2 and 2 as local and global permis-
sion tables make sense. Condition (c) ensures that the partial heap h only contains
cells that are either final or associated with a positive permission. Technically, this
condition is needed to prove soundness of the verification rule for field updates. Con-
dition (d) ensures that all objects that are not yet allocated have minimal permissions
(with respect to the resource order presented below). This is needed to prove soundness
of the verification rule for allocating new objects. Condition (e) ensures that all final
heap cells are part of the heap. It is needed to prove substitutivity for pure expressions.

We define Resources = { (h,#,2) | (h,4?,2) is sound } and let meta-variable
Z range over Resources. For #Z = (h, 22, 2), let Znp = N, Zioc = & and Zgo = 2.
Now we can define resource joining:

(h, 2, 2%, 2' 2" iff h#h' P#P' 2= 2 and (hxh' P2+ P 2) issound
* :#— Resources (h, 2, 2)x(h, 2" 2) £ (h«h', 2 + P’ 2)

K4 S %/ iff %hp S ‘%’/‘W %Ioc S ‘%Iloc and ‘%élo = Zglo

Division by 2 is defined by 4 (h, 22, 2) = (h, 122, 2). We note that * is commutative,
associative and monotone with respect to <, that Z < %' iff #' = #Z* %" for some
2", and that least upper bounds of bounded resource sets exist and are computed com-
ponentwise. For heap h and global permission table 2, we define the subheap of h that
consists of all its final fields:

h2 £ /{0 T,x)e\h|x=Lor2(x)<1} final(h,2,2) = (h2,0,2)
If final(%;) = final(#;) for all i, j then the greatest lower bound of {Z; |i € |} exists.

4.2 Predicate Environments

For the semantics of predicates, we need a function that maps predicate symbols to
relations. This function is called a predicate environment. We choose to represent
relations as functions into the two-element set: Let 2 be the two-element set {0,1}
equipped with the usual order (i.e., 0 < 1). Clearly, 2 is a complete lattice. The order

RT n° 6430

20 Haack & Hurlin

on sets X — L of total functions from X into complete lattice L is defined pointwise:
f < g whenever f(x) < g(x) for all x in X. Clearly, X — L is a complete lattice where
greatest lower bounds are computed pointwise.

The following shorthands are convenient:

SpecVals = Uns>o SpecVal™ Pred(ct) £ {PeC | C e dom(ct) and P is defined in C }

Predicate symbols are interpreted as relations over SpecVals x Resources x Objld x
SpecVals. The first component represents the class parameters, the third component the
receiving object and the fourth component the predicate parameters. For each predicate
symbol K € Pred(ct), we define its domain Dom(k): (71,%,r,7) € Dom(PeC) iff all
of the following statements hold:

(a) fstoZnp 1 :C<iD.
(b) ptype(P,C<7>) =finpmod P<T > and fsto %, - 77 : T for some fin,pmod, T, a.

This definition makes uses of a typing judgment ' - 77: T (“7T has type T”) where "
is a function from Objld U Var to Ty. We omit the (obvious) typing rules. The partial
function ptype(P,C<7>) looks up the type of predicate P in the least supertype of C< 7>
that defines or extends P.

Definition 2 (Predicate Environments) A predicate environment is a function of type
[1K € Pred(ct).Dom(k) — 2 such that the following axioms hold:

(a) If (T, 2,1,), (1, % ,r,) € Dom(k) and Z < %',
then & (K) (71, Z,r,) < &(K) (T, % ,r, 7).
(b) If (7, #,r,7') € Dom(K) and final(%;) = final(%;) for all i, j in |,
then & (PePC) (T, A\ic| Zi, 1, ') = Nic) & (PEPQC) (1T, %, 1,).
() If (7, %,1,7) € Dom(P#PeC),
then & (PE™eC) (71, %, 1, 7') < &(PEPeC)(Tt, .2, 1,split(1T)).
(d) If (7, %,,r, 1), (n,%z,r, e Dom(PgrPQC)
then & (P8™@C) (71, %, T1,split(71)) A& (P8PQC) (1, %, 1, split (7)) < &(P&™PeC)
(7_'[,3?1*%2,['77:[’)
(e) If(ﬁ,(hﬁz,fz)) (m,(h',22,2'),r,) € Dom(k), 0 € dom(h), Z(o, f) =

0, 2(o,f) = Q[(o f)+— 0] and h' =hlo.f — V],
then &(K)(T ,(h 9 ,2),) <EK)(m (W, 2,2),r).

® 1f(m, (h, 72, 2),r. n’) (71, (h,2,2'),r,i") € Dom(k), 0 € dom(h), £ (0, join) <
x < Q(O,JOln) nd 2' = 2[(0, join) — X],

then & (k)(T, (h, 2, 2),r,) < &(k)(TL,(h, 2, 2'), 1, T¥).

Axiom (a) says that predicates are monotone in the resources: if a predicate is satisfied
in resource Z then it is also satisfied in all larger resources %’. This axiom is natural
for a language with garbage collection and is also imposed by Parkinson/Bierman’s
seminal work on abstract predicates [27]. The other axioms are new. Axioms (b), (c)
and (d) are specific to datagroups. Axiom (b) implies that datagroups have a minimal
satisfying resource. In separation logic terminology, one would say that datagroups are
supported. In order to ensure that datagroup implementations really satisfy this prop-
erty, we will restrict the class of formulas that may implement datagroups. Axiom (c)
says that splitting the parameters of a datagroup splits the datagroup itself in half: if %
satisfies 0.P@C< 71>, then 192 satisfies 0.P@C<split(77)>. Axiom (d) says that merging

INRIA

Separation Logic Contracts for a Java-like Language with Fork/Join 21

two half datagroup parameters into a whole, merges the datagroup itself: if %, and
> both satisfy 0.P@C<split(7T)> then % * %, satisfies 0.PeC<7>. Axioms (e) and (f)
are technical conditions used to update the global permission table: (e) when fields get
finalized and (f) when threads get joined.

It is easy to verify that the axioms for predicate environments are closed under tak-
ing pointwise infima. Thus, Pred(ct) is a complete lattice with respect to the pointwise
order inherited from the underlying function space.

4.3 Kripke Resource Semantics

We define a relation “2;h; s |= pure(e)”. Intuitively, 2;h;s |= pure(e) holds whenever
2(0, f) < 1 forall heap cells 0. f that [[e]|2 depends on. Formally, the relation is defined
by induction on the structure of . We omit the routine definition of the partial function
[e]R that interprets expression e in heap h and stack s.

2;h;s = pure(m)

2;h;s = pure(d)

2;h;s = pure(op(€)) iff (Ve c€)(2;h;s = pure(e))

2;h;s = pure(e.f) iff 2;h;s = pure(e),[e]! = o0and 2(0,f) < 1

The semantic validity relation (I' - &;.%;s = F) is the unique well-typed relation
that satisfies the following statements (where [y, is the restriction of ' to Objld, and
F’ th I iff Fﬁ]p 2 th and FTVar = F‘Var):

r-&;(h,&,2)s = e iff 2;h;s |= pure(e) and [[e]]7 =
ure h:
M-&;(h,2,2):s = PointsTo(elf],me") iff{ fﬂh;;(po f)(Zr?d)rym[([e})];(N

2:h:s [= pure(e), [e]& = o

rEé&:i(h,2,2):s and [[71] < 2(0, join)

= Perm(e[join], M) iff {

Nr=é&;(h,2,2),s = Pure(e) iff 2;h;s = pure(e)
M-&:%;s = null.k<ip> iff true
M-&%s E oPeC<m iff { %E‘Igég)(; ;f’:;;"fl
M-&%s E oP<m iff { (a(ggc(‘f?;?(9; 0_(?;,;)&2‘11)
FH&ss = FxG iff { (FH}—%:;%)(SQ\;:F%;; ?&5;%;5 E=G)

(VI Dpp T, 2")(
r-&%;s = F-xG iff RHR andT' - &% ;s =F
=TM"+&%*ZsEG)
r-&%,s = F&G iff T-&%;sEFandlT-&,%;5 =G
re&%s E FIG iff T-&%Z,sEForlt&8,%,5=G
e L . (3m(Tpp - m: T and
Fr=&%s E (exTa)(F)iff { b &%= Fln/al)

(V' 2np T, %" > 2, T0)(
F-&:%:s | (GaTa)(F)iff § ThoF %, o and [Fm:T

= M"+&% ;s =F(m/a))

RT n° 6430

22 Haack & Hurlin

4.4 Predicate Definitions

We need to relate abstract predicate environments to the predicate implementations in
the class table. This is a little tricky, because predicate definitions can be recursive.
We therefore define a class table ct’s predicate environment as the least fixed point of
a functional ..

pbody(0.P<77>,C<i>) = F ext D<i’>
C # Object and arity(P,D) =n = F’ = o0.PeD<7t, >
C =0bject or PisrootedinC = F’=true

1 . . | !
Fat(8)(PCC)(TL.%,0,7) = { L iffsto %, - &1 2:0 =F +F

0 otherwise

Here, pbody(0.P<f’>,C<i>) looks up 0.P<77'>’s definition in the type C<7> and re-
turns its body F together with C<7>’s direct superclass D<71’>.

In order to guarantee that .% has a fixed point, we require that all cycles in the
predicate dependency graph consist of positive dependencies only. (P@C depends neg-
atively on P@D, if P@D occurs in P@C’s definition as the left descendant of an odd
number of implications.) See Appendix L.10 for details.

Now we can state the partial correctness theorem:

Theorem 3 (Partial Correctness)
If (ct,c) :candinit(c) —& (h,ts|ois(sinassert(F);c)), then (M- &;(h, #,2);s =
Flo]) forsome T, & = . %«(&),?,2 and 0 € LogVar — SpecVal.

5 Proof Theory

Ultimately, we are interested in algorithmic verification. For this reason, we do not
want to base our Hoare logic on a Kripke semantics, but instead use a proof-theoretic
logical consequence relation, as this seems more amenable to automation.

Our logical consequence judgment has the following forms:

r;v;FFG from V’s point of view, G is a logical consequence of the *-conjunction of F
MveEF from V’s point of view, F is an axiom

In the former judgment, F is a multiset of formulas. The parameter v represents the
receiver. The receiver parameter is needed to determine the scope of predicate defi-
nitions: a receiver V knows the definitions of predicates of the form v.P, but not the
definitions of other predicates.

These main judgments depend on three auxiliary judgments, namely, Semantic va-
lidity of boolean expressions I' = e (“e is valid in all well-typed stack/heap pairs™),
syntactic purity judgments F e : v* (“if all expressions occurring in F are pure, then
e is pure”), and F - G : v (“if all expressions occurring in F are pure, then all expres-
sions occurring in G are pure”). The latter two judgments are needed because in our
system the set of pure expressions grows dynamically when fields are declared final.

Here are the technical definitions of the syntactic purity judgments: Let F e : v/
iff all field selection expressions €’.f that occur in € also occur in F; let F - G : v iff
F Fe: v for all expressions e that occur in G.*

3This definition is invariant under or-conversions, because bound variables in F must not occur in field
selection expressions by syntactic restriction.

INRIA

Separation Logic Contracts for a Java-like Language with Fork/Join 23

The logical consequence judgment is driven by natural deduction rules that are
common to the logic of bunched implications [25] and linear logic [31]. In addition,
there is a special introduction rule for the predicate Pure(e) and a number of axioms
that describe properties of our particular application domain. We admit weakening,
because we do not want to reason about memory leaks, as Java is a garbage-collected
language.

Logical Consequence, I';v;F - G:
I
(Id) (Ax) (Pure Intro)

MvFF,G:o MvkG MvFF,G:o FFG:V Nvi:FFG Flre:v Tte:T
r;v;F.GFG rv;F-G ;v;F - G*Pure(e)

And the usual natural deduction rules for the other logical operators.
L]

An important axiom is the split/merge axiom, which allows to split and merge frac-
tional permissions. In order to formulate this axiom, we homomorphically extend the
syntactic split-operator to arbitrary formulas:

split(e) = e split(Pure(e)) = Pure(e) split(T.k<7>) £ m.k<split(71)>
split(PointsTo (e[f],m,e')) = PointsTo (e [f],split(m),e")
split(Perm(e[join],m)) = Perm(e[join],split(7))
split(F lop G) = split(F) lop split(G) split((qt T a) (F)) = (qt T a) (split(F))
The split/merge axiom is now formulated like this:
MvEFsupp = [;vEF = (split(F) *split(F))

The judgment (I;v - F : supp) (“F is supported”) will be defined in Section 6.3. We
note here that the PointsTo-predicate and boolean expressions are supported. Thus,
as an instance of split/merge we get € *— (e*e). This means that boolean expressions
are copyable; they never get consumed.
For the following axioms, recall that “F assures G” abbreviates “F —x (F *G)”.
v true [VE false-xF
;v (PointsTo(e[f],me’) & PointsTo(e[f],77,e”)) assures ¢’ ==¢”
(Tke:T) = INvkPure(e) -+ (exTa)(e==qa)
(Thee:T AT X:TEF:0)=T;vik (Fle/x]*e==¢") -*F[e//x]

The first of the following axioms lifts semantic validity of boolean expressions to our
proof theory. The second axiom allows to apply class axioms. Here, axiom(t<7'>) is
the *-conjunction of all class axioms in t<77> and its supertypes.

(Cl=tep | tey 1 €) = MV (e *ey) —x¢€
(M Em:t<il'> A axiom(t<i'>) =F) = ;v F[rm/this]

What is missing are the axioms for abstract predicates. The first of these axioms allows
predicate receivers to replace their own abstract predicates by their definitions:

(T v :C<i’'> A pbody(V.P<TT, 7'>,C<T’>) = F ext D<iT"'>)
= ;v V.PeC<TT, 71> *x—* (F *v.PeD<7>)

RT n° 6430

24 Haack & Hurlin

Note that the current receiver, as represented on the left of the I, has to match the pred-
icate receiver on the right. This rule is the only reason why our logical consequence
judgment tracks the current receiver. Note also that P@C may have a higher arity than
PeD: following Parkinson/Bierman [27] we allow subclasses to extend predicate ari-
ties.

The following axioms capture some facts about abstract predicates that are always
true, making crucial use of the ispartof derived from.

v null. k<> ;v mPe0bject I vF mPeC< > ispartof m.P<ip>
C <D = TI;vk mPeD<ip ispartof mPeC<it, >

The next axiom deals with predicates with missing parameters (resulting from arity
extensions in subclasses). The missing parameters are existentially quantified.

;v mP<iD> *—* (ex T @) (7T.P<7T, 0>)

Finally, there are axioms to drop the class modifier C from 11.P@C if we know that
C is T's dynamic class.

[vE (mPeC<i> * C isclassof 1T) —* T.P<i>
(Cisfinal or Pis final inC) = I;vF mPeC<> —x mP<i>

We note that our treatment of subclassing for abstract predicates differs from Parkin-
son/Bierman [27] in that it formalizes the “stack of class frames” from Fihndrich/DeLine’s
typestate system [13] (also present in the Boogie methodology [3]). The advantage of
the stack of class frames is that it enables full modularity, whereas Parkinson/Bierman
have to reverify inherited methods. We find that our separation logic explanation of the
stack of class frame, using the ispartof predicate, is quite concise.

To state soundness for our proof theory, we define semantic entailment. First, we
define a semantic counterpart to the syntactic purity judgment:*

2;hisk=F v iff 2;h;s = pure(e) for all field selection subexpressions € of F
Now, we define semantic entailment. (As usual, we let F; * --- ¥y = true.)

Mr-&%s=F:v iff TrE&:2%2;s=F and%gb;%hp;s\:F V)
r-&%,s=F,....,Fn: v iff FrE&ZsEF*---*xFy: v

rM-&FEG:Vv iff V[, Z,8)THERSEF:V = THERSEG:V)
Theorem 4 (Soundness of Logical Consequence) If (I;0;F - G) and (&) = &,
then THF&FEG: V).
6 The Verifi cation System

6.1 Method Types and Predicate Types
Method types are of the following form:
MT € MethTy ::= <T a>reqF;ens G;Um(VT) (scope of &,Tis T,F,G,U,V)

4This definition is invariant under o-conversions, because bound variables in F must not occur in field
selection expressions by syntactic restriction.

INRIA

Separation Logic Contracts for a Java-like Language with Fork/Join 25

The function mtype(m,C<7>) looks up m’s type in the smallest superclass of C< 7>
that declares m. It also replaces a post-condition G found in the program text, by
(exU result) (G) and makes the self-parameter explicit as the first method parame-
ter. Thus, method types MT always have at least one parameter. The methods fork and
join are special cases: mtype(fork,C<7>) takes run’s precondition as the precondi-
tion and true as the postcondition; mtype(join,C<>) takes run’s postcondition as
the postcondition and true as the precondition.

Our notion of method subtyping generalizes behavioral subtyping. It is defined in
terms of proof-theoretic logical consequence:

Method Subtyping, [- MT <: MT and I" - fin MT <: fin’ MT":

I

(Mth Sub) m#run
T'<:T U<:U V, <:Vé V' <:V G=(exUa”)(Gy) G = (exU’a") (G6)
ML1p: Vo;lg;true - (faT/a) (£aV/T) (F/ - (exW a’) (F x (faU a”) (Gy —* G6)))
FH<Ta,Wa'>reqF;ens GGUMVglp,V D) <: <T'a@>reqF’;ens G';U'm(Vj1p,V'D

(Run Sub) G = (exvoid a)(Gy) G’ = (exvoid o) (G6)
Vo <tV I,1o:Vo;lg;true - (F/ =+ F) x (favoid a) (Gy —* G{)

I reqF;ens G;void run(Vyly) <:req F';ens G';void run(V(; I9)
For qualified method types: T+ fin MT <: fin’ MT’ iff fin =& A [= MT <: MT’
L

Example 1 (Behavioral Subtyping)
fT/,U,Vp,V <:T,U’,V§,V and G = (exU a’) (Gp) and G’ = (exU’a’) (G}
and 1 : Vo3l true - (fa T/@) (£aV/T) ((F/ —* F) * (faU a’) (Go —* G})),
then <T a@>reqF;ens G;UmVy 1,V D <:<T'@>reqF’;ens G';U'm(Vjio,V'D).

Example 2 (Auxiliary Variable Elimination)

IfD<:Cand(a:TkFFG:o¢),then
<T a>reqF;ens G;void m(C1) <:req (exT a) (F);ens (exT a) (G);void m(DI).

Note that the left method type is not a behavioral subtype of the right one.

For predicates, we allow to extend their arity in subclasses. On the other hand,
we disallow arity extensions for datagroups, because the existential quantification over
missing arguments would render the merge axiom for datagroups unsound.

6.2 Hoare Triples

Our judgment for commands combines typing and Hoare triples. We present the judg-
ment in an algorithmic style without structural rules. Hoare triples have the forms
(M;vE{F}c:T{G}) and (I';v+ {F}hc{G}), where in the former the postcondition G
is always of the form G = (ex T a) (G'). In these judgments, V is the receiver param-
eter which is needed because the logical consequence judgment depends on it (in order
to determine the scope of predicate definitions). In an implementation, the receiver pa-
rameter V could be omitted because in source code we always have V= this. We make
the receiver parameter explicit, because we want our judgments to be closed under
value substitutions. We will write (I;vH F : o) to abbreviate [HF : o A T v:0bject.

RT n° 6430

26 Haack & Hurlin

Hoare Triples, ;v {F}c: T{G} and ;v {F}hc{G}:
I

(Seq) (Va) T,a:THG:o
Mv;FEF vk {F'thc{E} T;v-{E}c:T{G} r-w:T'<:T TvFEFEGw/al
M;vE{F}thc;c: T{G} MvE{Fiw:T{(exT'a) (G}
Dcl) [(€F,G (FinDcl) 1€ F,G,v
Me:T;vE{F*¢==df(T)}c:U{G} FrEe:T Ta:T,vE{F*1==/(}c:U{G}
MvE{F}T ¢c:U{G} MvE{F}final T 1=¢;c: U{G}

(Unpack) a ¢F,G
Ma:T,v-{F*E}c:U{G}
v {F* (exTa) (E) }unpack (exTa) (E);c:U{G}

(Var Set) (Op)
FFw:l(0) MvkFio (¢F Fop(W):F(f) TvkF:o (&F
MvE{FH=w{Fx{==w} rvE {F}=op(W){F *¢==o0p(W)}

(Cast) T <:T(¢)<:0bject @) vk {F*twic' :void{G}
MEw:0bject TVEFRT:o (&F MFw:bool TI;vk {F*w}c:void{G}
FvE {F1o= (TOW{F *£ ==w} Mvi {F}if (W) {c}else{c'}{G}

(Assert) (New) C<Ta>ect
rv;FEG r-m:T[a/a) C<i><:T() TvEF:o (EF
MvE {F}assert (G){F} MvE {F}=newC<>{F * (.init * C isclassof /}

(Gety Tv;FRF' Trwf:[() £¢F
(F',F") = (PointsTo(W[f],mu), £==u) or (F/,F") = (Pure(w.f), £==w.f)
v {Fl=w.f{F*F"}

(FldSet) THu:C<m> TfefldC<mp) THw:T
MvEF:o (fin,F’) = (g, PointsTo (UL f], 1,w)) or (fin,F’) = (final, u.f == w)

;v {F*PointsTo(ulf]l,1,T) Hinu.f=w{F*F'}

(Call) m=join = F’'=fr-Perm(u[joinl,1) m=# join = fr=all
mtype(m,t<7p>) = fin <T a>req G;ens (exU a’) (G'); U m(t<i>1p,W)
MvkEF:o (¢F o= (u/ip,/a,w/T) TFu @, w:t<i>, T[o],W[o] Ulg]<:T(¢)

MviE{F*F'*u!=null* G[g]}=um<i">(W){F * (exU[o] a’) (a’==¢* fr-G'[o]) }

In the verification rule (Dcl), df (T) is the default value of type T. The £.init predicate
in (New), *-conjoins the predicates PointsTo(¢[f],1,df(T)) forall fields T f in £’s
class, plus Perm(/[join],1) in case ¢ has type Thread. In the verification rule for
join-calls (an instance of (Call)), fr ranges over linear combinations. These represent
numbers of the forms 1 or 31, bit; - %:

bit € {0,1} bits ::= 1 | bit,bits fr € BinFrac == all | fr() | fr(bits)

The scalar multiplication fr - F is defined as follows: all-F =F, fr() - F = true, fr(1) -
F = split(F), fr(0,bits) - F = fr(bits) - split(F), and fr(1,bits) - F = split(F) * fr(bits) -
split(F). For instance, fr(1,0,1) - F *=* (split(F)*split>(F)).

INRIA

Separation Logic Contracts for a Java-like Language with Fork/Join 27

6.3 Supported Formulas, Datagroup Formulas, Join Postconditions

Recall the split/merge axiom: ;v F :supp = ;vEF *—x (split(F)*split(F))

We do not have space for the inductive definition of (I;vF F : supp): Put shortly,
it says that F does not contain —*, |, fa, abstract predicates other than datagroups, and
that all existentials in F have unique witnesses:

MN-T:o Fa:T;vbkF:supp Ta:T,a’:T;v;truet’' F& Flo’/a] —*a==a’
vk (exTa)(F) :supp

The ' in the premise of this rule is a restricted logical consequence judgement that
disallows the application of the merge direction of split/merge (needed to prevent cir-
cularities in our soundness proofs).

We require that formulas that define datagroups must be supported. In addition,
datagroup formulas must be fully permission parameterized, i.e, they must not contain
permission constants or permission variables that are bound by class parameters.

Postconditions for join are also required to be supported, but for those the unique
witness proof must not use class axioms and opening/closing of abstract predicates.
These conditions ensure that supportedness is closed under formula splitting. Support-
edness of join’s postcondition is only needed to enable that multiple joiners of the
same thread can share the joined thread’s resources for concurrent reading. Support-
edness of join’s postcondition is not needed in a language with parallel composition
(because multiple joiners are not possible) or in a logic without fractional permissions
(because concurrent reading is not possible).

We omit the judgment “ct : ¢” for good class tables. For programs, we define
(ct,c) : o iff (ct: © and main : Thread;main - {true}c: void{true}).

7 Preservation

Good States, st : ¢, Good Thread Pools, Z ts : ¢:

I

(State) (Empty Pool) (Cons Pool)

h,Z,2)ts:0 Zitio Z'tsio dom(Zhnp) =dom(%)
{h,ts): o RZE0:0 R*xF Ft|ts:o

Let post(C<7>,run) be run’s postcondition in C<f>. Let (I'+ o : [') whenever
0 € LogVar — SpecVal, dom(g) = dom(I"’) and (F'[o] - o(a) : ' (a)[o]) forall a in
dom(0). Letcfv(c) = {a € fv(c) | o occurs in an obj. creation command ¢=newC< 7> }.
Good Threads, ZFt: ¢
I
(Thread) ~ Zg)o(0, join) < [[fr] fr=allor (3% > %)(I - &:%';s = G[o/this])
Fa(&)=6& Tro:T" IIMEs:o cfv(c)Ndom(F)=0 post(h(0);,run) =G
rolk&;%;sEF[o]:v T,I";rt{F}c:void{fr-G[o/this]}
ZFois(sinc):o

Intuitively, the type environment [assigns types to object ids and read-write variables,
and " assigns types to logic variables that got introduced by existential unpacking.

Theorem 5 (Preservation) If (ct: o), (st: o) and st — st’, then (st’: o).

RT n° 6430

28 Haack & Hurlin

8 Comparison to Related Work and Conclusion

Our general contribution compared to type-based race condition checkers [1, 7] and
logical verification systems [| 8] for concurrent Java-like languages is support for fork/join
synchronization. Compared to permission-accounting separation logic [0, |1], our
system supports object orientation, including subclassing, dynamic dispatch and data
groups. In contrast to our work, [1, 7, 18, 6, 11] all support lock-synchronization,
which we deliberately omit to focus on fork/join. Clearly, a general system will have
to support both lock and fork/join synchronization, as well as combinations thereof.

The only other work that integrates separation logic into a Java-like language (albeit
sequential) that we are aware of is by Parkinson and Bierman [26, 27]. We build on their
work, using abstract predicates, but extend it to a concurrent language and combine
abstract predicates with fractional permissions. To our knowledge the combination of
abstract predicates and fractional permissions is novel.

Boyland and Retert [9] present a type-and-effect system that is closely related to
separation logic. They use their system to explain the relation between write-effects
and uniqueness.

Recent work by Bierhoff and Aldrich [5] combines typestates and permissions (in-
cluding fractional ones) to specify object usage protocols. They do not treat concur-
rency. Like us, they use iterators as an example. However, they do not allow linear
implication in pre- and postconditions. As a result, their usage protocol regulates ac-
cess to the collection itself, but not access to the elements of the collection (i.e., they
do not account for the dashed arrows). Consequently, in concurrent programs, their us-
age protocol would not prevent data races. Krishnaswami [19] presents a higher order
separation logic specification of iterators that is related to ours. His iterator does not
have a remove-method and his language is sequential.

Gotsman and others recently adapted concurrent separation logic to more realistic
concurrency primitives, including fork/join [15]. They do not support concurrent read
access. In particular, they do not support read-sharing of join’s postconditions like we
do. A bit surprisingly to us, they require that fork’s precondition is a precise predicate.

Conclusion. We have presented a variant of concurrent separation logic with frac-
tional permissions for a Java-like language with fork/join and proved its soundness.
Interesting future work includes algorithmic checking and extension to handle lock
synchronization.

Acknowledgments. We thank Marieke Huisman and Erik Poll for their continuous
and very helpful feedback.

A Examples
A.1 A Simple Fork/Join Example

Our first example is a recursive computation of the n-th Fibonacci number that runs re-
cursive calls in new threads. The example is taken from Lea’s collection of patterns [20,
§4.4.1.4]. Although the example is unrealistic because there are faster non-recursive
algorithms to compute Fibonacci numbers, it nicely illustrates how our system works
with fork () and join().

class Fib ext Thread {

INRIA

Separation Logic Contracts for a Java-like Language with Fork/Join 29

int number;

req init;
ens PointsTo(this[number],1,n) * Perm(this[join],1);
void init(int n) { number = n; }

req Perm(number,1);

ens Perm(number,1);

public void run() {

if (! (number < 2)){

Fib f1 = new Fib(); f1.init(number-1);
Fib f2 = new Fib(); f2.init(number-2);
f1.fork(); f2.fork(Q);
f1.join(); £2.join();
number = f1.number + f2.number;

}
}
}

We do not verify the functional behavior of this algorithm because we would need extra
machinery (such as axiomatizing the Fibonacci function) but we prove race freedom.
Here is the proof outline for run():

{ Perm(this[number],1) }
(Because we have Perm(this[number],1), we can read this.number)
if (! (this.number < 2)){
{ Perm(this[number],1) }
Fib f1 = new FibQ);
{ Perm(this[number],1) * f1.init }
f1.init (number-1);

{ Perm(this[number],1) * PointsTo(f1[number],1,number-1) *

Perm(f1[join],1) }
Fib £2 = new Fib();

{ Perm(this[number],1) * PointsTo(f1[number],1,number-1) *
Perm(f1[join],1) * f2.init }

£2.init (number-2);

{ Perm(this[number],1) * PointsTo(f1[number],1,number-1) *
Perm(f1[join],1) * PointsTo(f2[number],1,number-2) =*
Perm(f2[join],1) }

(We use the precondition of run() as the precondition for fork())

f1.fork();

{ Perm(this[number],1) * Perm(f1[join],1) *
PointsTo(£2[number],1,number-2) * Perm(f2[joinl,1) }

(We use the precondition of run() as the precondition for fork())

£2.fork();

{ Perm(this[number],1) * Perm(f1[join],1) * Perm(f2[join]l,1) }

(We use the postcondition of run() as the postcondition for join().

Because we have Perm(fi[join],1), we have full access to
the postcondition of f1.run())
f1.join();
{ Perm(this[number],1) * Perm(f1[number],1) * Perm(f2[joinl,1) }

RT n° 6430

30 Haack & Hurlin

(We use the postcondition of run() as the postcondition for join().
Because we have Perm(f2[join],1), we have full access to
the postcondition of £2.run())
£2.join();
{ Perm(this[number],1) * Perm(f1[number],1) * Perm(f2[number],1) }
(Because we have Perm(this[number],1), we can write to this.number.
In addition, because we have Perm(f1[number],1), we can read f1.number
(and similarly for £2.number).)
this.number = f1[number] + f2[number];
{ ditto }
(Dropping some clauses)
{ Perm(this[number],1) }

}

A.2 An Example with Recursive and Overlapping Datagroups

Our next example is a linked list implementation of a class roster that collects student
identifiers and associates them with grades. We design the roster interface so that
multiple threads can concurrently read a roster. Moreover, when a thread updates the
grades we allow another threads to concurrently read the student identifiers.

Objects of type Roster have two datagroups with two permission parameters each:

datagroup of student ids and links between the student entries
ids_and_links<p,qg> p is the permission for the student ids

q is the permission for the links

datagroup of grades and links between the student entries
grades_and_links<p,q>| p isthe permission for the grades

q is the permission for the links

Note that the two datagroups overlap on the links. Here is the separation logic contract
for Rosters:

interface Roster {

group ids_and_links<perm p, perm q>;
group grades_and_links<perm p, perm g>;

axiom state<p> *-* (ids_and_links<p,p/2> * grades_and _links<p,p/2>)

req grades_and_links<1,p> * ids_and_links<q,r>;
ens grades_and_links<1,p> * ids_and_links<q,r>;
void updateGrade(int id, int grade);

req ids_and_links<p,q>; ens ids_and_links<p,q>;
bool contains(int id);

}
Here are informal interpretations of the method contracts:

updateGrade (id,grade): Requires write access to the grades and read access to the student
ids and the links. (We omit the quantifiers over the logic variable p, q, r because they can
be inferred.)

contains(id): Requires read access to the student ids and the links. (We omit the quantifiers
over the logic variables p, q because they can be inferred.)

INRIA

Separation Logic Contracts for a Java-like Language with Fork/Join 31

Our implementation also contains an init ()-method:

init(id,grade,next): Plays the role of a constructor. Requires write access to the fields
of this (by precondition init) and write access to the state of next (by precondition
next.state<1>). Ensures write access to the roster (by postcondition state@RosterImpl<1>).

Note that init () ’s postcondition refers to the implementation class RosterImpl. This
is the reason why we cannot specify it in the interface (as interfaces do not know about
their implementations).

final class RosterImpl impl Roster {
int id; int grade; Students next;

group ids_and_links<perm p, perm g> =

Perm(id,p) *

(ex RosterImpl x)(PointsTo(next,q,x) * x.ids_and_links<p,q>);
group grades_and_links<perm p,perm gq> =

Perm(grade,p) *

(ex RosterImpl x)(PointsTo(next,q,x) * x.grades_and_links<p,q>);

extends group state<perm p> by
ids_and_links@RosterImpl<p,p/2> * grades_and_links@RosterImpl<p,p/2>;
req init * next.state<1>; ens state<1>;
void init(int id, int grade, Students next) {
this.id = id; this.grade = grade; this.next = mnext;
}
req grades_and_links<1,p> * ids_and links<q,r>;
ens grades_and_links<1,p> * ids_and_links<q,r>;
void updateGrade(int id, int grade) {
if (this.id == id) { this.grade = grade; }
else if (next != null) { next.updateGrade(id,grade); }
}
req ids_and_links<p,q>; ens ids_and_links<p,q>;
bool contains(int id) {
bool b = this.id==id; if('b && next'!'=null){ b=next.contains(id); }; b

}
}

A.3 A Usage Protocol for Iterators

We present a doubly-linked list implementation of the Iterator interface from Sec-
tion 2.5. In this example, we use regular Java and wrap contracts into special comments
in the style of JML [12]. We also use the field and predicate modifier spec_public as
additional syntax sugar. (This modifier is also part of JIML [21].)

 Declaring a (possibly private) field f spec_public introduces a singleton datagroup
f<p,x>, where p is the access permission for this field and X is the value contained in

f:

Tf,
spec_public Tf £ group f<permp,T x>=PointsTo (this[f],p,X);
axiom (f<p,x>& f<q,y>) assures x ==y

RT n° 6430

32 Haack & Hurlin

¢ Declaring a predicate spec_public exports its definition as an axiom. For predicate
definitions in class C:

pmod P<T %>=F;
axiom P@C<X> *-x F

=4

spec_public pmod P<T x>=F =
* Declaring a predicate extension spec_public exports the extension as an axiom. For
predicate extensions in class C extending D:

. - ___ a extendspmod P<Tx>=F;
spec_public extends pmod P<T x>=F = axion POC<K> %—% (F % POD<y>)

where ¥ is the prefix of X that matches P@D’s arity

A.3.1 The Collection Interface

interface Collection {

//@ req init; ens state<1>;
void init();

//@ req state<l> * x.state<l1>; ens state<1>;
void add(Object x);

//@ req state<p>; ens result.ready;
Iterator/*@<p,this>@*/ iterator();

A.3.2 The lterator Interface

We repeat the Iterator interface from Section 2.5:

interface Iterator/*@<perm p, Collection iteratee>@x/ {

//@ pred ready; // prestate for iteration cycle
//@ pred readyForNext; // prestate for next()
//@ pred readyForRemove<Object element>; // prestate for remove()

//@ axiom ready -* iteratee.state<p>; // stop iterating

//@ req init * c.state<p> * c==iteratee;
//@ ens ready;
void init(Collection c);

//@ req ready;
//@ ens (result -* readyForNext) & (!result -* ready);
boolean hasNext();

//@ req readyForNext;

//@ ens result.state<p> * readyForRemove<result>
//@ * (result.state<p> * readyForRemove<result> -* ready);

INRIA

Separation Logic Contracts for a Java-like Language with Fork/Join 33

datagroup: state associated with the node element this.val

<p>
elem<p p is the permission for this datagroup
datagroup: list prefix left of this (including element states)
left<p> . . .
p is the permission for this datagroup
right<p> datagroup: list postfix right of this (incl. element states)

p is the permission for this datagroup

succeeds<p,x>

datagroup: entire list (including element states)
p is the permission for this datagroup

x is the previous node, x !=null

(Because x !=null, this cannot be the header.)

connects<p,Xx,y>

datagroup: entire list (including element states)

p is the permission for this datagroup

x is the previous node, x ! =null

y is the next node, y !=null

(Because x,y !=null, this cannot the header or tailer.)

succeedsBoth<p,x,xval,y>

datagroup: entire list (incl. elem. states) except xval.state
p is the permission for this datagroup

x is the previous node, x ! =null

xval is the element of the previous node

y is the node two before this (i.e., previous to x), y !=null
(Because x,y !=null, this or x cannot be the header.)

Object next();

Figure 2: Node predicates

//@ req readyForRemove<_> * p==1;

//@ ens ready;
void remove();

A.3.3 The Node Class

Nodes have three fields: prev points to the previous list node, val points to the node
element, and next points to the next list node. We implement doubly-linked lists with
header and tailer nodes (whose val fields are null). The header node is the only list
node whose prev field is null; the tailer node is the only list node whose next field
is null. The Node class defines several predicates. These are summarized informally

in Figure 2.

final class Node {

/*@ spec_public @*/ Node prev;
/*@ spec_public @*/ Object val;
/*@ spec_public @*/ Node next;

//@ spec_public group elem<perm p> =

RT n° 6430

34 Haack & Hurlin

//@ (ex Node x)(val<p,x> * x.state<p>);

//@ spec_public group left<perm p> =
//@ (ex Node x)(prev<p,x> * x.next<p,this> * x.elem<p> * x.left<p>);

//@ spec_public group right<perm p> =
//@ (ex Node x)(next<p,x> * x.prev<p,this> * x.elem<p> * x.right<p>);

//@ spec_public extends group state<perm p> by
//@ left<p> * elem<p> * right<p>;

//@ spec_public group succeeds<perm p, Node x> =
//@ right<p> * elem<p> * prev<p,x> * x!=null *
//@ x.next<p,this> * x.elem<p> * x.left<p>;

//@ spec_public group connects<perm p, Node x, Node y> =
//@ prev<p,x> * x!=null * elem<p> * y!=null * next<p,y> *
//@ x.left<p> * x.elem<p> * x.next<p,this> *

//@ y.prev<p,this> * y.elem<p> * y.right<p>;

//@ spec_public group succeedsBoth<perm p, Node x, Object xval, Node y>
//@ right<p> * elem<p> * prev<p,x> * x!=null *

//@ x.next<p,this> * x.val<p,xval> * x.prev<p,y> * y!=null *

//@ y.next<p,this> * y.elem<p> * y.left<p>;

//@ axiom
//@ init -* state<i>;

//@ req val<p,x>;
//@ ens val<p,x> * x==result;
Object getVal() { return val; }

//@ req prev<p,x>;
//@ ens prev<p,x> * x==result;
Node getPrev() { return prev; }

//@ req next<p,x>;
//@ ens next<p,x> * x == result;
Node getNext() { return next; }

//@ req val<l,_>;
//@ ens val<l,x>;
void setVal(final Object x) { val = x; }

//@ req prev<i,_>;
//@ ens prev<l,x>;
void setPrev(final Node x) { prev

[l
el
“

//@ req next<1l,_>;
//@ ens next<1,x>;

INRIA

Separation Logic Contracts for a Java-like Language with Fork/Join 35

void setNext(final Node x) { next = x; }

A.3.4 The List Class

class List implements Collection {
/*@ spec_public @*/ Node header;

//@ spec_public extends group state<perm p> by
//@ (ex Node x,y) (header@List<p,x> * y.succeeds<p,x> * y!=null);

//@ req init;

//@ ens state<1>;

public void init() {
header = new Node();
final Node tailer = new Node();
tailer.setPrev(header);
header.setNext (tailer);

//@ req state<p>;

//@ ens result.ready;

public Iterator/*@<p,this>@x/ iterator() {
final Iterator/*@<p,this>@*/ iter = new ListIterator/*@<p,this>Q*x/();
iter.init(this);
return iter;

}

//@ req state<l> * x.state<1>;

//@ ens state<1>;

public void add(final Object x) {
final Node newFirst = new Node();
final Node oldFirst = header.getNext();
o0ldFirst.setPrev(newFirst);
newFirst.setNext (oldFirst);
newFirst.setVal(x);
newFirst.setPrev(header);
header.setNext (newFirst) ;

//@ req state<p>;

//@ ens (ex Node x)(header@List<p,x> * result.succeeds<p,x> *
//@ result!=null);

Node getFirst() { return header.getNext(); }

RT n° 6430

36 Haack & Hurlin

Not only do we have to prove the method contracts, but also that the definition of the
state datagroup is indeed a legal datagroup formula. Expressed more formally, we
have to prove the following judgment (defined in Section H):

M;[';this - (ex Nodex,y) (this.header@List<p,x>*Y.succeeds<p,x>) : grp
where [= this: List and ' = p : perm

In particular, we have to prove that both existential quantifiers in this formula have a
unique witness. Expressed more formally, for the inner existential we have to prove
the following:

this:List,p:perm,x: Node, d : Node,a’: Node;this;true H, F(a)& F(a')*a==a’
where F(0) = this.header@List<p,x>* d.succeeds<p,x>

Here, I, is the merge-restricted logical consequence judgment, as defined in Section G.

A.3.5 The List Iterator Class

final class ListIterator/*@<perm p, Collection iteratee>@x/
implements Iterator/*@<p,iteratee>@x/

{
Node current;

//@ pred ready =

//Q (ex Node x,y)(

//@ PointsTo(current,1,x) * x!=null * x.succeeds<p,y> *
//@ (x.succeeds<p,y> —* iteratee.state<p>));

//@ pred readyForNext =

//@ (ex Node x,y,2z)(

//@ PointsTo(current,1,x) * x!=null * x.connects<p,y,z> *
//@ (x.succeeds<p,y> —* iteratee.state<p>));

//@ pred readyForRemove<Object yval> =
//@ (ex Node x,y,z)(

//@ PointsTo(current,1,x) * x!=null * x.succeedsBoth<p,y,yval,z> *
//@ (yval.state<p> * x.succeedsBoth<p,y,yval,z> -* iteratee.state<p>)
/7@);

//@ req init * c.state<p> * c==iteratee;

//@ ens ready;

public void init(final Collection c) {
current = ((List)c).getFirst();

}

//@ req ready;
//@ ens (result -* readyForNext) & (!result -* ready);
public boolean hasNext() {

return current.getNext() != null;

INRIA

Separation Logic Contracts for a Java-like Language with Fork/Join 37

}

//@ req readyForNext;
//@ ens result.state<p> * readyForRemove<result> *
//@ * (result.state<p> * readyForRemove<result> -* ready);
public Object next() {
final Object x = current.getVal();
current = current.getNext();
return x;

}

//@ req readyForRemove<_> * p==1;

//@ ens ready;

public void remove() {
final Node newPrev = current.getPrev().getPrev();
newPrev.setNext (current) ;
current.setPrev(newPrev) ;

}

}

B Notational Conventions and Derived Forms
We sometimes apply logical operators to sequences:
*() 2 true *(F,G)=F**(G) &()£true &(F,G)=F & &(G)

We sometimes use the following notation for sequences of formulas: If F[€] is a for-
mula with an occurrence of a sequence € where a single e is expected, then F [€] is short
for the formula sequence (F[e(],...,F[en]). If several sequences occur in the same
formula, we implicitly assume that they all have the same length. For instance, when
we write F[€,V], we implicitly assume |€| = |V| = n and mean (F[eq,v1],...,F[en,Vn]).
We write (qt T @) (F) as a shorthand for (qt T; 1) (... (qt Thapn) (F)), implicitly
assuming that [T| = |a@| =n.

e.k<e> = (ex T @) (x(@ ==§€) * e.k<a@>) where T are the types of e.K’s parameters
(qtt<e>a) (F) £ (ex T a’) (x(a’ == 6) * (qtt<a’>a) (F))
where T are the types of t’s parameters

There is a similar derived form for commands:
If<Ta>W m(V1 andU = T[u/this,V/1):
f=u.m<e>(V);c = unpack (exUa) (*(a@ ==§)); /=u.m<a>(V);c
C Auxiliary Functions
Field Lookup, fld(C<i>) =T f:
I

(Fields Base) (Fields Ind) ~ fld(D<7[f/a]>) = F'
fin class C<T a> ext D</’> impl U {T f pd* ax* md*}
fld(Object) =0 fld(C<m>) = T[m/a) f,F
L

RT n° 6430

38 Haack & Hurlin

Method L ookup, mtype(m,t<7>) = fin mt and mbody(m,C<7>) = <a>(T).c:
I
(Mlkup Base)
fin class C<T’ a’> ext U’ impl V' {...fin<T @>specU m(V N {c}...}
mlkup(m,C<7>) = (fin <T a>spec U m(V D{c})[7r/a’]

(Mlkup Ind) m & dom(md*)
fin class C<T a> ext D<7’> impl U {fd* pd* ax* md*} mlkup(m,D<7[71/d]>) = md’
mlkup(m,C<7>) = md’

mbody(m,C<7>) £ <a>(this,N).c if mlkup(m,C<7>) = fin <T a>spec U m(V 1) {c}

Form ¢ {fork, join}:
mtype(m,C<ip>) fin <T a>req F;ens (exUresult) (G); U m(C<7> this,VT)
if mlkup(m,C<7>) = fin <T G>req F;ens G; U m(V N {c}
Form € {fork, join}:
mtype(fork,C<f>) = final reqF;ens (ex voida) (true); void fork (C<> 1)
if mtype(run,C<7>) =fin req F; ens G; void run(C<7> 1)
mtype(join,C<>) = final reqtrue;ens G;void join(C<7> 1)
if mtype(run,C<7>) =fin req F; ens G; void run(C<7> 1)

A

(Mtype Interface)
interface I<T a>extU{...<T'a’>reqF;ens G; U’ m(V'1) ...}

mtype(m, I<7>) = (<T' @’>req F;ens (ex U’ result) (G);U'm(I<f>this, V/'T))[71/d]
L]

In (Mtype Interface), note that we do not model Java’s “inheritance of method signa-
tures”, but instead require that each method signature is repeated in interfaces. This
is not a significant restriction, because inherited method signatures can be filled in at
compile time.

Predicate L ookup, ptype(P,t<f>) = fin pt and pbody(m.P<77> C<f’>) =F ext T:
I

plkup(init,Object) = pred init=true ext Object
plkup(init,Thread) = pred init=Perm(this[join],1) extObject
plkup(state,0bject) = group state<perm0>=true ext Object

(Plkup Base) plkup(P,U) = undef
fin class C<T’ a’> ext U impl V {... fin pmod P<T a>=F ...}
plkup(P,C<7>) = (fin pmod P<T a>=F ext Object)[7/d’]

(Plkup Extend) P # init
fin class C<T/ &’> ext U impl V {... fin ext pmod P<T a>by F ...}

plkup(P,C<7>) = (fin pmod P<T &>=F extU)[71/d’]

(Plkup Inherit) P & dom(pd*) plkup(P,U) = fin pmod P<T a>=F ext U’
fin class C<T’ a’> ext U impl V {fd* pd* ax* md*}
plkup(P,C<7>) = (fin pmod P<T a>=true ext U)[71/d’]

(Plkup init) C # Thread
fin class C<T’ @’> ext U impl V {T f pd* ax* md*}
plkup(init,C<i1>) = (pred init =PointsTo (this [f],1,df(T)) ext U)[fr/a’]

INRIA

Separation Logic Contracts for a Java-like Language with Fork/Join 39

pbody(T.P<'>,U) £ (F extV)[r/this, 7 /a] if plkup(P,U) = fin pmod P<T a>=FextV
ptype(P,C<7>) £ fin pmod P<T a> if plkup(P,C<7>) = fin pmod P<T a>=FextV
(Ptype Interface)

interface I<T a>ext U{...pmod P<T’a’>...} P #init
ptype(P, I<7>) = (pmod P<T' @’>)[71/a]

(Ptype Interface Implicit)
interface I<T a>ext U {pt* ax* mt*} P € {state,init} P & dom(pt*)

ptype(P,1<7>) = ptype(P,0bject)

arity(P,C) = n if (371)(ptype(P,C<7>) = fin pmod P<T &> and |G| = n)
L

Axiom L ookup, axiom (t<7>) = F:
I

true ifax* = ()
F *xaxiom(ax*) if ax* = (axiom F,ax*)

L=y & true if T=()or T = (Object)
axiom(T) = { axiom(U)*xaxiom(V) if T = (U,V)

axiom(ax*) = {

(Ax Class)
fin class C<T a> ext U impl V {fd* pd* ax* md*}
axiom (C<71>) = axiom(ax* [71/a]) * axiom((U,V)[7/a])

(Ax Interface)
interface I<T a>ext U {pt* ax* mt*}

| axiom (1<71>) = axiom (ax*[71/@]) * axiom (U [71/d]) |

D Typing Rules
D.1 Operator Types and Semantics

Let arity be a function that assigns to each operator its arity. We assume:

arity(==) = arity(&) = arity(]) =2 arity(1) £ arity(C isclassof) = 1

Let type be a function that maps each operator 0p to a partial function type(op) of type
{int,bool,0bject, perm}* (%) fint bool,perm}. We assume:

type(==) = { ((T,T),bool) | T € {int,bool,0bject,perm} } type(!) = { (bool,bool) }
type(C isclassof) = { (Object,bool) } type(&) = type(l) = { ((bool,bool),bool) }
Let [bool]" = {true,false}, [int]" = Int and [Object]" = dom(h) and [[pern]|" =
{split"(1)|n>0} and [Ty,..., Tn]" = [T1]" x --- x [Tn]". We assume that [op]" is
a function of the following type:

[opI" € Ut u)etype(on [T1" — [UI"

For the logical operators !, | and &, we assume the usual interpretations. == is inter-
preted as the identity relation. [[C isclassof]"(0) = true whenever h(0), = C<7>
for some 7, otherwise [[C isclassof]"(0) = false.

RT n° 6430

40 Haack & Hurlin

D.2 Type Environments and Types

A type environment is a partial function of type Objld UVar — Ty. We use the meta-
variable I to range over type environments. I"p, denotes the restriction of I' to Objld:

A

Tp = {(0,T)€l | 0€Objid}
We define a heap extension order on well-formed type environments:
[Dpp T iff "o, Fho, IO and [y, =y,
Good Environments, I - o:

I(Env) (vx € dom(M))(T=T(x):0) (Vo€ dom(I))(Thp FT(0):0)
(VGV"’" c dom(r))(r(a"al) #perm) (YaPe™ e dom(IN))(I(aP*™) = perm)
Mo

Note that types assigned to object ids cannot have free variables:
Lemmal If (I o), then (Mh, o).

Good Types, =T : o:

I

(Ty Void) (Ty Int) (Ty Bool) (TyRef) t<Ta>cct (TyPerm)
Mo Mo Mo Mo FEm:Tla/a)l Mo
[void: o int:o [+bool:o MN-t<iv: o [-perm:o

D.3 Values, Expressions, Formulas

Well-typed Values and Expressions, T =v: T, T+-m: TandlMFe:T:

I

(Val Null) (Val Int) (Val Bool) (Val 1d) (Val/Exp Sub)

M-tz o M=o M=o o F(v)=T N-e:T T<:U
It null:t<i> FEn:int +b:bool FrEv:T MN-e:v
(ExpGet) The:C<i> (ExpOp) T[Fe:U (ExpFull) (Exp Split)
T f e fld(C<ip) type(op)(U) =T M=o IFe:perm
M-ef:T M-op(e):T ME1:perm I+ split(e): perm
1

We extend the partial function ptype(P,t<71>) to predicate selectors:

_\ A ptype(P,t<i>) ift=C
ptype(PeC,t</>) = { undef otherwise

Well-typed Formulas, ' FF : o:

I
(Form Bool) (Form Points To) I 11: perm (Form Perm)

Ite:bool NN-e:U TfefldU) M-e:T M-rm:perm [Fe:Thread
MFe:o I FPointsTo(e[f]l,me") : o I+Perm(e[joinl, M) : ¢
(Form Pure) (FormPred) TFm:U
M-e:T ptype(k,U) =finpmod P<Ta> M+ :T
I+ Pure(e) : ¢ M mk<i>:o

INRIA

Separation Logic Contracts for a Java-like Language with Fork/Join 41

(Form Log Op) (Form Quant)
FrNF:o THF :0o NM-T:o MNa:THEF:o
Fr~FlopF' :o FrE@tTa)F):o

D.4 Runtime Structures
Well-typed Objects, I - obj : ¢:
(Obj) dom(0s) C dom(fld(C<7D>))
MEC<m>:o (Vfedom(os))(T f efld(C<i>) = Mos(f):T)
I+ (C<i>,08) : ¢

Note that we require dom(0s) C dom(fld(C<7>)), not dom(0s) = dom(fld(C<7>)).
Thus, we allow partial objects. This is needed, because our semantics of * splits heaps
on a per-field basis.

Well-typed Heapsand Stacks, T Fh:ocandlM-s:o:
I

(Heap) (Stack)
Mo [=fstoh (Yoedom(h))(TFh(o):o) M=o (Vxedom(s))(IFs(x): I (x))

lh:o MEs:o

Note that the heap typing judgment does not satisfy weakening, as (I F h : ¢) implies
dom(h) = dom(I"). This is intentional.

E Operational Semantics

We define functions that map types to their default values, and object types to their
initial object stores:

df: Ty — CIVal df(C<>) £null df(void) £null df(int) 20 df(bool) £ false
init : Ty — ObjStore init(C<m>)(f) £ df(T), if (T f) € fid(C<m>)
We extend the syntax by a return command.
c = ... |f=return(V);cC] ...

This command is not allowed to be used in source programs. Operationally, it is a
no-op. It is used as a syntactic marker for the “points” where the receiver changes. It is
associated with a special Hoare rule. Because the return command does not occur in
source programs, this Hoare rule is never used in actual program verifications. Its only
intent is to help us state a smooth global invariant.

(Return)
Frev:T ToFEGv/al T<:U [:U;pH{(exTa)(a==¢*G)}c:V{H}
r¢:U;ok{F}=return(v);c:V{H}

For the operational semantics of method calls, we define a derived form, ¢ « c; ¢/,
which assigns the result of a computation ¢ to variable £. In our applications of this
derived form, its argument C is always a source program command and we therefore
assume that ¢ does not contain return commands.

RT n° 6430

42 Haack & Hurlin

{«v;cC 2 f=return(v);c
(<U/lc);c £ Ullecd if 0 & fv(c), 0 £ 0
(«— (finalU1=/;c);¢/ = finalU1=¢;/«c;c if 1 ¢ fu(c))
(— (unpack (exTa) (F);c);¢’ £ unpack (exTa)(F);f«c;c ifa¢fv(c)
(< (hc;e);c/ = heslecc

Furthermore, we define sequential composition of commands:

c;¢’ £ voidl;l«c;¢ wherel¢ fv(c,c’)

We use the following abbreviation for field updates:
hfo.f —v] £ hlo (n(0),h(0),[f — V])

The state reduction relation —¢ is given with respect to a class table ct. We follow the
usual convention to omit the subscript ct unless we want to emphasize its existence.
State Reductions, st —¢t st’:
I
(RedDcl) £ ¢&dom(s) s =s[l~ df(T)]
{(h,ts| pis (sinT £;¢)) — (h,ts| pis (s'inc))
(RedFinDcl) s(f)=v ¢ =c|[v/I]
(h,ts| pis (sinfinal T 1=/;¢)) — (h,ts| pis (sinc’))
(Red Unpack)
(h,ts| pis (sinunpack (exT a) (F);c)) — (h,ts|pis(sinc))
(Red Var Set) s’ =s[¢— V]
(hts| pis (sinf=v;c)) — (h,ts| pis (s'inC))
(Red Op) arity(0p) = [v| [op]"(v) =w &' =s[¢—w]
{(h,ts| pis (sin £=0p(V);c)) — (h,ts| pis (s'inc))
(Red Get) §' =s[¢+— h(0),(f)]
(h,ts| pis (sin £=0.f;c)) — (h,ts| pis (s'inC))
(Red Set) h' =hlo.f]
{(h,ts| pis(sinfino.f=v;c)) — (h' ts|pis(sinc))
(RedCast) h(v); <:T & =s[{—V]
{(h,ts| pis (sin£=(T)v;c)) — (h,ts| pis(s'inc))
(RedNew) o¢dom(h) h' =h[o (C<ip,init(C<i>))] § =s[{~ 0
(h,ts| pis (sin £=newC<i>;c)) — (W, ts| pis(s'inc))
(Red If True)
(h,ts| pis (sin if (true){c}else{c’};c”)) — (h,ts| pis(sinc;c”))
(Red If False)
(h,ts| pis (sin if (false){c}else{c'};c”)) — (h,ts|pis(sinc’;c"))
(Red Call) m ¢ {fork,join}
h(0); =C<f'> mbody(m,C<7'>) = <a,a’>(lp,1).cm ¢ =cm[7/a,0/19,7/T]
(h,ts| pis (sin =0.m<7>(V); ¢)) — (h,ts| pis(sinf«c’;c))
(Red Return)
(h,ts| pis (sin {=return(v);c)) — (h,ts| pis(sin¢=v;cC))
(Red Fork) h(0); =C<> 0¢ dom(ts),{p} mbody(run,C<i>) =<>(1).c; Co=Cr[0/I]
(h,ts| pis (sin ¢=0.fork();c)) — (h,ts| pis (Sin =null;c) |0is (D inCo))

INRIA

Separation Logic Contracts for a Java-like Language with Fork/Join 43

(Red Join)

(h,ts| pis (sin £=0.join();c) | 0is (s inVv)) — (h,ts| pis (sin £=null;c)|ois (5" inV))
(Red Assert)

(h,ts| pis (sinassert(F);c)) — (h,ts| pis(sinc))

Note that, in (Red Call), the method body may have more logic parameters than the
caller supplies. This is because our notion of method subtyping allows to increase the
number of logic parameters in subtypes.

F Natural Deduction Rules
Logical Consequence, I';v;F - G:
I

(Id) (Ax) (Pure Intro)
MvFF,G:o MvkG MvFF,G:o FFG:V Nvi:FFG Flre:v The:T
rv,;F,GFG rv:FFG ;v;F - G*Pure (e)
(* Intro) (* Elim)
Mv;FEH Tvi;GHH, Mv;FFG G, T;v;E,G,GpH
Mv;F,GFH;xH, r;v;F.EFH
(—* Intro) (-* Elim)
Mv;F,Gi+Gy, FFGy:V Mv;FFEH —*xH, Tv;GFH,
Mv;FEG—*G, rv;F,GFH,
(& Intro) (& Elim 1) (% Elim 2)
Mvi;FFG, MviFEG, Mv;FFG &G, MVv;FFG &G,
Mv;FFG &Gy rv;FFG; rv;FFG,
(| Intro 1) (| Intro 2) (I Elim) T;v;FEFG) |G,
MmviFFG, FFGy: Vv Mvi;FFG, FFEG,:V Mv;E,Gi-FH TI;v;E,Go+HH
Mv;FFG |G, Mv;FEG, | G, rv;F,EFH
(BExIntro) T,a:TFG:o (ExElim) o ¢F,H
r=m:T [v;FEG[r/a] MV;EF(exTa)(G) T,a:T;v;F,GFH
Mv;FF (exTa)(G) r;v;E,FFH
(Fa Intro) (Fa Elim)
agF Ta:T;v;FFG Mv;FEEaTa)(G) TEm:T
MvFE (faTa) (G) r;v;F +Gr/a]

G Supported Formulas

We now explain the premise I";V - F : supp in the split/merge rule. We note first that,
if we did not have abstract predicates, split/merging atomic predicates (i.e, PointsTo,
Pure and boolean expressions) would be good enough. But if we want to split whole
datagroups (which are defined by composite formulas), we need to be able to split com-
posite formulas. It is easy to show the soundness of split/merge for all atomic predi-
cates, * and &. For the split-direction (left-to-right) only the soundness proof for linear

RT n° 6430

44 Haack & Hurlin

implication is problematic. For the merge direction, the cases for disjunction and exis-
tentials are problematic, too. Unfortunately, almost all typical datagroups are defined
by formulas that use existentials in the disguise of the derived form Perm(e[f],).
Fortunately, the merge axioms can be proven sound if existentials in split(F) have
unique witnesses. We say that (ex T a) (F) has a unique witness if the validity of
F[m/a] and F[r’/a] implies 7T== 17. Some simple examples:

e (exTa) (PointsTo(o[f], T, a)): This existential has a unique witness, because in
every model 0. f points to at most one value.

e (exT a) (PointsTo(a [f],7,0)): This existential does not have a unique witness, be-
cause there are models where more than one pointer to 0 exists.

* (experma) (PointsTo(0[f],a,p)): This existential does not have a unique witness.
In all models where &(0, f) =1 and h(0),(f) = p both 1 and split(1) are witnesses.

Informally, we define supported formulas as formulas F that do not contain —*, |,
fa, all predicate identifiers in F are datagroup identifiers, and all existentials in F have
unique witnesses. Formally, we define supportedness proof-theoretically:

We first define a variant of logical consequence that restricts the merge axiom. In
the following, let F*P range over formulas that do not contain —*, |, fa or predicate
identifiers that are not data group identifiers (but may contain existentials).

Weakly Merge-restricted L ogical Consequence, I';v; F , G:

I

The proof rules are the same as for [';v; F - G, except that we replace the split/merge axiom
by the following axioms:

;v i, FSP —x (split(FSP) *split(FSP))

FSP does not contain datagroup ids or existentials = ;v !, (split(FSP)*split(FSP)) —x FSP
L]

We also define a strongly merge-restricted logical consequence judgment +':

there is a proof of I";v; F HN G that does not use

rv;FH G iff
class axioms or opening/closing of abstract predicates

Now, we define the judgment (I';v - F : supp). The only interesting rule is (Supp Ex),
whose last premise enforces unique existential witnesses. All other rules are instances
of the well-typedness rules for formulas, restricted to operators that are unproblematic
for split/merge.

Supported Formulas, I';v - F : supp:

I
(Supp Bool) (Supp Points To) T f efld(U) (Supp Perm)
[-e:bool N-e:U M-m:perm e T [+e:Thread [F 7T:perm

[vEe:supp ;v PointsTo(e[f],me’) : supp ;v Perm(e[join], 1) : supp

(Supp Perm) (SuppPred) Tkm:U TH7:T
Mr-e:T ptype(k&™P,U) = fin group P<T &>
;v Pure(e) : supp ;v mK8P<iT> : supp

(SuppLog Op) lop € {*,&}
MvEF:supp ;vEF :supp

M;viEFlop F' :supp

INRIA

Separation Logic Contracts for a Java-like Language with Fork/Join 45

(Supp Ex)
M-T:o FMa:T;vEF:supp [a:T,a':T;v;truet F& Fla'/a]-+a==a’

MvE (exTa) (F) :supp

We also define weakly supported formulas (I';v F, F : supp). Formulas that implement
datagroups are required to be weakly supported.

this judgment is provable with the rules for (F;v F : supp), except

(T5vFw F - supp) iff { that in the last premise of (Supp Ex) the I’ is replaced by

The formula that implements the header datagroup in the List class in Section A.3 is
an example of a formula that is weakly supported but not supported.

Lemma 2 If (T;vE F :supp), then (F;v E split(F) : supp).

Proof. Note that all rule and axiom schemes for logical consequence, except from the
ones for applying class axioms and opening/closing abstract predicates, are “closed
under splitting”. This means that (F;v;F ' G) implies (I;v;split(F) - split(G)),
by induction on the derivation. Given this observation, it is straightforward to prove
Lemma 2 by induction on the structure of F. 0

H Datagroup Formulas

For the soundness of the split/merge axiom for datagroups, it is important that splitting
of datagroup formulas commutes with substitutions in the sense of of Lemma 3 below.
(In that lemma, & represent the parameters of a datagroup definition.) In order to
guarantee this commutativity, we define a judgment that can be summarized as follows:

If aPe™ occurs freely in F outside a type, then aP*™ € dom(I").
M EFox If aPe'™ occurs freely in F inside a type, then aP*™ € dom(I).
All occurrences of the permission constant 1 in F are inside types.

Split-parametric Specifi cation Values, ;7 - 11: T, %
I
(x Val) (* Val Var)

rrev:T rrEav: T
M Ev:T,« M Eav T«
(* Perm Var) (x Split)
I+ aPe™ : perm [b perm, *
M0 - aPe™ : perm, x ;[F split(m) : perm,*

Split-parametric Formulas, ;17 - F :

I
(x Bool) (xPoints To) T fefldU)
I, Fe:bool rrre:U ;P F-mperm« M FHe:T
Mr'-e:x ;I - PointsTo(e[f],me) : %
(x> Perm) (% Pure)
I,["Fe:Thread [;IF 1T: perm,* rr-e:T
;M FPerm(e[join], 1) : ;I FPure(e) : x

RT n° 6430

46 Haack & Hurlin

(x Pred)
rr'e=mU OEPRA:T,x ptype(k8P,U) = fin group P<T a>
M - TKEP<I> : %

(x Log Op) (x Ex)
Mr'EF:x OTEF :x lop e {*,&} M-T:o Ma:T;MMFF:x
MM EFlopF % M- (exTa)(F):«
L]
Lemma 3

(@ If(Ma:THm:U,x)and (I,a: T+ :T), then r'[split(71) /a] = split(T'[7T/a]).
() f(M;a:THF:x)and (I,a: T :T), then F[split(71)/a] = split(F[t/a]).

Proof. By inductionson ([;& :TH 1 :U,x)and (F;a0: T FF :%).

We now define the judgment (I';’;v F F : grp) for datagroup formulas F as the
conjunction of the two judgments that we have just defined:

r;rvEFogrp iff (I,;viy F:supp)and (M7 FF @ %)
Lemma4 If (T;T';vEF: grp), then (I';T;v = split(F) : grp).

Proof. By induction on the structure of F, using Lemma 3. The crucial observation
is the following: if (F,a :T,a’:U,a” : U;v;true -, F& F[a”/a'] *a’ == a")
and split(F) = F[split(a)/a], then it follows that (F,a : T,a’ : U,a” : U;v;true t,
split(F) & split(F)[a”/a'] -x a’ == a’), because logical consequence is closed under
substitution (Lemma 49). [l

I Method and Predicate Subtyping

Parkinson and Bierman [27] define a method subtyping relation (which they call spec-
ification compatibility) that is more liberal than standard behavioral subtyping. They
make heavy use of this additional freedom in their examples. Their subtyping rela-
tion has the disadvantage that it is defined in terms of the Hoare triple judgment and
involves a universal quantification over commands. We prefer to define method sub-
typing in terms of logical consequence, because we find that cleaner and also because a
universal quantification over commands seems to be troublesome for algorithmic veri-
fication, which is our ultimate goal.
For convenience, we repeat the definition of method subtyping from Section 6.1:

Method Subtyping, I - MT <: MT’ and I" - fin MT <: fin’ MT":

I

(Mth Sub) m#run
T<T U<U Vo<V V<V G=(exUa")(Gy) G = (exU a”)(G})
I10:Voslostrue b (Fa T/ @) (£aV/D (F' -+ (exW @) (F * (faU a”) (Gy -* G()))
M-<Ta,Wa'>reqF;ens G;UmMVyip,VT) <:<T'@>req F’;ens G/;U/m(VéIO,V/T)

(Run Sub) G = (exvoid a)(Gg) G’ = (exvoid o) (G6)
Vo <:Vé Mo :Vo;lp;true - (F/ =% F) * (favoid a) (Gg -* G6)

I+ reqF;ens G;void run(Vylp) <:reqF’;ens G';void run(V{lg)
For qualified method types: T Ffin MT <:fin’ MT’ iff fin' =& A T+ MT <: MT’
L

INRIA

Separation Logic Contracts for a Java-like Language with Fork/Join 47

Note that in (Mth Sub) there is a dependency of the postcondition of the supertype on
the precondition of the supertype. For the run-method, this dependency would lead
to unsoundness, because the pre- and post-conditions of run are used separately as
precondition for fork, respectively, post-condition for join. This is why we have a
more restrictive subtyping rule for run. Note also that the subtyping rule for run guar-
antees that run-methods have no logic parameters (because all run-method types are
subtypes of Thread.run’s type, which has no logic parameters). Logic parameters for
run would lead to unsoundness unless we enforced that they get instantiated uniformly
at the fork and the join site.

We follow [27] and allow variable argument length for predicates. If a formula
of the form 71.P<77> misses arguments of types T’, it is semantically equivalent to
(exT'@’) (I.P<iT,@’>). As explained in [27], predicates with varargs are sometimes
useful for flexible subclassing. For datagroups we prohibit varargs, because the exis-
tential quantification would render the merge axiom unsound.

Predicate Subtyping, pt <: pt’ and fin pt <: fin" pt’:
I
(Pred Sub) (Grp Sub)

pred P<T &, T’/ a’> <: pred P<T a> group P<T a> <: group P<T a>
For qualified predicate types: fin pt <: fin’ pt’ iff fin’=¢ A pt <: pt’
L

J Class Axioms

We require that class axioms are proven with a restricted logical consequence judg-
ment:

A . .
' = |, without class axioms

We disallow the application of class axioms for proving class axioms in order to avoid
circularities. Recall that |-, is already a subsystem of I, which restricts the merge
axiom (see Section H). We disallow unrestricted merging so that it is sound to use
class axioms in order to prove uniqueness of existential witnesses when showing that
formulas are supported. This is sometimes needed, see the List .header datagroup in
Section A.3.
C<T a> sound
iff
axiom(C<@>)=F = @ :T,this:C<a>; this; C isclassof this"F

K Good Interfaces and Class Declar ations

More auxiliary definitions:

methods(C) = dom(md*)
methods(1) £ dom(mt*)

preds(C) = dom(pd*)

preds(l) = dom(pt*) U {state, init}
declared(C) = dom(fd*)

fin class C<T &> ext U impl V {fd* pd* ax* md*}
interface I<T a>ext U {pt* ax* mt*}
fin class C<T @> ext U impl V {fd* pd* ax* md*}
interface I<T a>ext U {pt* ax* mt*}
fin class C<T &> ext U impl V {fd* pd* ax* md*}

L

RT n° 6430

48 Haack & Hurlin

In the following definitions, we conceive the partial functions mtype and ptype as total
functions that map elements outside their domains to the special element undef. Fur-
thermore, we extend the subtyping relation: <: = {(T,U)|T <:U} U {(undef,undef)}.

U is a (parameterized) non-final class

f € dom(fld(U)) = f ¢ declared(C)

(Vm,mt)(mtype(m,U) =MT = & :T F mtype(m,C<a>) <: MT)
(VP,pt)(ptype(P,U) =pt = ptype(P,C<a>) <:pt)

C<T a> extends U £

U is a (parameterized) interface

(Vm,mt)(mtype(m,U) = MT = m € methods(l))
(VP,pt)(ptype(P,U) =pt = P & preds(l))

(Vm,mt)(mtype(m,U) =MT = & :T F mtype(m,1<a>) <: MT)
(VP,pt)(ptype(P,U) = pt = ptype(P,1<a>) <: pt)

I<T &> type-extends U =

I<T a> type-extends U = (YU € U)(I<T &> type-extends U)

U is a (parameterized) interface

(Vm,mt)(mtype(m,U) = MT = mtype(m,C<a>) # undef)
(VP,pt)(ptype(P,U) =pt = ptype(P,C<a>) # undef)
(Vm,mt)(mtype(m,U) =MT = a:T F mtype(m,C<a>) <: MT)
(VP,pt)(ptype(P,U) = pt = ptype(P,C<a>) <: pt)

C<T &> implements U =

C<T a> implementsU = (YU € U)(C<T a> implements U)
Good Predicate- and Method-Types, ' -pt:ocand F'Fmt: o:
I

(Mth Type) m € {run,fork, join} = [(this) <: Thread
M=r,a:T,1:V MFT,FUV:o I =TI result:U
MEG:o m=run= (";this G:suppAthis[join] & G)
M-<Ta>reqF;ensG; UMMV :o

(Pred Type)
M-T:o
I Fpmod P<T a>: ¢

We remark that the supportedness of run’s postcondition is only needed to ensure
soundness for multiple resource-splitting joiners. We could support both arbitrary post-
conditions and multiple joiners if we introduced a run-method modifier “multi-join”
such that only multi-join run-methods may have multiple resource-splitting joiners
and must have supported postconditions. It would also be important to require that
methods that override multi-join methods are again multi-join.

Good Interfaces, int: ¢:

I
(Int) I<T &> type-extendsU init ¢ dom(pt*) (Ax)
a:THET,U,pt*:0 a:7T,this:I<a>Fax*,mt*: o FrEF:o
interface I<T a>ext U {pt* ax* mt*} : o N axiomF : o

Our policy for interface extensions requires that every method or predicate declared in
a superinterface is explicitly repeated in the subinterface, possibly with a more spe-
cific type. An exception is the special predicate state. If state is not explicitly
declared in an interface, then group state<perma> gets “automatically” included.
(This is achieved by the rule (Ptype Interface Implicit)). Real Java has more policies

INRIA

Separation Logic Contracts for a Java-like Language with Fork/Join 49

for avoiding repetition of method specifications in subinterfaces. These policies are
called inheritance of method signatures. They are complicated by the fact that Java
allows method overloading based on method signatures. We avoid this complexity, but
do not consider this a substantial restriction because inherited method signatures can
be filled in at compile time.

Good Classes, cl : ¢:

I
(Cls) C<T a>extendsU C<T a>implementsV C<T &> sound init ¢ dom(pd*)
a:THT,UV,fd*:o a:TFpd*:oinC<a> a:T,this:C<a>Fax*,md* : o
fin class C<T &> ext U implV {fd* pd* ax* md*}: o

(Fl1d) (GrpDef) TkgroupP<Ta>:0 (GrpExt) [FgroupP<Ta>:o
MrMET:o Mthis:U;a :T;thisF :grp Mthis:U;a:T;this-F:grp

Fr=Tf:o TkHfingroupP<Ta>=F:oinU I+ fin ext group P<T a>by F:0inU

(Pred Def) T FpredP<Ta>:o (Pred Ext) [FpredP<Ta>:o
MNthis:U,a:TFF:o MNthis:U,a:TFF:o
I - fin pred P<T a>=F :oinU I - fin ext pred P<T a>by F : ¢oinU

(Mth) T F<Ta>reqF;ensG;UmVD:o
r,a:T,1:V;thisk {F*this #null}c:U{(exU result) (G)}

I-fin<T a>reqF;ens G; Um(VD{c}:o

L Semantics of Expressions and Formulas
L.1 Semantics of Values
We define the set of semantic values:
peSemVal = CIValw (0,1]
The following typing rule extends the typing judgment for values to semantic values:

U € (0,1]
[+ :perm
Semantics of Specifi cation Values, [[11]] € SemVal:
[null] £nuil [o]20 [n]£n [b]2b [I]21 [splis(mPe™)]2 i [mPerm]

We leave the semantics of read-only and logic variables undefined, because we deal
with these variables by substitution.

Lemma 5 (Injectivity of Value Semantics) If [rq] = [[78]], then 1 = 75.

Proof. By induction on the structure of 71;. O

RT n° 6430

50 Haack & Hurlin

L.2 Semantics of Expressions

As explained in Section D, [op]] is a function of type Heap — SemVal® (%) _
SemVal that is compatible with types(op). We require that [Jop] is invariant under
heap extensions, field updates and applications of substitutions to dynamic types:

(a) If op"(V) =w and h C I, then [Jop[|" (V) = w.
(b) If " =h[o.f u], then Jop[" = [lop[".
(c) If 0 € LogVar — SpecVal and h' = h[g], then [Jop|" = [Jop["".

Semantics of Expressions, [[e]] : Heap — Stack — SemVal:

I(Sem Val) (Sem Var) (Sem Get) (Sem Op) [[op]"(vi,...,vn) =W
[M=p s=v_ _[eld=0 h()()=v [efé=vi - [en]@=vn
. [me=n [4E=v le.flg=v fop(er,....en)]8 =w

L.3 Semantic Validity of Boolean Expressions

Recall that our (mostly proof-theoretic) logical consequence judgment, via an axiom,
depends on semantic validity of boolean expressions, [= e. To define semantic valid-
ity formally, let 0 range over closing substitutions, i.e, elements of Var — CIVal. The
following rule defines a judgment, I - o : ¢, for well-typed closing substitutions o:

dom(a) =dom(F)NVar (Vx € dom(a))(Thp F a(x): T (x)[a])
NFo:o

We say that a heap h is total iff for all 0 in dom(h) and all f € fld(h(0),) it is the case
that f € h(0),. Now, we define ' |= e as follows:

ClosingSubst(N) = {0 |FF0:0} Heap(F) = { h | Mp Fh:oandhis total }
e :bool and

ME=e iff { (VI 2hp [,h € Heap(T'), o € ClosingSubst ())([[e[a]]}g =true)

L.4 Heap Joining

In this section, we state and prove some simple properties of heaps. For convenience,
we repeat the definitions from Section 4.1.

We define a function that maps heaps to flat relations. To this end, let HpDom =
Objld x Ty x (Fieldld x CIVal) with the following partial order: (0,T,x) < (p,U,y)
iff (0,T,x) = (p,U,y) orx= L. For X C HpDom, let | X = {y| (Ix € X)(y <x)}. A
subset X of HpDom is called downward closed iff | X = X. A functional relation is a
downward closed subset h of HpDom such that (0,T, 1), (0,T’, L) € himplies T =T’
and (0, T, (f,v)),(0,T,(f,v')) € himplies v=V'. Let FunRel be the set of all functional
relations.

Lemma 6 (Complements Exist) If h Ch', thenh’=hu | (W \h).

Proof. On the one hand, " =h U (h"\ h) Chu | (h"\ h). On the other hand, (h"\ h) C
b, thus, | (h"\ h) C b’ because h’ is downward closed, thus hU | (h"\ h) C h’ because
h C h' by assumption. O

We define the following bijections:

INRIA

Separation Logic Contracts for a Java-like Language with Fork/Join 51

\\ : Heap — FunRel \h={ (0,T,x) | h(0); =T A xeh(0),U{L}}
// : FunRel — Heap /h(0), =T, if (0,T, L) €h /h(0), = {(f,v) | (0, /h(0),,(f,v)) €h}
Lemma?7 /\h=hand\ /h=h.

Proof. It suffices to show that \| is injective and \\ / h = h. Injectivity of \ is easy to
check. \\ / h = h holds for the following reason:

(0,T,x) e\ /h

iff /h(0), =T A xe /h(o),U{L}

iff (0,T,L)eh A (xe{(f,v)]| (o,T,(f,v))eh} Vvx=1)

iff ((o,T,L)eh Axe{(f,v)]| (o,T,(f,v))eh})V ((0,T,x)eh Ax=1)
iff xe{(f,v)| (o, T,(f,v))eh} Vv ((0,T,x)eh Ax=_1)

iff (0,T,x)eh

We define a partial operator * that joins heaps:
#=2{(hh) | \hU\N €FunRel } *:#—Heap h«h’'= J(\hU\N)
We define a partial order on heaps:
h<h iff \hC\N
Lemma8 Ifh Ch’,thenh <h
Lemma9 If (T +h:o), " <handdom(h’) =dom(h), then (T - h: o).
Lemma 10 If (I hy: o), (T Fhy: o), and hy#h,, then (I = hyxhy @ o).
Lemma 11 * is commutative, associative and monotone with respect to <.

Lemma 12 (Characterizeing < in terms of *)

(a) If h#h', then h <h=xh'.
(b) Ifh<h”, thenh” =h=h'for some h'.

Proof. Part (a) holds because \h C \huU\h'. For part (b), leth’ = / | (\h”\ \h) and
use Lemma 6. O

Sets of heaps have greatest lower bounds and if they have upper bounds at all, they
have least upper bounds:

Aier hi £ /Nier \hi If {hj |i € I} has an upper bound: \/j¢| hj L J/ Uier \hi
Lemma 13 (Infima and Bounded Suprema) (a) A hi is the greatest lower bound
of {hi|iel}.
(b) If {hj]i € I} has an upper bound, then /., hj is its least upper bound.
Lemma 14 If Jop["(v) =w and h < IV, then [Jop]" (V) = w.

Proof. Our conditions on [op]] were upwards closure with respect to C and invariance
under field updates. If h < h’, then there exists h” such that h” C h’ and h” can be
obtained from h by a sequence of field updates. (]

RT n° 6430

52 Haack & Hurlin

We define the domain extension operator h h’ as follows:

h/h = J(\hU {(0,h(0),L1) | 0cdom(h)})
Lemma 15 dom(h h’) = dom(h) Udom(h’)
Lemma 16 Ifh<h’and (" - h': o), then (I"+h 7h":).
Lemma 17 (Domain Extension Properties) (a) h<h "h’
(b) Ifh<h' thenh 7h" <H.

(© h,/h=h
(d) Ifh, <hy and b, <), thenh, /N, <h, 7h).

(e) (hyxhy) 7h"=(hy “h)*(hy)

® If dom(h’) - dom(hl) Udom(hg), thenhy xh, = (hl /h/) xhy.
Lemma 18 (Field Update) If h#h', 0 € dom(h),dom(h’) and f & dom(h'(0),), then
hlo.f — v]#h’ and h[o.f — v]*h’ = (h*h')[0.f — v].
L.5 Resource Joining

In this section, we state and prove some simple properties about resources. For conve-
nience, we repeat the definitions from Section 4.1.

We define: A triple (h, &7, 2) € Heap x PermTable x PermTable is sound when-
ever the following conditions hold:

(a) fstohkh:o
by < 2.
(c) Forall o € dom(h) and f € dom(h(0),), either (0, f) > 0or 2(0, f) < 1.
(d) Forallo ¢dom(h)and all f, #(0,f) =0and 2(0,f) =1.
(e) Forallo,f,if 2(o,f) <1 theno € dom(h) and f € dom(h(0),).
Z € Resources = {(h,22,2) | (h,?,2)is sound }

We define projections: For Z = (h, 2, 2), let %, =, Zioc = & and Hgo = 2. We
extend the compatibility relations as follows:

(h, 2, 2%, 7' 2" iff — h#h, 24P, 2=2' and (hxh', 2+ P’ 2) is sound
Now, we define the resource joining operator *:
* :#— Resources (h, 2, 2)x(W,2' 2) £ (hxh, 2 + 7' 2)
We define an order on Resources as follows:

74 < xiff %hp < ‘%’/‘W %Ioc < ‘%Iloc and ‘%élo = Zglo

For heap h and global permission table 2, we define the subheap of h that consists of
all its final fields:

h2 £ /{0 T,x)e\h|x=Lor2x)<1} final(h,2,2) = (h2,0,2)
Lemma 19 If #Z € Resources, then final(#) € Resources and final(#) < Z.

Lemma 20 * is commutative, associative and monotone.

INRIA

Separation Logic Contracts for a Java-like Language with Fork/Join 53

Proof. This follows from commutativity, associativity and monotonicity of heap join-
ing and the permission table operation +. O

Lemma 21 (Characterization of < in terms of *)

(a) f ZH#H%Z' then # < B+ R'.
(b) f Z < %", then Z" = % %' for some Z'.

Proof. Part (a) holds because h < h*h’ and & < & + &', For part (b), let Z =
(h,2,2)< (W, 2" 2)=%". By Lemma 12, h"” = h*h' for some h'. Define Z' =
(W, 2" -2 2). O
Lemma 22 If (h, &, 2) satisfies resource axioms (a), (b), (d) and (e) (but not neces-

sarily (c)), then there exists a greatest resource % such that %h, < h, Zi.c < & and
Hglo = 2. We denote this as (h, &2, 2)°.

Proof. Zioc = &, dom(%h,) = dom(h), fsto Zh, = fstoh, snd o Zpn, = snd o Zhp \
{(0,f)| Z(0,f) =0and 2(0,f) =1}. O

We define greatest lower and least upper bounds:
If final(#') = final(#1) for all i, j in I:
Aigl %i = (/\iel %va/\iel %:ocv/\iel %foc)o
If {#'|i € |} has an upper bound:
\/iel %i = (Viel %va\/iel %:OC:\/iel (%igk,)

(Note that, if a set of resources has an upper bound or share the same final subresources,
then the global permission tables must be equal. Thus, the operation on the global
permission table in these definitions is trivial.)

Lemma 23 (Infima and Suprema) Suppose {Z;|i € |} has an upper bound. Then:

(a) If final(#') = final(#}) forall i, jin I,

then A;¢| % is the greatest lower bound of {Z;|i € I}.
(b) If {Z;|i €1} has an upper bound,

then V¢ i is the least upper bound of {Z |i € I}.

We define resource splitting:
3(0,2,.2) £ (h12,2)
Lemma24 J(Z*%)=%.

We define the domain extension operator % /%' as follows:

%/‘%/ = (%hp/‘%}/]pﬂ%bm‘%gb)

Lemma 25 dom((Z /" %')np) = dom(%Zhp) Udom(Z,,)
Lemma 26 If % <% and (I =%, <), then (I = (Z /%)np : ©).

Lemma 27 (Domain Extension Properties) (a) Z< % /%'
by f#Z <% thenZ# /%' <H'
) Z,/ %=X
(d) % <%, and %i Se@é, then %1/‘%1 Se@z/‘%é

RT n° 6430

54 Haack & Hurlin

() (%1 *%2) /R = (% /RZ)* (%2 / F').
(f) 1f dom(Z],) C dom((Z1)np) Udom((%2)np), then 2y x %y = (%1 /' R') * .

Proof. These are obvious consequences of the definition of " and the fact that the
domain extension operator for heaps satisfies the same properties (by Lemma 17). [

%[O.va] = (f%hp[o'f HV]7%|OC7‘%g|O)

Lemma 28 (Field Update) Suppose Zioc(0,f)=1,T f & fld(%h,(0),) and fsto %y,
v:T. Then:

(a) Z[0.f — V] € Resources
(b) If Z#%' and 0 € dom(Zy,,),
then Z[o.f — v|#%' and Z[0.f — V]|* %' = (Z*%')[0.f — V].

Proof. For part (a), it is easy to check that the resource axioms hold for Z[0.f —

v]. For part (b), note that Z|,_(0, f) = 0 (because ZioH#%,,. and Hioc(0, f) = 1) and
%’glo(o f) = Zgio(0, f) > %bc(o f) = 1. Therefore, f ¢ dom(h’(0),) by resource
axiom (c). Then %[0 = VI#Z' and Znp[0.T — V|*x %y, = (Znp * %},)[0.T V],
by Lemma 18. It is easy to check that the resource axioms hold for ((Znp *.%’ hp)[0-T —
V]v Hoc +’%I/oc’ ‘%gb)' U

L.6 Predicate Environments

In this section, we repeat the definition of predicate environments from Section 4.2
in a slightly more general form. We call these more general functions predicate pre-
environments. Predicate pre-environments have type [k € X.Dom(k) — 2, where
X C Pred(ct). Predicate environments are predicate pre-environments where X =
Pred(ct). Pre-environments are auxiliary entities for constructing least fixed points
of endofunctions on predicate environments (see Section L.10). At the top level, we
are only interested in predicate environments (where X = Pred(ct)).

Definition 3 (Predicate Pre-Environments) Let X C Pred(ct). A predicate pre-environment
over X is a function of type [1k € X.Dom(k) — 2 such that the following axioms hold:

(a) If (T, 2,1,), (7, % ,r,) € Dom(k) and Z < %',
then & (K) (71, Z,r,) < &(K) (T, % ,r, 7).

(b) If (T, #,r,7') € Dom(K) and final(%;) = final(%;) for all i, j in |,
then & (PePC) (T, Ai¢) Zi, 1, ') = \ie) & (PEPQC) (1T, %, 1,).

(c) If (,%,r,7) € Dom(P&™eC),
then & (P&eC) (71, %, 1, 1) < &(PEPeC)(Tt, .2, 1,split(1T)).

(d) If (7, %1,), (n,%’z,n M) e Dom(Pg'P@C)
then & (P&P@C) (71, %) ,1,split(77)) A & (P&PQC) (T, Zx,1,split(7T)) < &(PePeC)
(fl’,;@l*%z,r 7_'1/)

(e) If (11, (h, 2, 2),r,7),(7t,(W, 2, 2),r,iT) € Dom(k), 0 € dom(h), Z(o, f) =
0, 2(o,f)=1, 2/22[(0 f)+— 0] and ' =hlo.f — V],
then & (k) (71, (h, 2, 2),r,71) < &(K) (T, (W, 2,2'),r, 7).

) If (7, (h, 2, 2),r.7),(71,(h,#,2'),r, i) € Dom(k), 0 € dom(h), #(0, join) <
x < o@(,join), and 2’ = 2[(0, join) — X],
then & (k)(7t,(h, 2, 2),r,71) < &(k) (7T, (h, 2, 2,1, 7).

|_4

INRIA

Separation Logic Contracts for a Java-like Language with Fork/Join 55

A predicate environment is a predicate pre-environment over Pred(ct).

Lemma 29 The set of all predicate pre-environments over X (with the order inherited
from the underlying function space) is a complete lattice.

Proof. It suffices to show that the (pointwise) greatest lower bound of a set of predicate
pre-environments over X is again a predicate pre-environment over X. Axiom (a) holds
because pointwise infima of monotone functions are again monotone. Axiom (b) holds
because pointwise infima of infima-preserving functions are again infima-preserving.
The other axioms hold because Ajc; fi(X) < Aig fi(y) if fi(x) < fi(y) foralliinl. O
L.7 Semantics of Formulas

We define an auxiliary relation (I - Z,s : ©), where Z is a resource and S a thread-
local stack. Intuitively, (I - Z,s : ¢) holds whenever % and s are type-compatible and
furthermore dom(I") does not contain read-only or logic variables (as these are handled
by substitution). Formally, let (I - %, : ¢) whenever the following statements hold:

* dom(I") C ObjldURdWrVar
* I'hp = %hp O
elMNks:o
Let (I - %,s,F : ©) whenever the following statements hold:
e TH-Z,5:0
«THF:o
The relation (I" - &;%;s |= F) is the unique subset of (I' - %, s, F : ©) that satisfies the
clauses from Section 4.3.
L.8 Semantic Entailment

For reference, we repeat the definitions of semantic entailment from Section 5. First,
we defined a semantic counterpart to the syntactic purity judgment:

2;his=F v iff 2;h;s |= pure(e) for all field selection subexpressions € of F
Then we defined semantic entailment. (As usual, we let Fy * --- ¥Ry = true.)
Mr-&%s=F:v iff TrE&;2%2;s=F and%gb;%hp;s\:F:\/)

re&%,s=F,....,Fn: v iff FrE& R, sE=EF*- *xFy: v
rM-&FEG:Vv iff (V[R, S)THERSEF:V = THERSEG:V)

The following variations of semantic entailment are also useful:

M- &;%;s =Fi,....,Fn iff ME&Zs=Fi*---xF,

r-&;FE=G iff (V[RZ,S5)THERSEF = THERsEG)
M-&FEcy G iff (2 <Rs)(TFERSEF = THE%;5=G)

RT n° 6430

56 Haack & Hurlin

L.9 Interlude: A Relaxed Fixed Point Theorem

Predicate environments in the previous sections were abstract and not related to pred-
icate definitions. In this and the next section, we show how to construct predicate
environments that satisfy the predicate definitions from the class table. This is not en-
tirely straightforward because predicate definitions can be circular. In order to deal
with circularities, Parkinson and Bierman [27] forbid that predicate definitions contain
predicates in negative positions. As a result of this restriction, Parkinson/Bierman’s
predicate definitions give rise to monotone functionals on predicate environments, and
Parkinson/Bierman appeal to Tarski’s fixed point theorem for the existence of a solu-
tion. Unfortunately, entirely disallowing predicates in negative positions is too restric-
tive for us, because the definition of the ready-predicate in our Iterator-example
mentions the state-predicate of a Node in a negative position:

final class ListIterator<perm p, Collection iteratee>
implements Iterator<p,iteratee>

{ ...

pred ready = (ex Node x) (... (x.state<p> -* iteratee.state<p>));

¥

Fortunately, the state-predicate does not depend on the ready-predicate, so that the
negative occurrence in this example is not part of a cycle. In general, we can guarantee
well-foundedness of predicate definitions if no cyclic dependency contains a negative
predicate occurrence. We will make this precise in Section L.10.

First, we present some general fixed point theory. We denote the least element of a
complete lattice L by L (often omitting the subscript L). For complete lattices L and
L', let L — L’ be the set of all (not necessarily monotone) functions from L to L’, and
L = L’ be the set of all monotone functions from L to L. We will make use of the
following fixed point theorem.

Theorem 6 (Fixed Point Theorem) If L is a complete lattice and F € L > L, then f
has a least fixed point.

In our applications of this theorem, the complete lattice is a function space X — L
where X is some set. We want to relax the fixed point theorem so that we can deal with
certain non-monotone functionals in (X — L) — (X — L). Some definitions:

* ForFe (X —L)— (X —L)andY CX,wesayY is F-closed whenever fyy =g}y implies

F(f)y =F(g)y forall f,ginX — L.
* ForFe (X —L)— (X—L)andY C X, we define the restriction r(F,Y) of FtoY — L

as follows:
r(F,Y) : (Y—=L)— (Y —=L)

(FY)(H) = FEU{(xL)[xeX\Y}(y)
Lemma30 IfF € (X - L) — (X —L),Y isan F-closed subset of X and f € X — L,
then F(f)‘y = I’(F,Y)(f‘y)
Proof. LetF € (X —L) — (X — L), andY be an F-closed subset of X, and f € X — L.
Let f' = fiy U {(x,1) [x€ X\Y }. Clearly, fy = f\/Y'

F(f)y = F(f)y (because Y is F-closed)
= r(FY)(fy) (by definition of r)

INRIA

Separation Logic Contracts for a Java-like Language with Fork/Join 57

O
Lemma3l IfFe (X —-L)— (X —L)andZ CY C X and Z if F-closed, then Z is
r(F,Y)-closed.

Proof. Suppose F € (X - L) - (X —L)and ZCY C X and Z if F-closed. Let
f,ge (Y = L) — (Y — L) such that fz = gjz. Define f' = fuU{(x,L)[xeX\Y}
andg' =gU{(x,L) | xeX\Y }. Clearly, f\/z = g?z.

F(F7Y)(f)\z = F(f/)mz (by definition of r(F,Y))
= F(f'):z
= F@)z (because Z is F-closed)
= F@)yz=rFY)Q)z

O

Lemma32 IfFe (X —L)— (X —L)andZCY C X and Z,Y are F-closed, then
r(F,2) = r(r(F,Y),2).

Proof. LetFe (X —-L)— (X—=L)andZCY C X and Z,Y be F-closed. Let
feZ—LandzeZ Letf'=fU{(y,L)|yeY\Z}and f"=fU{(x,1) |xeX\Z}

r(r(F,Y),Z2)(f)(z) = r "Y(z) (by definition of r)
z

—
—~

(by Lemma 30)
= r(F,Z)(f)(z) (by definition of r)

|
T
—
—
I
~
—~

N
~—

ForY C X, the function Lifty x is defined as follows:

Lifty x : (X—=L)-»X—=L)—-(Y¥—-L —-X—-L —-X—-L
. X ifxeyY
i ®@me = {2 ey
Definition 4 (Monotone Chains) Given F € (X — L) — (X — L). An F-monotone

chain is an ascending chain @ = X C --- C X, = X of F-closed sets such that for every
iin{1,...,n} and g in Xj_; — L the function Liftx,_, x (r(F,X;))(g) is monotone.

Theorem 7 (Relaxed Fixed Point Theorem) If L is a complete lattice, F € (X —
L) — (X — L) and an F-monotone chain exists, then F has a fixed point.

Proof. Suppose L is a complete lattice and F € (X — L) — (X — L). Let ® = Xo C
-+ C Xn = X be an F-monotone chain. We show the following statement by induction
oni:

For all iin {0,...,n}, r(F,X;) has a least fixed point.

For i = 0, this is trivial, because @ — L is a singleton set. Let i > 0. By induction
hypothesis, r(F,X;_1) has a least fixed point, call it g. Because Liftx,_, x (r(F,Xi))(g)
is monotone, this function, too, has a fixed point by the fixed point theorem 6. Call this
fixed point f. We will now show that f is a fixed point of r(F,X;).

RT n° 6430

58 Haack & Hurlin

First, let x € Xj \ Xj_1. Then:
r(F,Xi)(f)(x) = Liftx,_, x(r(F,X))(g)(f)(x) (by definition of Liftx_, x)
= f(x) (because f is fixed point)
Using the fact that f is a fixed point and the definition of Liftx,_, x,, we can also show:
9= fix_,
Letg' =gU{(x,L)|x€Xi\Xi_1}. Then fix = gTXH. Because Xi_; is r(F,X)-
closed (by Lemma 31), we obtain:
F(F7 X|)(f)‘x|71 = I’(F, Xi)(g/)\xH

We also have:

g = r(FXi-1)(9) (because g is fixed point)
r(r(F,Xi),Xi-1)(9) (by Lemma 32)
(r(
(

r(r(F,Xi), Xi— 1)(9&571)
r(F,Xi)(9)x_, (by Lemma 30)

So, we have r(F,Xi)(f)x_, = r(F, Xi)(g/)\xi,l =g=fix_, O

L.10 Predicate Definitions

We define a functional % that maps predicate environments to predicate environ-
ments:

pbody(r.P<f’>,C<i>) = F ext D<7’’>

C #0bject and arity(P,D) =n = F’' =r.PeD<7i,,>

C =0bject or PisrootedinC = F’' = true

1 7 . . | !
ﬁa(é”)(P@c)(ﬁ,%,r,ﬁ):{ I iffsto Zpy - ;70 = F*F

0 otherwise

Lemma 33 (Well-Typedness of #«) If & is a pre-environment over X, then so is
Fa(&).

Proof. We need to show that .7 (&) satisfies the axioms for predicate environments.
They are consequences of lemmas that we will prove later: Axiom (a) is a consequence
of Lemma 71. Axiom (b) is a consequence of Lemma 83. Axiom (c) is a consequence
of Lemma 75 and Lemma 3. Axiom (d) is a consequence of Lemma 4, Lemma 82 and
Lemma 3. Axiom (e) is a consequence of Lemma 77. O

We want to impose a condition on the predicate definitions in Ct that guarantees that
Z has a fixed point. We formulate this condition in terms of the dependency graph
that records dependencies between predicates. Basically, a predicate P@C depends on
QaD if P’s definition in C mentions Q@D. We have to be a bit careful, though, to
soundly account for subclassing and predicate inheritance.

We label dependencies P@C 5 Q@D by a sign 0 € {+,—}. A negative label indi-
cates that Q@D’s occurrence in P@C’s definition is in a negative position, i.e., as the left
descendant of an odd number of implication nodes. To define the dependency graph
formally, we first define a relation F 9, PeC, where o ranges over {+,—}. Intuitively,
F 2 PeC holds whenever F’s validity depends on P@C. The relation is defined by
induction on the structure of F:

INRIA

Separation Logic Contracts for a Java-like Language with Fork/Join 59

mPeC<7’> © PeC iff PeC e Pred(ct)
nmP<i’> 5 PeC iff PeC e Pred(ct)
FlopG 2 iff FSKkorGSk forlope{*& I}
F+G 2 iff FS%korG>k

@Ta)F 2 k iff FS«k

The second clause of the definition conservatively accounts for the possibility that sub-
classes can extend predicate definitions. If, for instance, 7Thas class C then we have to
record that 71.P<7> does not only depend on P@C but also on P@C’ for all subclasses C’
of C. Our definition even says that 7.P<7> depends on PeC’ for all classes C’ where
P is defined. This is a conservative approximation. As a result, our dependency graphs
sometimes records spurious dependencies that do not really exist.

The following two rules define a relation PeC = Q@D C Pred(ct) x {+,—} x
Pred(ct). We view this relation as a g-labeled directed graph on Pred(ct) and refer
to it as ct’s dependency graph, DepGraph(ct).

The Dependency Graph, PeC % QeD:
I
(Dep Pred Sup) (Dep Pred Def)

PeD € Pred(ct) C=<D pbody(P<a>.C<m>)=F F %k
PeC 5 PeD peC % k

The rule (Dep Pred Sup) accounts for the fact that predicates P defined in C implicitly
depend on P@D, if D is a superclass of C that defines P. This is so because P’s definition
in C gets *-conjoined with P’s definition in D.

An edge in DepGraph(ct) is positive (resp. negative) whenever its label is + (resp. —).
A path is positive whenever all its edges are positive.

Requirement: In legal class tables ct, all cycles in DepGraph(ct) must be
positive.

Theorem 8 (Existence of Predicate Environments) If ct is legal, then there exists a
predicate environment & such that (&) = &.

In the remainder of this section, we will prove this theorem. First some auxiliary
definitions: We write K —* K’ iff there is a path from K to K’ in DepGraph(ct), and

K — *K’ iff there is a path with at least one negative edge. Note that the graph — * is
acyclic, if ct is legal. For X C Pred(ct), we define | X = {k | (3’ € X)(k’ —* K)}.
Furthermore, | F = {k | (30,k’)(F % k' —* K)}.

To prove Theorem 8, we want to apply the relaxed fixed point theorem (Theorem 7).
We formulate a concrete criterion for .%-closedness.

Lemma34 If |[F C X and &jx = éj/x then (M= &, %2;s EF) iff (T +=&",2%Z;s =F).
Proof. By induction on the structure of F. O

Lemma 35 (Criterion for .%#-Closedness) If | X C X, then X is .%«-closed.

RT n° 6430

60 Haack & Hurlin

Proof. Let [X CX, éjx = g"x and K € Pred(ct). By inspecting the definition of %
and the definition of the dependency graph, we can see that there exists F such that
| F €] X and the following statements hold:

Fa(E)K) () (Z,r)([T)=1 iff fstoRnt &E%ZSE=F
Fa(ENK) () (2, r)()=1 iff fstoZn,t E%sEF

Because | X C X, we know that | F C| X C X and, thus, 5‘“: = g\/lF Now, by
Lemma 34, it follows that (&) (K)(7)(Z,1)(77) = Fu(&)(K)(7)(Z,r) (7). O

We say that F is positive (resp. negative) on X whenever F ZKeX implies 0 = +
(resp. 0 = —).

Lemma 36 (Positive Formulas are Monotone, Negative Formulas are Antitone) Let
LF S XoWX, dom(&p) = Xo, dom(&) =dom(&’) =X and & < &
(a) If Fispositiveon X and (T &UE,Z;s EF), then (TH &UE; Z;s = F).
(b) IfFisnegativeon X and (' - &U&";Z;s =F), then (TH &UEZ;s =F).

Proof. Simultaneously, by induction on the structure of F.]

For X C Pred(ct), we say that is X is positive whenever X 3 K Sk ex implies
g =+.

Lemma 37 (Criterion for Monotonicity of Lift) IfY C X and X \ Y is positive, then
Lifty x (r(:-Zct, X)) (&0) is monotone for all pre-environments &, over Y.

Proof. Suppose Y C X, and X \ Y is positive, and & is a pre-environment over Y.
Extend &) to a pre-environment &5 over Y U (Pred(ct) \ X) as follows: &j(K) = &y(K)
if Kk €Y, and &j(k) = L if k € Pred(ct) \ X. Note now that the following holds for all
& over X and K in Y U (Pred(ct) \ X):

Lifty x (r(:Fet, X)) (£0)(£)(K) = &5(K)

Now consider & over X and K in X \ Y. By inspecting the definition of .#¢ and the
definition of the dependency graph, we can see that there exists F such that F is positive
on X \'Y and the following holds:

Lifty.x (r(:Zet, X)) (60) (&) (K)(T)(2, 1) () = 1 iff fsto R - ELUE; ;s = F

Therefore, the monotonicity of Lifty x (r(-Ze, X)(&o) follows from Lemma 36. O

Proof of Theorem 8. If ct is legal, then there exists a predicate environment & such
that gct(g) =&.

Proof. Suppose ct is legal, i.e., all cycles in DepGraph(ct) are positive. By the relaxed
fixed point theorem (Theorem 7) it suffices to construct an .#¢-monotone chain @) =
Xo C +++ C Xp = Pred(ct). The chain we construct has the property that | Xj = X; for
all chain members X;, which implies that they are .#-closed (by Lemma 35). Clearly,
1®=10. Suppose, we have constructed a chain ® = X C - - - C X; # Pred(ct). We want to

construct the (i + 1)-st member. Because — * is acyclic, we know that Pred(ct) \ X; has

INRIA

Separation Logic Contracts for a Java-like Language with Fork/Join 61

a non-empty subset of vertices K such that K has no outgoing — *-edge whose target
is in Pred(ct) \ X;. Let S be the set of all such K’s, and let Xj;; = XjU | S. Clearly,
1 Xit1 € Xiy1. It remains to be shown that Lifty, x_ , (r(:-Zct, Xit1))(&}) is monotone
for all pre-environments &; over X;. By Lemma 37, it suffices to show that (| S)\ X; is
positive. Solet kK % k’ and k, k' € (| S)\ Xi. Because k €S, there is a k" € S such that
k" —* K. If it was the case that 0 = —, then K" — *K’, contradicting the minimality of
k". Therefore, 0 = +. O

M Basic Properties of Typing Judgments

Lemma 38 (Good Environments) Let # range over right-hand sides of the forms
T:ov:T,m:T,e:T,F:o,5:0,0bj:candh:o. If (T _#), then (I o).

Proof. By induction on the derivation of (' _#). O

Lemma 39 (Weakening) Let ¢ range over right-hand sides of the forms T : o, v: T,
m:T,e:T,F:o,s:oandobj:o. If (TF _#), T CIMand (ko) then (I 7).

Proof. By induction on the derivation of ("' 7). O

Note that the heap typing judgment (I - h : ¢) does not satisfy weakening. This is
intentional. We want that every object identifier 0 in [’s domain represents some actual
object identifier (= memory address) at runtime, whose dynamic type is I (0).

Lemma 40 (Strengthening) Let # range over right-hand sides of the forms o, U : o,
v:U,mU,e:U,F:oandobj:o. If(F,x:TH _#)andx¢&fv(l, _#), then (T~ _¢#).

Proof. By induction on the derivation of (I, x: T F 7). O

Lemma 41 (Substitutivity and Inverse Substitutivity for Subtyping)
(a) If T <:U,thenT[o] <:U]0o].
(b) If T[o] <:U, thenU = U’[o] for some U’.
(c) fT[o] <:U[o], then T <: U.

Proof. All three parts by induction on the derivation of the subtyping judgment. The
proof of part (c) uses part (b) to deal with the transitivity rule. 0

Lemma 42 (Substitutivity) Let ¢ range over right-hand-sides of the forms T : o,
v:U,m:U,e:UandF :o.

(@) If (C[/x| - m:T[m/X]) and (F,%: T+ _7), then (T[71/%] F 7 [71/x]).

) If(FT-e:T)and (M,7:T I—/) then (T = _7[e/7)).

() If(TFo:o)and (TH _#), then (T, = _Z[0]).°

Proof. Part (a) by induction on (I',X: T = _#). Part (b) by induction on (I',7: T -
¥). Part (c) follows from part (a) in the following way: Suppose (I F 0 : ¢) and

(M= 7). Let x=dom(l)NVar. If X=0,then Ty, =, 0=0and Z[o]= 7.
(Thp = _Z[0]) trivially follows. So suppose X # 0. Then ([, - 0(X) : [(X)[0]), by
definition of (I - 0 : ¢). In particular, it follows that (I'pp - ©) (by Lemma 38) and
therefore fv(I"pp) = 0. Therefore, ['h,[0] = [pp and, thus, (Mpp[0] F 0(X) : T'(X)[0]).
Now, we can apply part (a) to obtain (', = hp[0] F _Z[0]).

I:I

SRecall that 0 ranges over closed substitutions. See Section L.3 for the definition of ' - 0 : .

RT n° 6430

62 Haack & Hurlin

Lemma 43 (Inverse Substitutivity for Values) If (T + o : ') and (T[o] +v:T[g]),
then (I, Fv:T).

Proof. In caseV is an integer, boolean or null, this is obvious. So suppose that v is an
object identifier or a read-only variable. Then v € dom(I") and '[0](v) <: T[0]. But
then [(v) <: T, by Lemma 41. But then (I',[" Fv:T). O

Lemmad4 If (THT:o)and T <:U, then (T U : o).

Proof. By induction on <:, using substitutivity (Lemma 42) to deal with the type
parameters of reference types. 0

N Basic Properties of Logical Consequence
Lemma 45 (Well-Typedness) If (F;v;F - G), then (T;v-F,G: o).
Proof. By inductions on the derivations. O

Lemma 46 (Weakening Validity of Boolean Expressions) IfI" =e, T CIand (I +
o), thenT’ =e.

Proof. This holds because, by definition, ' |= e entails that e is true in all heaps that
extend [, and, moreover, the truth of e does not depend on variables outside fv(e). O

Lemma 47 (Weakening) (a) If ((;v;F = G), T C T and (I F o), then (I';v;F -
G).
(b) If (FFe:v), then (F.Ere: V).
() f(FFG: V), then(FEFG: V).
(d) If (M;v;FFG)and (T'+E: o), then (I;v;F,E - G).

Proof. Parts (b) and (c) are immediate from the definitions. Parts (a) and (d) by
inductions on the derivation of (I';v;F - G). O

Lemma 48 (Substitutivity for Validity of Boolean Expressions) If (©[7t/X] - 71: T [f1/X])
and (I',X: T |=e), then (C[7/X] = e[ft/X]).

Proof. Let (T[71/X] - 7: T[ft/X]) and (T,X: T = €). Let ' Dy, F[71/a], (M, = h:o)
and (I F 0 : o). We need to show that [[e[77/X][0]]h = true. To this end, let 0’ =
O[X — T1[0]]. Note that e[7t/X][0] = e[0’]. Therefore, we are done if we can show
that [[e_[a/]]]g =true. Lety= don_n(l' \Thp). Let " = (I _,y:T(y),X: T). Because
(M, x:T =e), weknow that (I,X: T Fe:bool), thus, (Mn, F), thus, fv(h) = 0, thus,
[[7/Xlhp = Fhp, thus, " Dy, (F,X: T). Moreover, (M h: o), because My, =T
and (I Fh:o). Because (I, X: T [=e), it therefore suffices to show that (I - 0" : ¢):

Let firsty € y. Because ("' - 0 :), we know that (I'y | = a(y) : '(y)[0]). We also
know that ' | = I'L’P and o(y) = o’(y) and I’ (y)[o] =T [7t/X|(y)|o] =T (y)[71/R][0] =
[(y)[o’]. Hence, I'{ = a'(y) : T (y)[o"].

Let now X € X such that o’(x) = m{o] and '"(x) = T. We know that ("' - 0 : ¢)
and (I"" = m: T[71/X]). By substitutivity (Lemma 42(c)), it follows that ('}) - o] :
T[7t/X][0]). We know that ' | =}/ and 0] = 0’ (x) and T[71/X][0] = T[0"]. There-
fore, 'y = 0'(x) : T[0']. O

Lemma 49 (Substitutivity) (a) If (FFe: V'), then (F[7t/X] - e[ft/X] : V).

INRIA

Separation Logic Contracts for a Java-like Language with Fork/Join 63

() If (FI-G: v), then (F[/X] - G[7T/%] :).
(© If (F[7/X] - 7: T[/%]) and (T,x: T;v;F F G), then (T;v; F)[71/X] F G[7/x.

Proof. (a) by induction on the structure of e, (b) by induction on the structure of G,
and (c) by induction on the derivation of (I, X: T;Vv;F - G). O
Lemma 50 (Specialization of Variable Types) If (I, x : U;v;F = G), (IF,x: T o)
and T <:U, then (I,x: T;v;F - G).

Proof. This follows from substitutivity (Lemma 49) and (I, x: T Fx:U). O
Lemma 51 (Purity) If (F;v;F - G), then (F-G: V).

Proof. By induction on the derivation of (I';v; F - G). For the proof cases (Ex Intro)
and (Fa Elim), we need the syntactic restriction on quantified formulas (qt T a) (F),
namely, that field selection expressions €.f that occur in F must not contain occur-
rences of Q. (]

Lemma52 (Cut) (a) If (M;v;E-F)and (F,GFe: V), then (E,GFe: V).
() If (M;v;EFF)and (F,GFH: V), then (E,GFH: V).
(c) If (M;v;E-F)and (T;v;F,G - H), then (IF;v;E,G - H).

Proof. (a) and (b) are consequences of Lemma 51. Part (c) by induction on the
derivation of (I;v;F,G - H). O
Lemma 53 (ispartof is a Partial Order) Suppose ;v F :o.

(a) (F;v;truek F ispartof F).
(b) (F;v;true - F ispartof H) is derivable from (I";v;true - F ispartof G)
and (I;v;true - G ispartof H).

The derivations only use the rules for *, —* and the identity rule.

Proof. Straightforward natural deduction proofs. (]

O Basic Properties of Method Subtyping
We define a judgment, ' = MT : o, for well-formed method types:
M-<Ta>reqF;ensG;UMNVD :0o iff Ta:T,1I:VFT F,GUV:o
Lemma 54 (Method Subtyping is a Preorder)
(a) If (TEMT :0),then (I MT <: MT).
(b) If (THMT <:MT’)and (I = MT’ <: MT"), then (I = MT <: MT").
Proof. By application of the natural deduction rules. For transitivity, in order to deal

with the variant types of the self-parameter 1y, one uses the fact that logical conse-
quence is contravariant in the types of the free variables (Lemma 50). (]

Lemma 55 (Substitutivity) If (F[7t/x] - 71: T[ft/X]) and (F,X: T = MT <: MT’), then
[[7t/%] - MT[7t/x] <: MT[71/%).

Proof. This is a consequence of substitutivity for value subtyping and logical conse-
quence (Lemmas 41 and 49). [l

RT n° 6430

64 Haack & Hurlin

Lemma 56 mtype(m,T)[7T/a] = mtype(m,T [71/a])

t<T a> < s<f> = t<T > ext <> € ¢t or t<T &> impl s<7> € ct
Lemma 57 If t<T a> <:y s<ip, (F + 7 : T[/a]) and mtype(m,s<ir>) is defined,
then (I F mtype(m,t<f’'>) <: mtype(m,s<7{iT /a]>)).
Proof. Because ct : o, we know that & : T F mtype(m,t<a>) <: mtype(m,s<7p>).
Then I F mtype(m,t<iT'>) <: mtype(m,s<fi{fT'/@]>), by Lemmas 55 and 56. O
Lemma 58 (Monotonicity of mtype) If T <:U, (F T : o) and mtype(m,U) is de-
fined, then mtype(m,T) <: mtype(m,U).

Proof. By induction on the derivation of T <: U, where we use a “tight” transitivity
rule: T <:;;U, U <:V = T <:V. This transitivity rule gives rise to the same subtyping
relation. The proof makes use of Lemma 57 (]

P Basic Propertiesof Hoare Triples
Lemma 59 (Well-Typedness) (a) If (I';vE {F}hc{G}), then (F;vEF,G:0).
(b) If (MvE{F}c:T{G}), then (M;vF F,T,G:9).
Proof. For hc by inspection of the last rule. For ¢ by induction on the structure of ¢. [J

Lemma 60 (Weakening) (a) If (T;vi{F}hc{G}), €I and (I +¢),then (I ;v

{F thc{G}).
(b) f(MF;vE{F}c:T{G}),r CI"and (I o), then (v {F}c: T{G}).

Proof. For hc by inspection of the last rule. For ¢ by induction on the structure of ¢. [J

Lemma 61 (Substitutivity)

(@) If (T[/) = f: T{a/x]) and (M,X: T;vE {F}he{G}),
then ((I";v)[7t/x] = {F [71/X] }he[71/ {G[71/X] }).

(b) If (Ma/X - m:T[/x]) and (I, x:T;vE {F}c:U{G}),
then (T v)[7t/x] = {F [7t/x] }c[r/x] - U [7/X|{G[7t/X]}).

Proof. For hc by inspection of the last rule. For ¢ by induction on the structure of ¢. [J

Lemma 62 (Logical Consequence) If (I;v;F = F’) and (I';v {F'}c: T{G}), then
(MvE{F}c: T{G}).

Proof. By induction on the structure of . O

Lemma 63 (Subsumption) If (M;vE{F}c:T{G})and T <:U, then (I";vF {F}c:
U{G}).

Proof. By induction on the structure of c. (]
We abbreviate (3H)(M;vE {F}hc{H} A T;v;H F G)as (M;vE {F}hc{ G}).
Lemma 64 (Frame Lemma) Letl'+H :o.

(@ If(MvE{F}c: T{(ex T’ a) (G)}) and fv(c) Nfv(H) C RdVarULogVar,
then (v {F*H}c: T{(exT'a) (G*xH)}).

INRIA

Separation Logic Contracts for a Java-like Language with Fork/Join 65

(b) If (I';v= {F}hc{G}) and fv(hc) Nfv(H) C RdVar U LogVar,
then (M;vE {FxH}hc{- GxH}).

Proof. By inductionon (M;vE {F}lc:T{(exT'a)(G)})and (I';v+ {F}hc{G}). O

Lemma 65 (Derived Rule for Bind) If (F;0-{F}c: T{(exTa)(G)}), T <:T(¢)
and (M;pH{(exTa)(a==¢*G)}c':U{H}), then (M0 {F} «<c;c' :U{H}).
Proof. By induction on the structure of . O

Lemma 66 (Derived Rule for Sequential Composition) If (I;0+ {F}c:void{G})
and (M0 {G}c': T{H}), then (M;o0+ {F}c;c’ : T{H}).

Proof. This is a consequence of the derived rule for bind (Lemma 65). [l

Q Basic Properties of Semantics

Lemma 67 (Expression Semantics Preserves Typings) If (TFe:T), (Thy F h: o),
(TFs:o)and [[e]? = u, then (T :T).

Proof. By inductionon (CHe:T). O

Lemma 68 (Pure Expression Have Values) If (T Fe:T), (Tpp Fh:o), (TFs:0)
and 2;h;s = pure(e), then [[e]? = u for some some p.

Proof. By inductionon (FTFe:T). O

Lemma 69 (Stability of Pure Expressions) If Z = (h, &, 2), h#h', (2;h;s = pure(e))
and [e]h = p, then (2;h;s = pure(e)) and [e] = .

Proof. By induction on the structure of €, using the resource soundness condition (e)
onZ.]

We define: An expression € is called a field selection expression iff it is of the form
e =¢'.f forsome &, f.

Lemma 70 (Pure Field Selections are Enough) If (2;h;s = pure(e)) for all field
selection expressions €’ that are subexpressions of e, then (2;h;s |= pure(e)).

Proof. By induction on the structure of €. The only proof case that makes use of the
induction hypothesis is the case where € is of the form e = op(€). O

Lemma 71 (Resource Monotonicity)

(a) If[e]?=pandh <N, then] = pu.

(b) If 2;h;s |=pure(e) and h < h’, then 2;h';s = pure(e).

) W(TE&%SEF),Z<Z%' T Ch ' and (I'f1p - %’,’m :0),
then (M- &, %';s EF).

Proof. Part (a) by induction on the structure of €, using Lemma 14. Part (b) by
induction on the structure of €. Part (c) by induction on the structure of F. For the
cases where F = 0.P<7> or F = 0.P@C< 7>, one uses that predicate environments are
monotone with respect to resources, by axiom (a). The most interesting proof cases are
the ones where F = F; *F, and F = F| —-* F,. So we do these in detail:

RT n° 6430

66 Haack & Hurlin

LetF =F *F, (TH&%ZsEF), Z<%,T Cphp I and (Ff]p - %{m :¢). Then
R =R\ xR, THE,% ;s =EF)and (T+&;%,;s =F,). Moreover, Z' = % x %5 for
some #3, by Lemma 21(b). By Lemma 26, we have (7} | = (%1 /%')np : ©) and ('}
(%2 x %) /%)hp : ©). Thus, by induction hypothesis, (I &;%, /%';s = F;) and
(Mt & (%x %) /#'SER). Then (I &%, /R *(%x%5) /%5 EF).
But Z, /%' (% xR3) /% = %', by Lemma 27.

LetF =F —*F, (T-&%sEF), Z<%'.T Chp " and (FLP F%{lp :0). Let
Ty Dnp [, Z#% and (T F &%, = Fy). By Lemma 21(b), we have Z' = % * %,
for some Zy. By Lemmas 26 and 10, we have ((I'1)np = (%o /" %)) * %1)hp : ©).
By Lemma 27, (3?()/‘%1)*%1 = Xo* X, thus, ((I’l)hp [(e@o*e@l)hp : <>). Fur-
thermore, Z| < %o* %1, by Lemma 21(a). Therefore by induction hypothesis we
obtain (I'y F &, %o*%1;s = F1). Because (I - &;,%;s = F), we then get (I}
g;%*(.@o*ﬁl);S':Fz). But%*%o*ﬁlzr%/*.%l. (I

Lemma 72 (Store Invariance)

(@) If Siqy(e) = Slg, () @nd [[€]lS = , then [[e]§ = p.

(b) Ifsp(e) = Sfme) and 2;h;s = pure(e), then 2;h;s’ |= pure(e).

(c) If S\fv(F) = Sva(F)’ I'hp = I'f]p, I"fv(,:) = I'TMF), (I'/ s <>) and (F & H;S ': F),
then (M"+&,%;8 EF).

Proof. Parts (a) and (b) by inductions on the structure of €, and part (c) by induction
on the structure of F. The most interesting proof cases are for F = F; -xF, and F =
(faT a) (F’). So we show these in detail.

LetF =F —xF,, S\fv(F) = S\/fv(F)’ rhp = Ff\p, r\fv(F) = rTfV(F)v (r/ Fs' 0) and (r +
E RS =F). Let T Dnp [, Z##2%) and (T = ;%58 |= F1). Define 'y = (I)np U
[var- Then 'y Dpp . Furthermore, (Fi)np = (M)nps (M)inv(r) = Minv(r) = M) =
(TD)jwv(r)» and (T'y =52 0) by weakening (I" =5 :). Then by induction hypothesis,
(M F&;%,;5s =F). Because (TF &;%;s =F), wehave (I - &%+ %Z;s EF).
By induction hypothesis, (I} - &2 * %1;5' =).

LetF = (faT a) (F)). LetSyae) = Sia) Moo = s Tty =My (T'H5:0)
and (TH &% =F). Let T Dnp ', %0 > 2, (T)np F (Zy)np = ©) and ((T)np F
1:T). Define g = ()np UF jvar Then To Dy . Because (I' - &;%;s = F), we have
(Fo b &;%o;s = F[m/a]). Then by induction hypothesis, (I'y - &;%Z;s' |= F[m/a)).

O

Lemma 73 (Value Substitutivity for Semantics)

(@ [elv/618 = piff [, .y = K.

(b) (2;h;s = pure(elv/))) iff (2;h;s[¢ — v] = pure(e)).

© f(Tkv:T),Tks:o)and (ML,£:TEF:o) then (T &%;s EF[v/{)) iff
(M 0:TEERSE— V] =F).

Proof. Parts (a) and (b) by induction on the structure of €, and part (c) by induction
on the structure of F. The most interesting proof cases are for F = F; —*xF, and F =
(faT a) (F’). So we show these in detail.

LetF=F —*F.Let(Tkv:T),(TkFs:o),(M{:THEF:o)and (T & %Z;s =
Flv/0]). Let Ty Dpp (T,€:T), Z#% and (T b &;2%1;8[¢ — V] = Fy). Define '} =

INRIA

Separation Logic Contracts for a Java-like Language with Fork/Join 67

1\ {¢: T}. By induction hypothesis, we have (I} - &;2;s |= Fi[v/{]). Then (I'| -
E R * K55 = FR|v/L)), because (I + &;%;s = F[v/{]). Then by induction hypothesis
(M F&R*Z ;5[0 — V] = R).

Let F=F k. Let (TFv:T), Tks:o), (M {:TFF:0)and (M,¢:TFH
E RS — V| =F). LetTy D I, Z#%) and (I - &;%)1;5 = Fi[v/{]). By induction
hypothesis, (I',¢: T F &;%1;5[¢ — V] EF1). Then (I',¢: T+ &, RZ*%,;5[¢ — V] |E
F), because (¢ : T - &;%;s[¢ — V] = F). Then by induction hypothesis, (I'; -
ER* K158 = R|v/1)).

LetF=(faTa)(G),(Tkv:T),(Tks:o), (M{:THEF:0)and (T &;%;s =
F[v/€]). LetT' Dpp (T,0:T), Z' > %, (T, = %, i) and (T}, F:T). Let T =
"\ {£:T}. Because (I' - &%;s = F|v/{]), we have (" + &,%';s = G|v/{][1/a]).
But G|v/{][rt/a] = G[rr/a][v/{], because a & fv(v) and 1T is closed. Therefore, (" +
& %';s = G[m/a]v/{]). Then by induction hypothesis, (I + &;%';s[¢ — v] =G|/ a]).

Let F=(faTa)(@G), (Tkv:T), (Tks:o), T 4:THF:o)and (M, ¢: Tk
E RSV EF). LetT' Dno I, %' > 7, (T}, = Zhp 2 ©) and (T} F71:T). Because
(T :THE& RSl — V] EF),wehave (I, ¢: T+ &,%';s[¢ — V] EG|[rt/a]). By in-
duction hypothesis, (I +&;%';s = G[r/a][v/{]). Then (I &;%';s = G|v/{]|/a]),

because G|v//{][1t/a] = G[rr/a][v/{]. O
Lemma 74 (Expression Substitutivity for Semantics)

(@) 1f (] = (6], then rim /x| = r{rb/x] and T(m /x| =T (15 /x|

(b) If [e[er/X]]2 = p and [e;]3 = [ez]]s,then lefe2/x]]8 = .

(© If (2:h;s [= pure(eler /X)), [e1]] = [e2]}¢ and (2:h:s [= pure(e)),

e
then (2;h;s = pure(e[ea/x])).
() If (T &5 |= Flei /X)), h = Znp, [01]8 = [e2]]2, (Zeio:his = pure(er,e2))
and (T Fley/x] :0), then (' &;%;s = Flex/X]).

Proof. Part (a) is an immediate consequence of the injectivity of value semantics
(Lemma 5). Parts (b) and (c) are shown by inductions on the structure of e. Part (d)
is shown by induction on the structure of F. To deal with specification parameters of
predicates (resp., type annotations in quantifiers), one uses part (a) in combination with
the fact that ri{ie/x] (resp., T [¢/X]) can only be well-typed if either X does not occur in
1T (resp., T) or e is a specification value 77. The most interesting proof case is for
F = F, —x F,. So we show this case in detail:

Let F = F —xF, (T &:%;s = Flei /X)), Z = (h,2,2), [e1]! = [e2]" and
(Q;h;s): pure(el,ez)) and (I - F[EQ/X] : <>). Letl| Dnp I, % = (hy, 21,2), %##%\
and (M F &;%1;s = Fi[e2/x]). By Lemma 69, we have [[el]]gl = [e1] = [ez] =
[[ez]]';l and 2;hy;s |= pure(ej,ez). From (I F &;%;s = Fle;/x]) and weakening, it
follows that (I'y F Fy[e; /X] : ©). Therefore, by induction hypothesis, (| - &;%1;s =
File1/X]). Then (I'y - &% *Z%1;s |= R[e1 /X)), because (I F &3;%;5 = Fle; /X]). Be-
cause h < hxh;, we can apply resource monotonicity (Lemma 71) to get [[el]]h o
[e1]2 = [e2]R = [e2]2*™ and 2;hxhy:s |= pure(er,ez). Then (Iy - &% % %5 =
F»[e2/x]), by induction hypothesis. O

In the following, recall that F*P ranges over formulas that do not contain —*, |, fa
or predicate identifiers that are not data group identifiers.

RT n° 6430

68 Haack & Hurlin

Lemma 75 (Splitting) If (7 - &:2;s |= F*°), then (I - &3 3%;5 = split(F*P)).

Proof. By induction on the structure of F*P. For cases F*P = 0.P8"P@C< 7> and F*P =
0.P&'P< 7>, we use axiom (c) for predicate environments. For case F*P = (ex T a) (G*P),
we use that splitting commutes with substitution: split(F*P)[rt/a] = split(F*P[r/a]).

Lemma 76 (Merging Without Datagroups and Existentials) If F5P does not contain
datagroup identifiers or existentials and (I = &;%;s [= split(F=P) x split(F*P)), then
(M- &,%;s EFP).

Proof. By induction on the structure of F*P.]

The following lemma is needed to update the global permission table 2 when a
field 0.f gets finalized. We define:

finalize(0.f,v, %) = (Znpl0.f V], Zioc[(0, T) 0], Zgpol(0, f) — 0])
Lemma 77 (Finalization) Leto € dom(%hp), Zioc(0,) =0, Zgo(0, f)=1and (M, F
Fnplo.T V] 1 0).
If (TE&;%;s =F), then (I - &;finalize(o.f,v,%);s = F).
Proof. By induction on the structure of F. For cases F = 0.P@C< 7> and F = 0.P<71>,
we use axiom (e) for predicate environments. O

The following lemma is needed to update the global permission table after calling
join.
Lemma 78 (Thread Joining) Let o € dom(h), ?(0,join) < x < 2(0,join) and
2' = 2|(0,join) — X].
If (T-&;(h,2,2);s =F), then (T &;(h,#2,2');s =F).
Proof. By induction on the structure of F. For cases F = 0.P@C< 7> and F = 0.P<i>,
we use axiom (f) for predicate environments. Il

The following lemma is needed to prove soundness of the verification rule (New).
1 ifp=o
0 otherwise

{(nmnan ifp=o

(F(0),0) if pedom(lN)\ {o}
initrsc(F,0,T,2) = (inithp([,0,T), initloc(0), 2)

[I>

initloc(0)(p,k)

[I>

inithp(I",0,T)(p)

Lemma 79 (Initialization)

(a) If (THC<i>:0), 0¢ dom(lN), 2(0,k) =1 for all k in FieldldU{join}, (I'+
5:0), Za(&) =& andC < D, then (I,0: C<7> - &;initrsc(lM,0,C< >, 2);5 =
0.init@D).

(b) If (TFC<>:0),0¢dom(lM), 2(0,k) =1 forallkin FieldldU{join}, (T Fs:
o), and Z«(&) = &, then (I',0 : C<> F &;initrsc(l",0,C< 7>, 2);s = 0.init).

Proof. Part (a) by induction on the subclassing order <. Part (b) follows from part (a)
because 0.init is equivalent to 0.init@C, if C is 0’s dynamic class. |

INRIA

Separation Logic Contracts for a Java-like Language with Fork/Join 69

R Soundness of L ogical Consequence

Lemma 80 (Soundness of Syntactic Purity) If (2;h;s =F:v) and (F+G: V),
then (2;h;s =G: V).

Proof. Let (2;h;sE=F:v)and (FF-G: V). Lete be a field selection expression that
occurs in G. Then e occurs in F by definition of (F F G : v'). Then (2;h;s = pure(e)),
because (Z;h;sEF : V). O

We now prove soundness for the merge-restricted logical consequence judgment
!, (see Section G).

Lemma 81 (Soundness of Merge-restricted Logical Consequence) If (I';r;F =), G)
and (&) =&, then TH&FEG: V).

Proof. By induction on the height of the proof tree that we obtain from (I';r; F F, G)’s
proof tree after “inlining” proof trees for class axioms. This inlining is well-founded
because proofs of class axiom are, by definition, not allowed to make use of class
axioms (see Section J).
Case 1, (Id):
Mr-F.G:o
r;r,F,GH, G
Suppose (M- 2Z,s:0) and (I &;%;s = F,G: v'). By definition of semantic validity
(case F *G), there exists a Z’ < % such that (I - &;%";s = G). Then (T - &;%;s =
G), by resource monotonicity (Lemma 71). Moreover, (Zgio; %np;S = G : v') follows
from (,@gb;%hp;s E F,.G:v), because every subexpression of G is a subexpression
of F,G.
Case 2, (Pure Intro):
rnFH,G Flre:v
r;r;F F,, G*Pure(e)

Let (TH%,s:0)and (T &;%;5 = F : V). Then (Zgi0; %np;S = F : v'). Moreover,
(M- &;%;s = G: V) by induction hypothesis. By Lemma 70, it is now enough to
show that Zgio; Znp;S = pure(€’) for all field selection subexpressions €’ of e. So let €/
be a field selection subexpression of €. Then €’ occurs in F, because (F e : v'). Then
Relo; #np;S = pure(€’), because (Zgio; Zhp;S = F 1 V).

Case 3, (* Intro):

rrFH,H TiGH, Hy
r:rF,GH, Hy*xHy
Let (T %,s:0)and (T +&;%;s =F,G : V). By definition of semantic validity, there
are %) and #, such that Z = %\ * %, T+ &% ;s EF V) and (T - &% =
G : V). By induction hypothesis, (I + &;%;;s =H; : v') and (T + &%, =Hy : V).
Then, by definition of semantic validity, (' - &;%;s =H; *H, : V).

RT n° 6430

70 Haack & Hurlin

Case 4, (x Elim):
rrFH,G *Gy TI:rE,G,GyH,H
r;rF EF,H

Let (T %,s:0)and (T &;%;s =F,E : V). By definition of semantic validity, there
are #Z) and %, such that Z = Z* %y, (T - &R 1;3 =F :v) and (T - &, %5
E : V). By induction hypothesis, (I F &;%1;S = G *G, : v'). Then, by definition
of semantic validity, (I - &;%;s = E,G1,G;: v'). Then, by induction hypothesis,
T-&%,sEH: V).

Case 5, (—* Intro):

F;r;lf,Gl }_Cv Gz Fr Gl W
rrFH, G -*G,
Let (T 2%Z,5:0) and (TH &;%;5 = F :v'). Note that Zgio; %np:S = G1 : v/, by
Lemma 80. Let 'y Dy, I, Z#%) and (I'1 F &;%);S |= G1). By resource monotonicity
(Lemma 71), we have ([- &% / %;s = F : V). Furthermore, Z*%, = (% /°
%) * %), by Lemma 27. Therefore, (I - &%Z*%;s EF,Gy:v). Then (I -
&R *HK1;8 = Gy : V'), by induction hypothesis.
Case 6, (—x Elim):

rrFH, H —*Hy rGH, Hy
rrF,GH, Hy

Let (T-2%,s:0)and (T &;%;s =F,G: V). By definition of semantic validity, there
are #1 and %, such that Z = Z# 1 x %>, T+ E:% ;s EF V) and (T - &,%,;5 =
G : V). By induction hypothesis, (I - &;%;s = H; —xH, : V') and ([- &;%,;s =
H; : v). By definition of semantic validity, we then have (I - &2 *%,;s =Hy : V).

Case 7, (& Intro):
rrnFH,G, InFH, G,
F;r;lf }_Cv G &Gy
Let (T-%,5:0)and (T+&,%Z;s=F: V). Then (TH & Z;sE=G:v)and (TH
&;%;5 |E Gy : v'), by induction hypothesis. Then (I'+ &;%;s =G & G, : V'), by
definition of semantic validity.
Case 8, (& Elim 1):

r;rF F(N G &Gy
rrFH, G
Let (TH%,s:0)and (T+&;%;s =F:V). Then (T &;%;5 = G1&Gy: V), by
induction hypothesis. Then (I - &;%;s = G| : v'), by definition of semantic validity.

Case 9, (| Intro 1):
rFE,G FEGy:V
rrFH,G |G,
Let (T Z,s:0)and (T+&,%Z;s = F : V). Then (- &;,%;s = Gy : V'), by defini-
tion of semantic validity. Then (I' - &;%;s = G | Gy : V'), by definition of semantic
validity and Lemma 80.

INRIA

Separation Logic Contracts for a Java-like Language with Fork/Join 71

Case 10, (| Elim):

rrFH,G |G, IrE,G H,H IrE G, H
rrF EF,H

Let (T+%Z,s:90) and (I - &;%;s |=F,E: V). Then there are %), %> such that
R =%\ x%r, (T+E % ;sEF:v)and (TE &;%;s EE:v). By induction hy-
pothesis, (I'+ &;%1;s |= Gy | Gp : v'). This means that (I'+ &;%);s =G, : V) or
(T &,%1;5 =Gy : V). Let’s assume the former. Then (I - &;%;s = E,G;: V).
Then (IT'+ &;%;s EH : V'), by induction hypothesis. The other case is symmetric.

Case 11, (Ex Intro):

r-m:T Fa:TFG:o [;r;FH, G[m/a]
rrnFH, (exTa)(G)

Let(M-2,s:0)and (T &;%Z;s=F : v'). We know that dom(I") C ObjldURdWrVar,
by definition of (I - %,s : ¢). Furthermore, 7T does not contain read-write variables,
by definition of specification values. Thus (I, b 77: T), by strengthening (I F 77: T).
Moreover (I' = &;%;s = G[n/a] : v'), by induction hypothesis. Then (I' - &;%;s |=
(ex T a) (G)), by definition of semantic validity. To obtain (Zhp; Zgi0;S = (exT a) (G) :
v') we note that every field selection expression that occurs in (ex T a) (G) also oc-
curs in G[11/a], by our syntactic restriction that the bound variable @ must not occur
in field selection expressions.

Case 12, (Ex Elim):

e, (exTa)(G) Ta:T:;rF,GH,H a¢F,H
rrEFH,H

Let (TH%,5:0) and (I - &;%;s = E,F : V). Then there are %, and %, such that
R=%*%,(T+E R ;SEE:V)and (THE;%y;s=F : v). Then (MT=&,%);8
(exT a) (G) : v'), by induction hypothesis. Then there exists some 7Tsuch that ([, -
m:T)and (M- &;%;s =G[m/a): v'). Then (I - &;%;s = E,G[r/a]: v'). On the
other hand, we have (I';r;E,G[m/a]), H), by substitutivity (Lemma 49). Because
value substitutions do not increase derivation height, we can apply the induction hy-
pothesis to obtain (I' - &;%2;s =H : V).
Case 13, (Fa Intro):
agF [a:T;iFH,G
rrnFE, (faTa)(G)

Let(TF%Z,s:0)and (T+&:Z;s|=F : V). LetT' Dnp T, %' > %, (T}, = %y, - 0) and
(Thp - 71:T). By resource monotonicity (Lemma 71), we have (I' - &;%2";s = F : V).
By weakening (Lemma 47), we have (I, a : T;r;F -, G). Then (I'';r;F -, G/ a]),
by a ¢ F and substitutivity (Lemma 49). Now we can apply the induction hypothesis
to obtain (M &;%';s EG: V).

RT n° 6430

72 Haack & Hurlin

Case 14, (Fa Elim):

NP, (faTa)(G) THm:T
r:r;F~, G[r/a]

Let T+ Z%,5:0) and (I &%;s = F:v). By induction hypothesis, we have
Tk &%;s = (£aTa) (G) : v'). Because dom(I") C Objld U RdWrVar and spec-
ification values do not contain read-write variables, we can strengthen (I' - 77: T) to
obtain (Mhp - 17: T). Therefore, (I - &;2%;5 |= G[11/a]) by the semantics of universal
quantification. Moreover, (Zhp; Zgi0;S = Glm/a] : v') follows from (%np; Zgio;S =
(faT a) (G) : V') because O is not contained in field selection expressions, by syn-
tactic restriction.
Case 15, (Ax):
rr-,G M-F,G:o FFG:v
r:rFH,G

Let (THZ,s:0)and (TF &;%;5 = F : V). Note that (Zhp; Zgi0;S = G : v') holds
by Lemma 80. This takes care of the checkmark v, and it suffices to show that (I" -
&;%;s = G). To this end, we distinguish cases axiom by axiom:

Case 15.1:

r;rH), true

Let h = %y,. We have ([true]]} = true). Therefore, (I - &;%;s |= true: V), by
definition of semantic validity.

Case 15.2:

r;ri,, false-+F

Let ' Dpp T, 2#%' and (I & 8378 |= false). Leth' = %] . Then [false]? =
true. This is impossible, so (I - &;%;s |= false - F) is vacuously true.

Case 15.3:

r H,, FSP = (split(FSP) xsplit(FSP))

Letl Dpp I, Z2#%" and (I F &;%';s = F*P). Then (I + &% *%';s = F*P), by re-
source monotonicity (Lemma 71). Let Z* %' = (h, 22,2). By Lemma 75, we obtain
(M &;(h, 52, 2);s = split(FP)). Because (h, 32, 2)%(h,32,2) = (h, 2,2),
we then get (I &;(h, #,2);s |= split(FP) *split(F*?)). Because (h,#,2) =
R*X', we then have (I + &% *Z';s |= split(FP) x split(F5P)).

Case 15.4:

FSP does not contain datagroup ids = I';r I, (split(FSP)*split(FP)) -x FsP

Let ' Dho I, Z#%' and (I F &;%';s (= split(F*P) *split(F*?)). Then we have (I +
ER*R';s = split(FsP) xsplit(FSP)), by resource monotonicity (Lemma 71). By
Lemma 76, we then obtain (I - &, Z*%';s |= F*P).

Case 15.5:
M;rk!, (PointsTo(e[f],me’) & PointsTo(e[f],77,e")) assures e’ ==¢”

This axioms holds because heaps are functional in object- and field identifiers.

INRIA

Separation Logic Contracts for a Java-like Language with Fork/Join 73

Case 15.6:
(CTkHe:T) = IMri, Pure(e) —x (exT a) (e==a)

This is a consequence of Lemma 68.

Case 15.7:

(T=tep | tey | €) = ril, (eg*ey) —xe’

Let (T=te; | tex | €). Let " Dnp I, Z#% and (I'+ &;%';s = e *e;). Let
h =%, h' = e@{]p and h” be some total heap such that (I'f]ID Fh"”:o)and hxh' <h”.
We have [e;]Y = [e2]Y = true, by definition of semantic validity. Then [e;]Y" =
[e2]" = true, by Lemma 71. Then [[¢']7 = true, because (T |= te; | le; | €).
Furthermore, we have (Zgi0;h;s = pure('e; | tey | €)), thus, g%g|o;h;s E pure(¢')),
thus, (Zgio;n*N';s |= pure(e’)) by Lemma 71. Then [e/]7*" = p for some y, by
Lemma 68. Then true = [¢/]" = u by Lemma 71. Thus, [¢'J?*" = true.

Case 15.8:

(Thee :TATX:THEF:0)=T;rk), (Fle/x|xe==¢)-*F[¢//X]

Let (M-ee :T)and (T,x:THF:o). Let " Dy, I, Z#% and (I - %5 =
Fle/x]*e==¢'). Then ("t &;Z*%';s = F|e/x| e == €'), by resource monotonicity
(Lemma 71). Let Z*%' = (h,2,2). By definition of semantic validity, we have
(M- &:R*Z';s |=Fle/x]), (2;h;s = pure(e,e’)) and [[e]|? = [[¢'[R. By substitutivity
(Lemma 42) and weakening, we have (I'’ - F[e’/X] : ©). Thus, we can apply Lemma 74
to obtain (I - &, Z*%';s = F[e'/X]).

Case 15.9:

(TEm:T A axiom(T)=G') = I;r =, G'[r/this]

Let (T 1: T) and axiom(T) = G’. We need to show (I - &;%Z;r =5 = G/[rr/this]).
Because axiom(T) is defined, T must be a reference type. Then 7T must be an ob-
ject identifier. Let %h,(11); = C<7'>. Let |a| = |77|. Let G” = axiom(C<a>). Be-
cause C<77> <: T, we know that G”[77'/&] implies G’, and it therefore suffices to
show that (I - &;%;s = G"[f’,m/a,this]). To this end, it suffices to show I -
&;C isclassof 1= G”[fT,m/a,this]. By soundness of class axioms (see Sec-
tion J), we know that @ : T,this : C<@>; this; C isclassof this F” G”. But
then we have (I";1;C isclassof " G”[f’,m/a,this]), by substitutivity. Then
I+ &;true = G|, /@, this], by induction hypothesis.

Case 15.10:

r;rh,, mPedbject

We need to show that (I' - &;%;s = m.P@0bject). Because this is true only if ' -
T.P@0bject : o, we know that 7T is either null or an object identifier. In the former
case, we are done by the semantics of predicates with null-receiver. So let T= 0. By
the semantics of predicates, we need to show that &(P@0bject)((),#,0,()) = 1. This
expression is only well-typed if P € {state,init}. Because (&) = &, we know
that .7t (&)(P@0bject)((),#,0,()) = 1. By definition of .%, this is the case only if
(I &;%;0 |= true*true). But this is true.

RT n° 6430

74 Haack & Hurlin

Case 15.11:
r;rk}, null.K<i>

(M &;%;s Enull.K<7>) is true by the semantics of predicates with null-receiver.

Case 15.12:
C =D = TI;rt,, mPeD<p> ispartof m.PeC<7T, 1>

If 7= null, then this amounts to true ispartof true, which trivially holds. So
let’s assume that 7T = 0 for some object identifier 0. To abbreviate, let’s write P for
0.P@C< T, 77> and Py for 0.P@D<7>. By transitivity of ispartof (Lemma 53) and
because we have already shown the soundness of the natural deduction rules for * and
—*, we can assume that D is an immediate superclass of C. Let I/ O I, R#A' and
(It &;%';s = Pc). Then (I 0:C<’>) and & (PeC) (", %’ ,0,(m, ') = 1. Be-
cause F¢(&) = &, then F(&)(PQC) (7", %' ,0, (71, 7')) = 1. By definition of .Z, it
follows that pbody(0.P<7T, 7i'>,C<71">) = F ext D<fi"> and (I - &, %';s |= F *Py).
Then Z' = % * %), (It &, %1;s =F) and (I + &, %5;5 |= Py) for some |, #)). We
need to show that (I F &;Z*Z';s = Py * (Pq = P¢)). To this end, it suffices to show
that ("= &2 /" %';s = F —x Py —*P;). To abbreviate, let Zy = Z ,/ %'. Using the
natural deduction rules for * and —*, we can derive F —* Py —* P; from F *xPy - P;.
Because we have already shown the soundness of these natural deduction rules it
suffices to show that (I'" F &;%0;5 = F xPq—*P). So let " Dy, [, Z0#%" and
(ME&;%";s = F *Py). By definition of predicate semantics and because Z (&) =&
it then follows that (I'" + &;%2";s = Pc). Then (I + &; %0+ %" ;s |= Pc), by resource
monotonicity (Lemma 71).
Case 15.13:
;r+, mPeC<i> ispartof mM.P<i>

If 7= null, then this amounts to true ispartof true, which trivially holds. So
let’s assume that 7T = 0 for some object identifier 0. To abbreviate, let’s write P
for 0.P@C<7> and P for 0.P<7>. Let " Dy, I, Z#%’ and (I - &;%';s |= P). Let
Jnp(0), = D<M">. Then D < C, by well-typedness of Pc. By the semantics of predi-
cates, there are 77 such that (I + &;%’;s = 0.P@D<TT, 7U'>). To abbreviate, let’s write
Py for 0.P@D< i, 7U'>. By the previous axiom (which is already proven sound), we know
that (T + &;%;s |= P. ispartof Py). Therefore, (I = &, Z*%';s = Pex (Pe—xPy)).
It follows that (I - &; Z* %';s = Py). But then (I - &, Z *Z%';s = P), by predicate
semantics.

Case 15.14:

Fr), TP<iD %=+ (ex T @) (TT.P<TT,G>)

It is straightforward to show the two implications. (Recall that the semantics of pred-
icates with missing arguments looks up the predicate type in the dynamic class of the
receiver and existentially quantifies over the missing parameters.)

Case 15.15:

r;r HN (.PeC< 7> * C isclassof 1) —* 1T.P<i>

Proof straightforward.

INRIA

Separation Logic Contracts for a Java-like Language with Fork/Join 75

Case 15.16:
(Cisfinal or Pis final inC) = I;r k|, mPeC<> —* m.P<i>

Proof straightforward.

Case 15.17:
(M Fr:C<i’> A pbody(r.P<7t, i'>,C<f’’>) = F ext D<i1"’>)
= I;r k), r.PeC<it, > *—* (F xr.PeD<>)

Proof straightforward, using that Z¢(&) = & and inspecting the definition of Z.
(]

In order to lift the soundness lemma from the merge-restricted logical consequence !,
to -, we need to show soundness of the unrestricted merging axiom.

Lemma 82 (Merging) If [;r k-, split(F) : supp and .%(&) = &,
then " - &;split(F) *split(F) = F.

Proof. By induction on the structure of F. The case F = 0.P&™P@C< 71> uses axiom (d)
for predicate environments. The case F = 0.P&™< 7> also uses axiom (d) together with
the fact that the existential quantifier in the semantics of 0.P8<7> is empty, because
datagroups do not have variable arity (as enforced by the subtyping rule (Grp Sub)).
The only other interesting case is the one for existentials:

M-T:o Fa:T;rEF:isupp Ta:T,a :T;r;truet), split(F & Fla’/a]) -+ a ==a’
M;ri (ex T a) (split(F)) : supp

Let (I - &;%;s = split((ex T a) (F)) xsplit((ex T a) (F))). Then there are %,
Ko, T, T such that Z = X, * %, and (I - &;%;;s |= split(F[r5/al)) for i = 1,2.
Using resource monotonicity, we obtain (I' - &;2%;s | split(F[m /a] & F[m/a])).
By applying substitutivity to the last premise of the above rule, we obtain I';r; true -,
split(F[m/a] & F[me/a]) = 1 == 5. We now use the soundness of), (Lemma 81) to
obtain ' - &;final(#Z);s |=split(F[m /a] & F[e/a]) —* m == 1. Thus, [+ &;%;s |=
T == 7B, by the semantics of linear implication and because final(%) * % = 2. This

means that [[75]] = [78]), hence, 7, = 75 (Lemma 5). Then we have split(F [/a]) =
split(F[ms/a]), hence, (I - &;%;s = F[m/a]) by induction hypothesis. By the se-
mantics of existentials, it follows that (I + &;2%;s = (ex T a) (F)). O

Proof of Theorem 4 (Soundness of Logical Consequence). If (I';r;F F G) and
F(E) =&, then(TH&EFEG: V).

Proof. By induction on the height of the derivation of (I';r;F = G). All proof cases
are exactly like in the proof of Lemma 81. The only additional axiom that needs to
be shown is the merging axiom “I";v - F :supp = ;v (split(F)*split(F)) —xF”.
But this is a consequence of Lemma 82 and the fact that (I';v - F : supp) implies
(F;vw F 2 supp). O

RT n° 6430

76 Haack & Hurlin

S TheFormula Support

Our Hoare rule for join allows callers to use fractions of join’s post-condition. In
order to prove the soundness of the join rule, we need the following property: if
(Tt &F EG), then (I - &;fr-F =1fr-G). Specifically, this property is needed to
deal with subtyping: If F is run’s postcondition at the receiver’s dynamic type and
G the postcondition at its static type, we know that (I - &;F = G), by behavioral
subtyping. What we need to know is (I - &;fr-F |=fr- G), where fr is the fraction
of the postcondition that the caller “requests”. Provided that F and G are supported
(which is a requirement for run’s postcondition), this property follows from a similar
property for split: if (T + &;F = G), then (T - &;split(F) |= split(F)).

As atechnical tool for proving this property, we define a function that maps formu-
las to their support:

Xreas®) =% Xrens(Pure(®) =R Xrsps(mull.K<D) =%
Xr.s.2.5(0.PEPQC<T>) = N{%' > % | (3T)(T - 0:C<7T>, &(PCC)(7, %' ,0,71) = 1)}
Xr&,2.5(0.PEPTD) £ N{#' > R |(3T)(%np(0), = C<T>, £(PCC)(7, %' 0,) = 1)}

(hu{(o,(T.(f,v)))}, O[(o, f) — [[r]], 2)

where [e]2 =0, h(0), =T, [} =v

Xr .(h.2.2) s(Perm(e[join], m) £ (h, 0[(0, join) — [], 2)
Xr.6.2s(F*G) = Xr s.25(F)* Xr & .2 5(G)
xreas(F&G) = Xrsns(F)VXrens(G)

Xr £,(h2.2)s(PointsTo(e[f],me")) = {

a | Xr.e.s(Flm/al) where 1Tis unique such that
Xroas((exT) (F)) = { Fhp - 71T and (32 > 2)(- &:%';s = (F[m/al)

Xr.¢.#.s(F) is not always well-defined, not even if (I - &;%;s |= F). For instance,
the right-hand-sides of the clauses for PointsTo and Perm may not be well-formed
resources, and the witness in the clause for existentials may not be unique. This is un-
problematic, because we will only apply this function to resources of the form final(%)
and to formulas F that are supported.

Lemma 83 (Existence and Minimality) Let(I';oby F :supp), #u(&) =&, and (I'+
&;%;s =F). Then:

(@) Xr.s final(),s(F) is defined.
(®) TF&;Xr s final(#) s(F);s E F.
(c) WZ' > final(Z) and T - &,%';s |= F, then Z' > Xr ¢ finai),s(F)-

Proof. By induction on the structure of F. The proof uses axiom (b) for predicate
environments. |

Lemma 84 (Splitting for Semantic Entailment) If (I';0 F,, F,G,split(F),split(G) :
supp) and Fy(&) =& and (T'F &:%;s = F) and (I &;F [=<% G), then (I' F
&;split(F) E<% split(G)).

Proof. Let %«(&) =&, (I';0 Fy, F,G,split(F),split(G) : supp), (T &% =F),
and (M- &;F E<g). Let Z' < Z and (T + &;%';s = split(F)). Let Z” = final(%).
Then by Lemma 83:

INRIA

Separation Logic Contracts for a Java-like Language with Fork/Join 77

M= & Xr.e.2 s(split(F)):s |= split(F) R > Xr .2 s(split(F))
From (' &;2%2;5 = F), we get (I b &;%;s | split(F) *split(F)), by soundness of
splitting. Then, by Lemma 83 and because final(%Z) = final(%’') = %"

T & Xr e, s(sPlit(F)) * Xr o 2 s(split(F)):s |= split(F) * split(F)

By soundness of merging (Lemma 82) and the assumption ' - &;F =<4 G, we obtain:

T =& Xr.eas(split(F))* Xr o g s(split(F));s = G

Then by soundness of splitting:

M= & Xr .. s(sPlit(F)) * Xr & 27 s(split(F)):s = split(G) * split(G)
But then by the minimality property of the support:

Xr.e,a s(sPlit(F)) * Xr & 2 s(sPlit(F)) > Xr e .4 s(split(G) *split(G))
= Xr.e.a"s(split(G))* Xr £ g s(split(G))

Multiply both sides with § (Lemma 24): Xr ¢ 57 s(split(F)) > Xr s s s(split(G)). On
the other hand, we have:

M= (g’;Xr)gA’%//’s(Sp”t(G));S ': Sp|lt(G)
Because #' > Xr ¢ s s(sPlit(F)) > Xr ¢ s s(split(G)), it follows that I - &;.%';s =
split(G). O
T Linear Combinations

The verification rule for calling join uses scalar multiplication fr - F of a linear com-
bination fr and a formula F. Linear combinations represent numbers of the forms 1 or
Si, bit; - % For convenience, we repeat the definitions from Section 6.2.

bit € {0,1} bits ::= 1 | bit,bits fr € BinFrac ::= all | fr() | fr(bits)

The scalar multiplication fr - F is defined as follows: all-F =F, fr() -F = true,
fr(1)-F =split(F), fr(0, bits) - F = fr(bits) - split(F) and fr(1, bits) - F = split(F) * fr(bits)-
split(F). For instance, fr(1,0,1) - F x-* (split(F)*split*(F)).

Lemma85 If (I;vi-F :supp), then (M;v;F Ffr-F).

Proof. By induction on the length of fr, using the split-direction of the split/merge
axiom.]

Lemma 86 If 74 (&) =&, (M0-F,G:supp), (TF&%Z;s=F)and (T &;F =<»
G), then (T &;fr-F =<5 fr-G).

Proof. By induction on the length of fr using a similar property for split (Lemma 84),
and the fact that splitting preserves supportedness (Lemma 2). O

RT n° 6430

78 Haack & Hurlin

In order to prove the soundness of our verification rule for joining threads, we need
a few more lemmas about scalar multiplication. In particular, we need the distributivity
law I;v;true b (fry +fry) - F x—* (fr; - F) * (fr, - F).

In order to define the addition on the left-hand side of this law, we mimic expansion
to a common denominator as known from addition of rational numbers. The map
[-] : BinFrac — Q interprets symbolic binary fractions as concrete rationals:

[=1 [fO]=0 [fr(D]=5 [fr(0,bits)] = 3 [fr(bits)] [fr(L,bits)] = 5+ 3 [fr(bits)]

Lemma 87 (Addition of Symbolic Fractions) If [[fr,] + [[fr,]] < 1, then there exists a
unique symbolic fraction fr, +fr, such that [[fr, +fr,]] = [fr;] + [fr.].

Proof. If [[fr,]] = 0, we define fr, +fr, = fr,. Similarly, in case [[fr,] = 0, we de-

fine fr, +fr, = fr,. Let’s assume that [[fr,]] > 0 and [[fr,]] > 0. Then also [fr,] < 1
and [[fr,]] < 1, because [[fr,]] + [[fr,]] < 1, by assumption. Then, by definition of [-],
[fr] =3, bit - % and [[fr,] = zik:1 bity; - %, where bit; n = 1 and bity x = 1. Sup-
pose that n > k (the other case is symmetric). Using standard arithmetic, we can repre-
sent [[fr,]] + [[fr,]] as 55 with ¢ <2". If ¢ = 2", we define fr; +fr, £ all. Otherwise, we
use standard arithmetic to rewrite z—cn to S, bit; - %, where bity, = 1. We then define

fr, +fr, = fr(bit,,...,bitm). The uniqueness follows from the fact that the above sum
representations of concrete binary fractions are unique (by standard arithmetic). g

Lemma 88 (Subtraction of Symbolic Fractions) If [[fr,]] < [fr,], then there exists a
unique symbolic fraction fr, — fr, such that (fr; — fr,) +fr, = fr,.

Proof. If [[fr,]] — [[fr,]] = 0, we define fr, —fr, = fr(). If [fr,]] — [[fr,] = 1, we define
fr, —fr, £ all. Otherwise, we represent [[fr,]| — [fr,] as S, bit; % where bit, =1, and
we define fr, — fr, = fr(bit;,...,bit,). By construction, we have [fr, — fr,] + [fr,] =

[fry]). Then (fr; —fr,) +fr, = fr, because, by our definition of addition, (fr; —fr,) +fr,
is the only symbolic fraction fr such that [[fr; — fry] + [[fr,]] = [[fr]. O

Computing the sum [[fr;]] + [[fr,] is done by first reducing the summands of [[fr]]
and [[fr,]] to a common denominator. We will mimic this algorithm on formulas.
Part (b) of Lemma 90 below says that the operation that mimics the reduction to a
common denominator is an equivalence transformation.

We define an operation copy(n, F) that *-conjoins n copies of formula F:

copy(0,F) = true copy(n+1,F) = F *copy(n,F)
Lemma 89 Let (I';vEF :supp) andn > 0.

(a) T;v;true k- copy(2n,split(F)) *—* copy(n,F)
(b) T;v;true - copy(2",split"(F)) *-* F

Proof. Part (a) uses the split/merge axiom n times. Part (b) by induction on n. For
n =0, we have copy(20, F)=F. For n > 0, we use the induction hypothesis to obtain:

copy(2",split"(F)) =% copy(2,copy(2"!,split" ! (split(F))))
= copy(2,split(F)) »*F

INRIA

Separation Logic Contracts for a Java-like Language with Fork/Join 79

Lemma 90 (Reduction to Common Denominator) Let (I';vEF :supp), |bits| =n <
m and fr = fr(bits).

@) [fr] = (3L, biti -2™) - 5 _

(b) T;v;true b fr- F *— copy(3L, biti - 2™, split™(F))

(c) T;v;true F fr- F *—* copy(2M[fr], split™(F))
Proof. Part (c) follow from parts (a) and (b). Parts (a) and (b) are both shown by

induction on the structure of bits. We do the proof of part (b) in detail: For bits = 1,
we have fr(1) - F = split(F) and on the other hand:

copy (3, 2™ split™(F)) = copy(2™ !, split™ ! (split(F))) *—* split(F)

For the last equivalence in this chain, we used Lemma 89(b). Suppose now that bits =
(bity, bits’). We derive the following:

copy (3, bitj - 2™ split™(F))

copy (31 bitisy - 2™, split™(F))
= copy(L 3! bitiy; - 2™, split™(F))
*=x copy(y M bitiy 1 -2™ 1, split™! (F))
*— fr(bits’) - split(F)

The last step uses the induction hypothesis and the step before Lemma 89(a). Using
this equivalence, we now get:

copy (3, bit; pm split™(F)) ‘
= copy(bit; - 2™, split™(F))* copy (S, bit; - 2™, split™(F))
*-x copy(bit; - 2™, split™(F)) * fr(bits’) - split(F)

In case bit; = 0, we have:

copy(bity - 2™ 1 split™(F)) = fr(bits’) - split(F)
= truexfr(bits’) - split(F)
*—x fr(bits’) - split(F) = fr(bits) - F

In case bit; = 1, we have:

copy(bit; - 2™ split™(F)) *fr(bits’) - split(F)
= copy(2™ ! split™(F)) = fr(bits’) - split(F)
*— split(F)*fr(bits’) - split(F) = fr(bits) - F

For the equivalence on the last line, we used Lemma 89(b). O

Lemma 91 (Monotonicity of Scalar Multiplication) If [[fr] > [[fr'] and (F';v - F :
supp), then (F;v;fr-F =fr'-F).

Proof. If [[fr] = 1, we know by Lemma 85. If [[fr'] = 0, then this is trivial because
fr'-F = true. So let’s assume that 1 > [[fr]] > [[fr']] > 0. Then fr = fr(bits) and fr’ =
fr(bits") for some bits, bits’. Let m = max(|bits|, |bits’|). By Lemma 90, we obtain (fr -
F *—x copy(2"M[[fr]},split™(F))) and (fr" - F %—* copy(2™M[fr'],split™(F))). But clearly
copy (2M[[fr']},split™(F)) is derivable from copy (2™[[fr],split™(F)) by dropping ([[fr]] —
[fr']) copies of split™(F). O

RT n° 6430

80 Haack & Hurlin

Lemma 92 (Distributivity of Scalar Multiplication) If (F;vF :supp) and fr; +fr,
exists, then I;v;true - (fry +fry) - F = fr; - F* fry - F

Proof. If fr; = fr(), then the left-hand-side equals fr, - F and the right-hand-side
equals true*fry - F. These are equivalent. The case fr, = fr() is symmetric. The
case where either fr; = all or fr, = all is covered, because then the other one has to
be fr() (otherwise fr; 4 fr, would not exist). So let’s assume that fr; = fr(bits) and
fr, = fr(bits’) for some bits and bits’. Let m = max(|bits|, |bits'|). By Lemma 90, we
then know that:

(1) T;v;true b fry - F x=x copy(2M[fr,], split™(F))

(2) T;v;true b fr, - F *-x copy(2M]fr,]], split™(F))

(3) T;vstruek (fry +fry) - F = copy(2M[[fr, + fr,]], split™(F))

(In case fr| 4 fr, = all, the last equivalence holds by Lemma 89(b).) By definition of
fr, +fr,, we have that [[fr; +fr,]] = [[fr,]] + [[fr,]]. Therefore:

(fry +fry)-F
*— copy(2M[[fr, +fr,]], split™(F))
= Copy(Zm[[frl]]+2m[[frz]] split™(F))
*—k copy(2m[[fr1]] split™(F)) * copy(2™[[fr,]}, split™(F))
x=* fr -Fxfry-F

O
U Preservation
Proof of Theorem 5 (Preservation). If (ct: ¢), (st:) and st —¢ st’, then (st' : o).
Proof.
(1) ct:o assumption
(2) st:o assumption
3) st — st/ assumption

An inspection of the reduction rules shows that st is of the following form:
(4) st=¢(h,ts|0is(sincC))

By inverting the last verification rules in the derivation of st : ¢, we obtain %s, Z, I',
I, F, G, fr and G’ such that the following statements hold:

©) h= %hp * (t%ts)hp

(6) dom(Znp) = dom((Zts)np)
(7) Fish1s: o

®) Fu(&)=¢&

O FFo:r

10) I, MEs:o

(11) o]+ & Z%Z;s = Flo]: v
(12) I, I";r={F}c:void{G}
(13) cfv(c) N dom(l'") =0
(14) G=fr-G’[o/this]

(15) post(h(0);,run) =G’

INRIA

Separation Logic Contracts for a Java-like Language with Fork/Join 81

(16) Zgio(0, join) < [[fr]

(17) fr=allor 3% > %)(T + &;%';s = G'|o/this])

(18) dom(I") C Objld URdWrVar and dom(I"") C LogVar

Statement (18) is implied by (11) and (9). All other statements are taken from the
premises of (State), (Cons Pool) and (Thread). We now distinguish cases by the reduc-
tion rules that can possibly be the reason for st — st’:

Case 1, (Red Dcl):
¢ ¢ dom(s) s =s[l+ df(T)]
{(h,ts|ois(sinT £¢)) — (h,ts]ois (s inc’))

In this case, we can further instantiate ¢ and st” as follows:
1.1) c=T¢d

(1.2) st =(h,ts|0is (s'inc))

(1.3) §' 5[0 df(T)]

By bound variable renaming, we may assume:

(1.4) £ ¢ dom(IN)

We define:

A5 r,2re:T

We apply weakening (Lemma 39) to judgment (10) and obtain (Iy,[" Fs: ©). More-
over, we have (I, = df(T) : T). Using (Stack), we get:

1.6) [, I'=¢:0
By inverting judgment (12), we obtain:

(1.7) Ty, 51 {F % £ ==df(T)}c' : void{G}
(1.8) L ¢F,G

Because ¢ ¢ fv(F[0]), we can apply Lemma 72(c) to (11) in order to extend s to §':
(1.9) Ty|o] - &,%;8 EFlo]: v

We have [[E]]g,/ =5'(¢) =df(T) = [df(T)]]2,/ for any h’. The last of these equalities holds
because df(T) is a closed value. We thus have:

(1.10) Ty[o]F &;final(Z);8' = £==df(T): v

Because Z *final(#) = % and because (1.9) and (1.10) hold, we obtain:

(1.11) Ty[o] - &,%2;8 =F|o] * £==df(T): vV

Now, we apply (Thread) to (1.6), (1.11) and (1.7). We obtain:

(1.12) Z+ois(s'inc) : o

Finally, we apply (Cons Pool) and (State) to (1.12), (7), (6) and (5). We obtain:
(1.13) st': o

RT n° 6430

82 Haack & Hurlin

Case 2, (Red Fin Dcl):

s()=v " =c[v/1]
(h,ts|ois (sinfinal T 1=¢;¢’)) — (h,ts|0is (sinc”))

In this case, we can further instantiate ¢ and st” as follows:
(2.1) c=final T1=4;¢
(2.2) st =(h,ts|ois(sinc”))
The last rule in (12)’s derivation is (Fin Dcl). By the premises of this rule, we get:
23) IL,I 1 Tr={Fx1==¢}c :void{G}
Q4 rree:.T
(2.5) 1¢ F,G.
Because (I, F5:¢)and s(¢) =v, we have (I',[" Fv: T). By substitutivity (Lemma 61),
we can apply the substitution [v/1] to (2.3), obtaining:
(2.6) I,I';r={F*v==/(}c":void{G}
We have [(]Y =s(¢) =v=v] 2,' for any h’. The last of these equalities holds because v
is a closed value (this follows from (10) and (18)). We thus have:
2.7) T[o]F &;final(#);sEv=="L:V
Because Z *final(#) = %, we can combine (11) and (2.7) to obtain:
(2.8) T[o|F &;%2;s =F[o] xv==(:V
We apply (Thread) to (2.8) and (2.6), and obtain Z - 0is (sinc”) : ©. Applying (Cons Pool)
and (State) to the previous judgment and (7), (6), (5), we obtain st’ : ©.
Case 3, (Red Unpack):

(h,ts|0is (sinunpack (exT a) (H);c')) — (h,ts|ois(sinc’))

In this case, we can further instantiate ¢ and st” as follows:

(3.1) ¢ =unpack (exT a) (H); ¢
(3.2) st =(h,ts|0is(sinc’))

Define 'y = (I, a : T). The last rule in (12)’s derivation is (Unpack). By the premises
of this rule, there exists F/ such that:

(33) F=F'*(exTa)(H)
(3.4) T,Ig:rE{F *H}c :void{G}
(3.5) a ¢F',G

From (11), we obtain %, %5, 1 such that Z = %, * %>, (['[0] - m: T [0]) and:

3.6) T[o|F &;%1;s EF'[0]: v
3.7) T[o]F &;%,;s =EH[o][r/a]: v

Define gy = (0,a —). Then:
(3.8) Ttog: Ty
Because a ¢ fv([,F’,ran(0)), statements (3.6) and (3.7) are equivalent to:

INRIA

Separation Logic Contracts for a Java-like Language with Fork/Join 83

(3.9) Togl - &%, =F'[04]: vV
(3.10) Tog]F &;%>;s =H[og] : v

Thus, we have:
(3.11) T[og]t &:2%;s = (F'*H)[0a] : v
We can now apply (Thread) to (3.8), (3.11) and (3.4), obtaining (Z F 0is (sinc’) : o).

Case 4, (Red Var Set):

s/ =s[l V]
(h,ts|ois (sin¢=v;c')) — (h,ts|ois (s inC’))

In this case, we can further instantiate ¢ and st” as follows:

“4.1) c=/(=v;c

4.2) st =(h,ts|ois(s'inc))

(4.3) s £5[0— V]

The last rules in (12)’s derivation are (Seq) preceded by (Var Set). From the premises
of these rules, we obtain an F’ such that:

4.4 I, Ev:(F,T))

4.5) I,Ir={F'}=v{F'x £ ==V}

4.6) I,I;rFEF

@7 I,Ir={F' * £==v}c’ :void{G}

4.8) ¢ F

Because (I', " Fs: o) and (I, Fv: (F,)(£)), we have:

49 rrrs:o

Applying substitutivity (Lemma 49) to (4.6), we obtain ([[0];r;F[0] - F'[g]). By
soundness of logical consequence (Theorem 4), we can compose ([[0] F &;%;s |=
Flo]: V) and ([[o];r;F[o] + F'[g]) to obtain ([[0] F &;%;s = F'[0] : v'). Because
£ & F’, we can modify s at argument ¢ (part (c) of Lemma 73) without destroying
semantic validity. We obtain:

4.10) T[o|+ &%, EF'[0]: v

We have [[E]]g,’ =s{)=v= [[V]]g,, for any heap h'. The last of these equalities holds
because dom(I",I"") C Objld U RdWrVar U LogVar and thus V is not a variable but a
closed value. From [[é]]g,/ = [[v]]g,’ it follows that ([[g] F &;final(#);s' = £==V). In
combination with (4.10) and Z *final(%#) = %, we then obtain:

4.11) T[o|F &%, EF'[o]* £==Vv:V

We apply (Thread) to (4.9), (4.11) and (4.7) to obtain (Z F0is (s'in¢’) : ©). Then we
apply (Cons Pool) and (State) to (Z + 0is (§' inc') : ¢), (7), (6), (5). We obtain st’ : ¢.

RT n° 6430

84 Haack & Hurlin

Case 5, (Red Op):

arity(op) = [v| [op]"(V) =w &' =s[¢—w]
(h,ts|ois(sinf=0p(V);c")) — (h,ts|ois (s incC))

In this case, we can further instantiate ¢ and st” as follows:

(5.1) c={¢=op(V); ¢

(5.2) st =(h,ts|0is(s'inc))

The last rules in (12)’s derivation are (Seq) preceded by (Op). From the premises of

these rules, we obtain an F’ such that:

(5.3) I, Fop(v) : (T,T")(¢)

5.4 rr;nFEF

(5.5) I,Isr={F'x £==0p(V)}c: void{G}

(5.6) L&F

Leth’={ (p,(F(p),0)) | p € dom(h) }. Then (I',["")n, - h": o. On the other hand,

we have Mhp[0] - h:o. Thus, fstoh = (fstoh’)[g]. By axioms (b) and (c) for operator

semantics, it follows that w = [op]"(V) = [op]" (V) = [op(V)]'. We can therefore

apply Lemma 67 (“expression semantics preserves typing”) to (5.3) and obtain (I, -

w: ([, (¢)). Thus:

(5.7) s o

Applying substitutivity (Lemma 49) to (5.4), we obtain (I'[0];r;F[o] + F'[0]). By

soundness of logical consequence (Theorem 4), we can compose ([[0] F &;%;s =

Flo]:v) and (T[o];r;F[o] + F'[g]) to obtain (T[0] F &:%;s = F'[0] : v). Because

£ & F’, we can modify s at argument ¢ (part (¢) of Lemma 73) without destroying

semantic validity. We obtain:

(5.8) T[o|F &;%2;8 EF'[0]: v

We have [[Eﬂg,/ =s{)=w= [[Op(\T)]]g,'. By axiom (b) for operator semantics, these

equations still hold if we replace h' by final(%)n,. Therefore, (F[o] - &;final(Z);s' =

£==0p(V)). In combination with (5.8) and % *final(%#) = %, we then obtain:

(5.9) To|+ &%, =EF'[o]* £==0p(V): v

We apply (Thread) to (5.7), (5.9) and (5.5) to obtain (Z + 0is (s’ inc’) : ©). Then we

apply (Cons Pool) and (State) to (Z F 0is (s"inc’) : ¢), (7), (6), (5). We obtain st : ¢.
Case 6, (Red Get):

§' = 5[t h(p)y(f)]
(h,ts|ois (sinf=p.f;c’)) — (h,ts|ois (s'inc’))

In this case, we can further instantiate ¢ and st” as follows:
(6.1) c=/¢=p.f;c

(6.2) st =(h,ts|0is(s'inc))

(6.3) 8" =s[¢+— h(p),(f)]

INRIA

Separation Logic Contracts for a Java-like Language with Fork/Join 85

The last rules in (12)’s derivation are (Seq) preceded by (Get). From the premises of
these rules, we obtain F’, E and E’ such that the following statements hold:

6.4 r,r'sr;F-F

6.5 r,r;r,F +-E

6.6) I, Ep.f: (M)

6.7) L& F

(6.8) I,I';r={F'}=p.f{F'*E'}

(6.9) (E,E’) = (PointsTo(p[fl,mu), £==u)or (E,E') = (Pure(p.f), £==p.f)
(6.10) I,I'";r={F'*xE’}c’ : void{G}

Let ' = Zpp. From (6.4), (6.5) and (6.9), we deduce that h'(p),(f) is defined. Be-
cause h’ < h, it must be the case that h’(p),(f) = h(p),(f). From (6.6), we obtain
that (F[o] - p.f : T(¢)[o]). Because (I'[o] - h’":), we then get (I '[o] F h'(p),(f):
' (¢)[o]). Because h'(p),(f) =h(p),(f), it follows that (I'[o] - h(p),(f) : [(¢)[o]).
Then (I',I" Fh(p),(f) : [(¢)), by Lemma 43. Thus, we have:

6.1 M,r'Es:o

Like in the previous proof cases, soundness of logical consequence (Theorem 4) yields:
(6.12) T[o|+ &%, EF'[0]: v

Similarly, we obtain:

(6.13) T[o|+&:%;8 EE[0]: v

To complete this proof case, it suffices to show the following:

(6.14) T[o|F &;%;s EF'[o]*E'[g]: v goal
We split cases according to (6.9).

Case 6.1, (E,E’) = (PointsTo(p[f],mu), £==u): From (6.13), we geth’(p),(f) =
[[u]]g . On the other hand, we have [[E]]Q/ =5'(¢) = h(p),(f). Therefore, [[f]]g,’ =
h(p),(f) =N (p),(f) = [u]2. It follows that:

(6.1.1) T[o]+ &:final(Z);s' El==u:V

Because Z *final(%#) = %, we can combine (6.12) and (6.1.1) to obtain:
(6.12) T+ &,%,8 =EF'[o]* £==u:V

Because E’[0] = £ == u, we have established our goal (6.14).

Case 6.2, (E,E’) = (Pure(p.f), £==p.f): Let 2 = Zy)o. From (6.13), we know
that 2(p, f) < 1. We have [¢]¥ =s'(¢) = h(p),(f) = W (p),(f) = [p.f]7. From this
equation and 2(p, f) < 1, we obtain that (I'[g] - &;final(Z);s' ={==p.f: V). In
combination with (6.12), we then get:

(6.2.1) T|o]+ &,%Z;8' =F'[o]* L==p.f: vV
Because E'[g] = ¢ == p.f we have established our goal (6.14).

RT n° 6430

86 Haack & Hurlin

Case 7, (Red Set):

h' =h[p.f — w]
(h,ts|ois (sinfin p.f=w; c’)) — (W, ts|ois(sinc’))

In this case, we can further instantiate ¢ and st” as follows:

(7.1) c=finp.f=w;c

(7.2) st =(h';ts|ois (sinc’))

(7.3) " =h[p.f —w]

The last rules in (12)’s derivation are (Seq) preceded by (FId Set). From the rule
premises, we obtain F’ and E such that:

(7.4) T,I';r;F = F'x PointsTo(p[f],1,T)

(7.5) I,I'+p:C<iv>

(7.6) T f efld(C<im)

D, rMEw:T

(7.8) (fin,E) = (g, PointsTo(p[fl,1,w)) or (fin,E) = (final, p.f ==w)

(7.9) I,I';r={F' xE}c' : void{G}

Like in the previous proof cases, soundness of logical consequence (Theorem 4) yields:
(7.10) T[o)F &;%;s = F'[0]* PointsTo(p[f],1,T[0]) : v

This means there are %', %" such that Z = %' * %" and:

(71D To|- &% ;sEF o] : v

(7.12) T[o]|F &,%";s = PointsTo(p[f],1,T[0]) : v

By inverting ([, F p : C<7>) we obtain (I,[")(p) <: C<71>. Because p is an object
id and dom(I'") C LogVar, we know that p € dom(I"’). Therefore, I'(p) <: C<7>. Let
h" = 2},. Because (I'[0] -h" : ¢), we know that I'[0] = fstoh”. From I'[g] = fstoh”
and I (p) <: C<7> it follows that h”(p); = (I'[o0])(p) <: C<7>[0]. From this and (7.6)
it follows that T[o] f € fld(h”(p)1). Applying substitutivity to (7.7), we get ([[g] -
w: T[o]). Furthermore, we have Z,._(p, f) = 1 by (7.12).

loc
We now split cases according to (7.8).

Case 7.1, E =PointsTo(p[f],1,w): In this case, we have:
(7.1.1) T[o]+ &,2"|p.f —w|;s =E[0]: v

By Lemma 28, we know that Z'#%" [p.f — w] and Z'* %" [p.f — w] = Z[p.f — w].
From (7.11) and (7.1.1), it then follows that:

(7.1.2) T[o]+ &;Z[p.f — w|;s EF'[o]*E[o0]: v
From (7.1.2) and (7.9), it follows that:
(7.1.3) Z[p.f —w|kFois(sinc’):¢

By Lemma 28, we know that Zis#Z[p. f — w] and Zis* Z[p. T — W] = (Zis* Z)[p.f —
w]. From (7) and (7.1.3) it follows that:

(7.1.4) (%s*Z)[p.f —w]Hts|ois(sinc):o
We have (Zis* Z)[p.f — W]np, = h[p.f — w|] = h'. Thus, by (State):
(7.1.5) (W’ ts]ois(sinc’)): o

INRIA

Separation Logic Contracts for a Java-like Language with Fork/Join 87

Case 7.2, E = p.f == w: In this case, we have:
(7.2.1) T[o]+ &;finalize(p.f,w,Z2");s =E[0]: v
By applying Lemma 77 to (7.11), we get:
(7.2.2) T[o]+ &;finalize(p.f,w,Z');s =F'[0] : v
Because finalize(p. f,w,Z') *finalize(p. f,w, %") = finalize(p.f,w, %), we obtain:
(7.2.3) T[o]+ &;finalize(p.f,w,Z);s = F'[o]*E[0] : v
From (7.2.3) and (7.9), it follows that:
(7.2.4) finalize(p.f,w,Z)Fois(sinc’): ¢
Applying Lemma 77 to (7), we get:
(7.2.5) finalize(p.f,w,%s) Fts: o
Because finalize(p. f,w, Zs) * finalize(p.f,w, %) = finalize(p. f,w, Zis* #), we get:
(7.2.6) finalize(p.f,w,(%is* %)) -ts|0is(sinc): o
We have finalize(p.f,W, (Zis* %))np = h[p.f — W] = h'. Thus, by (State):
(7.2.7) (0’ ts]ois(sinc’)): ¢

Case 8, (Red Cast):

h(v)i <:T § =s[{—V]
(hyts|ois (sin£=(T)v;c’)) — (h,ts|ois (5" inc'))

In this case, we can further instantiate ¢ and st” as follows:

8.1) c=/4=(T)v; ¢
(8.2) st =(h,ts|0is(s"inc))
(83) h(v), <:T

The last rules in (12)’s derivation are (Seq) preceded by (Cast). From the rule premises,
we obtain F’ such that:

84 rrrFEF

(8.5) T <:T(¢) <:0Object

(8.6) I',"Fv:0bject

(8.7) (&F'

(8.8) I,I;r-{F £ ==v}c' :void{G}

Because h(v), <: T, we have (F[o] FVv:T). Because dom(I") C Objld URdWrVar, it
follows that (Iyp[0] FV: T). Because I'pp ¢, by Lemma 1, we know that fv([h,) =0,
thus [pp[0] = Fhp, thus (Mhp FV:T). Asaresult, (I, :T). The remainder of
this proof case is like the proof case for (Red Var Set).

RT n° 6430

88 Haack & Hurlin

Case 9, (Red New):

p ¢ dom(h) h' =h[p— (C<ip,init(C<i>))] s =s[{— p]
{(h,ts|0is (sin £=newC<i>;C')) — (W ts|ois(s'inc))

In this case, we can further instantiate ¢ and st” as follows:

(9.1) c=/¢=newC<ip;

(9.2) st =(h';ts|ois (s'inC"))

(9.3) W =h[p~ (C<7,init(C<P))]
(9.4) s’ =s[l+ p]

The last rules in (12)’s derivation are (Seq) preceded by (New). From the premises of
these rules, we obtain:

(9.5) C<T a>ect

(9.6) T, 71: T[7/a]

(9.7) C<7> <: T (f)

(9.8) T,[:1;F b F/

(9.9) I, I;r-{F *{.init*C isclassof {}c’ : void{G}
9.10) (&F'

By substitutivity, we get (I'[g] - fi[g] : T[ft/a][o]). Because dom(I”) N fv(7) = 0
t .

(assumption (13)) and dom(I"") = dom(a), we get (F'[a] - fr: T[ft/d]). Because
dom(I") C Objld URdWrVar, it follows that (Mhp[0] = 7: T[7t/a]). Because My, - o
(Lemma 1), we know that fv([p,) = 0, thus Mhp[0] = Thp, thus (Thp, = 7T T[71/Q])),

thus:
O.11) TppEC<ip 2 0

Let[p = (I, p:C<>) and Z' = initrsc(I"[0], p,C<T>, Zgi0). By resource axiom (d)
for %, we know that Zg,(p,k) = 1 for all k in Fieldld U {join}. Thus, the premises
for Lemma 79 are satisfied and we obtain:

(9.12) Tplo] - &:%';s = p.init: v

Furthermore, we have:

(9.13) Tplo] - &sfinal(#’);s = C isclassof p: v/

It follows that:

(9.14) Tplo] - &;%';s |= p.init* C isclassof p: v/

Like in the previous proof cases, by soundness of logical consequence, we also have:
9.15) T[o|+ &,Z%;s =F'[0]: v

By resource monotonicity (Lemma 71), it follows that:

9.16) Tplo| - &2 /#';s=F'[0]: v

By resource axiom (d) for %, we have Zioc(p,K) = 0 for all k € FieldldU {join}. It
follows that (#Z %')#%'. Furthermore, (Z /%')* %' = %+ %' by Lemma 27(f).
Thus:

9.17) Tplo] - &%+ #';s |=F'[0]*p.init* C isclassof p: v

Because ¢ does not occur in F/[0] * p.init * C isclassof p, we can update S at £:

INRIA

Separation Logic Contracts for a Java-like Language with Fork/Join 89

(9.18) Tplo] - &%+ %', |=F'[0]*p.init* C isclassof p: v
Because §'(¢) = p, then:
9.19) Tplo] ¢ &%+ #';s' |=F'[0]*L.init* C isclassof {: v
Because (9.11), (9.19) and (9.9) hold, we can apply (Thread) to obtain:
(9.20) Z*%'+-0is (s inc'): o
Applying resource monotonicity (Lemma 71) to (7), we get:
9.21) s /R 150
By resource axiom (d) for %s, we know that (%s)ioc(P,k) = 0 for all k in Fieldld U
{join}. It follows that (%is /%')#% * %' . By Lemma 27(f), (%is /%') * % * %' =
Ris* X * X' We can, thus, apply (Cons Pool) to obtain:
(9.22) Zis* Z* %' Hts|0is(sinc’):o
We have (Zis* Z* %')hp = %y, = h[p — (C<7>,init(C<7>))] = h'. Thus, we can
apply (State) to obtain:
(9.23) (W';ts|ois(sinc’)): o
Case 10, (Red If True):

(h,ts]ois (sin if (true){c'}else{c"};c"”)) — (h,ts|ois (sinc’;c"))

In this case, we can further instantiate ¢ and st” as follows:

(10.1) ¢ =if (true){c'}else{c"};c”
(10.2) st'=(h,ts|ois (sinc’;c”))

The last rules in (12)’s derivation are (Seq) preceded by (If). From the premises of
these rules, we obtain:

(10.3) I,I;rFEF

(10.4) T,I';r = {F *true}c : void{E}
(10.5) T,I';r = {F'* ttrue}c” : void{E}
(10.6) T,I";r - {E}¢” : void{G}

By Lemma 66, we obtain:
(10.7) T,I;r={F'}c; ¢ : void{G}
By soundness of logical consequence (Theorem 4):
(10.8) T[o]+ &;%;s =F'[0] *true: v
The rest is routine.
Case 11, (Red If False): Similar to proof case (Red If True).

RT n° 6430

90 Haack & Hurlin

Case 12, (Red Call):
m ¢ {fork, join}
h(p); =C<> mbody(m,C<'>) =<a,a’>(1p,1).cm ¢’ = cm[7T/a,p/lo, /1]
(h,ts|ois (sin£=p.m<i>(V);c')) — (h,ts|ois (sin £« c”;c'))

In this case, we can further instantiate ¢ and st as follows:

(12.1) c=f=p.m<i>(V); ¢’

(12.2) st' =(h,ts|ois (sin £« c”’;c’))

The last rules in (12)’s derivation are (Seq) preceded by (Call). From the rule premises,
we obtain:

(12.3) I, I F = F'*E[0']

(12.4) mtype(m,t<it’>) =fin<T @>reqE;ens (exU a”) (H); U m(t<i’>1p,V 1)
(12.5) 0’ = (p/10, 71/@,V/1)

(12.6) T, p, v :t<it’>T[0'],V|[0']

(12.7) U[o’] <: T ()

(12.8) I,I;r={F" * (exU[0’] a”) (a” ==¢* H[o']) }¢’ : void{G}
(12.9) (¢ F

From (11) and (12.3), we obtain:®

(12.10) T[o]+ &, %;s =F'|o]*E[0’;0] : v

From Ipp, = ¢ (Lemma 1), it follows that:

(12.11) Ty FC<i> 0

From (12.6), we obtain ([[g] F p : t<7i">[d]), by substitutivity. Then [[g](p) <:
t<f’>[o]. But [[o](p) = h(p), = C<@>. Thus, C<7’> <: t<fi">[0]. Because [, I
C<7T'> : o, we know that fv(C<7T'>) = 0, thus C<71'>[0] = C<7'>, thus C<f'>[0] <:
t<fr’>[0]. By Lemma 41(c), it follows that C<fT'> <: t<f1">. Therefore, by mono-
tonicity of mtype (Lemma 58), 'y, - mtype(m,C<77'>) <: mtype(m,t<f’’>). Then, by
definition of method subtyping, we get:
(12.12) mtype(m,C<f’>) =

fin' <T'a,W a’>req E’;ens (exU’a”) (H'); U’ m(C<i’>19,V'T)
(12.13) T <: T/, U’ <:U,V <: V'
(12.14) Thp, 1 : C<A'>;1p;true -

(faTa) (faVN (E-+* (exWa') (E'*x (faU’a”) (H -*H)))

To abbreviate, let H” = (faU’a”) (H’' -xH). Applying substitutivity and (Fa Elim)
to (12.14), we obtain:

(12.15) Thp; pstrue - E[0’;0] —* (exW([o"; 0] ") (E'[0”; 0] *H"[0”; 0])
From (12.10) and (12.15), it follows that there exist 7" and 0” such that:

(12.16) 0" = (o,a’ — ")
(12.17) T[a"|+ 7" :W[0"; 0"]
(12.18) T[0”"|+ &;%;s E F'[0”]*E'[0’;0"]*H"[0";0"] : v

6We use the semicolon for substitution composition: (0”;7)(x) Ly (x)[o]

INRIA

Separation Logic Contracts for a Java-like Language with Fork/Join 91

Letl” = (I, a :W[d’]). By (12.17), we get:
(12.19) T - " : "

We have assumed that ct : ©. We take the premise of rule (Mth) for m in C and substitute
actual class parameters for formal class parameters and actual method parameters for
formal method parameters:

(12.20) T, I";p+H{E'[0'] ¥ p £ null}c” : U’'[0’|{ (exU’[d’] a”) (H'[0']}
By the frame property (Lemma 64), we obtain:
(1221) I,I";p+ {F'*H"[0']|*E'[0] * p # null}

¢’ :U'[0"]

{(exU’[d’] a”) (F'*H"[d’]*H'[0"]) }
We weaken (12.8) by extending the type environment to (I",[""):

y g yp
(12.22) I,I";r={F' * (exU[0’] a”) (a” ==¢* H[0']) }¢’ : void{G}
Using the natural deduction rules, one can show the following;
(12.23) T, I"r; (exU’[d’] a”) (F'*H"[d’']*H'[d])

F F'x(exU[d'] a”)(a”==¢*H[o])
Thus, by logical consequence (Lemma 62), we get:
(12.24) T, T";r={(exU’[0’] a”) (F'xH"[0’| *H'[0"]) }¢' : void{G}
Now we can apply the derived rule for “bind” (Lemma 65) to (12.21) and (12.24):
(12.25) I, pEA{F' *H"[0']|*E'[0'] * p #null}{ « c”; ¢’ : void{G}
Because (12.19), (12.18) and (12.25) hold, we can apply (Thread) to obtain:
(12.26) Ztois(sinf«c";c):0
The rest is routine.
Case 13, (Red Return):

(h,ts|ois (sin £=return(v);c’)) — (h,ts|ois (sin £=v;C))

In this case, we can further instantiate ¢ and st” as follows:
(13.1) c=returnv;c’

(13.2) st' =(h,ts|ois (sin £=v;C’))

The last rule in (12)’s derivation is (Return). Its premises are:
(133) T =(r",¢:U)

(134 "' r'ev:T

(13.5) I",I";0;F - H[v/a]

(13.6) T <:U

(13.7) I,I0 {(exT a) (a ==¢*H) }c' : void{G}
From (11) and (13.5) we obtain:

(13.8) T[o|F &;%;s =HNv/a]: v

By (Var Set) we obtain the following statement. (The rule premise £ ¢ H[v/a| follows
from (13.5) and £ & dom(I"",T).)

RT n° 6430

92 Haack & Hurlin

(13.9) I',I;0-{H[v/a]}¢=v{H|v/a]* £ == v}
By natural deduction, (F,I";0;H[v/a]* £==vIF (exT a) (a =={*H)). We apply
Lemma 62 and (Seq) to (13.7) and (13.9):
(13.10) I, ;0 {H|v/a]}f=v; ¢ : void{G}
Then we apply (Thread) to (13.8) and (13.10):
(13.11) Ztois (sinf=v;c’) : 0
The rest is routine.
Case 14, (Red Fork):

h(p); =C<> p ¢ dom(ts),{o} mbody(run,C<7>) = <>(this).c; ¢’ =c/[p/this]
(h,ts|0is (sin £=p.fork();c’)) — (h,ts]|0is (sin {=null;c’) | pis (@ inc”))

In this case, we can further instantiate ¢ and st” as follows:

(14.1) c=/=p.fork();c

(14.2) st' = (h,ts|0is (sin ¢=null;c’) | pis (@inc"))

The last rules in (12)’s derivation are (Seq) preceded by (Call). From the rule premises,
we obtain:

(143) I, F p:t<it>
(14.4) mtype(fork,C'<iT>) =
final req G;eq;ens (exvoid a’) (true); void fork(C'<iT’> this)

(14.5) o' = (p/this)
(14.6) T, FEF/ *F" G’req[a’]
(14.7) void <: T ()
(14.8) T,I';r = {F'* (exvoid a’) (a’' == £* all- true) }c¢’ : void{G}
(14.9) ¢ ¢ F'
We know that, by definition, fork’s precondition is equal to run’s precondition:
(14.10) mtype(run,C'<f'>) =

req G;eq;ens (exvoidd’) (GL); void run(C/<7T> this)
By the same argumentation as in the proof case (Red Call), we can show the follow-
ing:
(14.11) C<i> =h(p); =T (p) <:C'<i>
(14.12) Thp - mtype(C<7>,run) <: mtype(C'<f’'>,run)
Therefore, these two method types are related in the following way:
(14.13) mtype(run,C<ip>) =

req Greg;ens (ex voidd’) (Gens); void run(C<7m> this)
(14.14) this:C</>;this;true - (Gyey —* Greq) * (favoida’) (Gens —* Ggng)
LetC<T @>ectand " = (& : T,this : C<@>). From the premises of rule (Mth) for
C.run, we obtain:
(14.15) I";this b {Greg* this !=null}c, : void{ (ex void a’) (Gens) }

Because (Mpp F h:©), we know that (Tw, - 7T: T[7t/a]). By applying substitutivity
(Lemmas 49 and 61) to (14.14) and (14.15), we obtain:

INRIA

Separation Logic Contracts for a Java-like Language with Fork/Join 93

(14.16) Thp; pstrue - (Gyeg[0'] —* (Greg[0']) * (fa void a’) (Gens[0'] —* Gi[0'])
(14.17) Thp;pk {Greglo’]*p !=null}c” : void{ (ex void a’) (Gens[0']) }

From (11) and (14.6), we get (T[0] - &;%;s |= F'[0] * Ggg[0”] : v'). Applying (14.16)
to this (recall that [y, [0] = [hp), we obtain:

(14.18) T[o]+ &;%;5 |=F'[0]*Gregl0'] : v/
Then, by definition of semantic validity, there exist %, and Zp such that:

(14.20) T[O|F &, %0;SEF - v
(14.21) T[o] F &;%p;S |= Greg[0'] * p !=null: v’

From (14.21) and (14.17), it follows that:

(14.22) Zptpis(@inc”): o

Applying admissibility of logical consequence (Lemma 62) to (14.8), we get:
(14.23) T,T';r = {F'* (exvoid a’) (o’ == £* true) *{ ==null}c : void{G}
Then by (Var Set):

(14.24) T,T';r = {F'* (exvoid a’) (o’ == £* true) }¢=null;c :void{G}

The existential formula can be validated by instantiating o’ by s(¢). Therefore, (14.20)
gives us:

(14.25) T.T'+ &;%0;s = F'* (exvoid a’) (a’ == £ * true) : vV
From (14.25) and (14.24) it follows that:
(14.26) Zot 0is (sin £=null;c’): o
The rest is routine.
Case 15, (Red Join):

(h,ts' |ois (sin £=p.join();¢') | pis (S inV)) — (h,ts' | 0is (sin £=null;c’) | pis (s inV))

In this case, we can further instantiate ¢ and st” as follows:

(15.1) ts=ts'| pis (' inV)

(15.2) c=4=p.join();

(15.3) st’ =(h,ts’' | 0is (Sin £=null;c’) | pis (s'inV))

The last rules in (12)’s derivation are (Seq) preceded by (Call). From the rule premises
we obtain:

(15.4) T, F p: C/<7t>
(15.5) mtype(join,C'<f’>) =
final req true;ens (exvoida’) (Gy); void join(C'<T> this)
(15.6) o’ = (p/this)
(15.7) ;0 F EF/ *fr'-Perm(p[join], 1) * Gyey[0]
(15.8) void <:T(¢)
(15.9) I,I;r = {F'* (ex void a’) (&' == * fr' - Gl ([0']) }¢ : void{G}
(15.10) £ & F’

RT n° 6430

94 Haack & Hurlin

We know that join’s postcondition, by definition, is equal to run’s postcondition:
(15.11) mtype(run,C'<f’>) =
req Gregsens (exvoidd’) (Giy); void run(C/<7r> this)
Let h(p); = C<7>. By the same argumentation as in the proof case (Red Call), we can
show the following:
(15.12) C<i> =h(p); = (p) <:C'<i>
(15.13) Thp - mtype(run,C<>) <: mtype(run,C'<7’>)
Therefore, these two method types are related in the following way:
(15.14) mtype(run,C<ip>) =
req Greg;ens (ex voidd’) (Gens); void run(C<7m> this)
(15.15) this:C<ip;this;true b (G;’eq —* Greg) * (favoid ') (Gens —* Gipg)
From (11) and (15.7) we obtain:
(15.16) T[o] + &;%;s = F'[o] * fr'-Perm(p[join], 1) : v/
By the semantics of *, there exist Z°%! and #°? such that:
(15.17) # = RZ°" *x 77°*>
(15.18) T[o] F &,%%" ;s = F'[0] : v
(15.19) T[o]F &:%%%;s |=fr'-Perm(p[joinl, 1) : v/
The last of these statements means that:
(15.20) [[fr'] < 222 (p,join)

loc
Recall that (%ist1s: ¢), by (7), and ts =ts' | piis (S in V), by (15.1). The premises of
the last rule of (Zis s : ©)’s derivation are:
(15.21) Z' = 'S » %P
(15.22) Z#S Fts' o
(15.23) ZPF pis(s'inv):o
Let 2 = %’50. Recall that the *-composition of two resources is only defined if they
both have the same global permission table. So 2 = %5 = Zgio = %, hold, too.
From (%P pis (s' inv) : ¢) we obtain:
(15.24) T"[0"| = &;%P;8' |=fr,- Gensl0'][v/a'] : v/
(15.25) 2(p,join) < [fr,]
We know that 'y [0"] =T =h(0); =, = np[0]. Because Gens[0”] does not
contain free variables. we can restrict the stack in (15.24):
(15.26) T[]+ &;%P;0 = fr,- Gens[0'][v/a'] : v

We define: 0” = (0/,v/a’). We have that [fr'] < Z°2(p,join) < 2(p,join) <

loc

[fro]J. Therefore fr,—fr’ exists (by Lemma 88). By distributivity (Lemma 92), we have
fl‘p . Gens[o—//] = ((fl’p - fl’/) + fl‘/) . Gens[o—//] *—% (fl’p - fl‘/) . Gens[o-//] * fl’/ . Gens[o-//].
Therefore, (15.26) implies the following statement:

(15.27) T[0]+ &;:2%P:0 |= (fry — fr') - Gens[0”'] * fr' - Gens[0”].
By definition of semantic validity, there exist P! and %P such that:
(15.28) %P = ZP! x P2

INRIA

Separation Logic Contracts for a Java-like Language with Fork/Join

95

(15.29) T[0] = &3%2P130 = (fr —fr') - Gens[0"] : v

Applying (15.15), Lemma 86 and assumption (17) to (15.30), we get:

(15.31) o]+ &: BP0 = fr/'ngs[O'”] Y

We now define:

(15.32) 2' £ 2[(p, join) — (2(p, join) - [fr'])]
(15.33) (Z°) = (%S, %S, 2')

(1534) (,@071)/é (%071 %071 o@,)

hp »*“loc?

(15.35) (#P2) & (#P* %P2, 2')

hp »““loc

(15.36) (#°) & (%P %P 2)

hp *““loc
(15.37) (%°) = (%°') * (%P2
It now suffices to show the following claims:
(15.38) (#°) 1510
(15.39) (ZP) Fpis(sinv):o
(15.40) (#£°) Fois(sinf=null;c’):o

goal
goal
goal

Goal (15.38) is a consequence of (%ts' F1ts': ©) and Lemma 78. To show goal (15.39)
we use (15.29) and Lemma 78. To reestablish assumption (17) for goal (15.39), we
use the restriction that run’s postcondition does not mention this[join] (imposed
by rule (Mth Type)). So we are left with goal (15.40): Applying Lemma 78 to (15.18)

and (15.31), we obtain:
(15.41) T[a]F &;(%#°);s = F'[o] * fr' - Glgl0”] : v

Because 0” = (07,v/a’) and furthermore because all values of type void are equal to

null, we obtain:

(15.42) T[a] - &;(%#°)';s = F'[0] * (exvoid a’) (@' == * fr' - G[0']) : v/

On the other hand, applying admissibility of logical consequence (Lemma 62) and

(Var Set) to (15.9) (like at the end of proof case (Red Fork)), we get:

(15.43) T,I";r = {F'* (ex void a’) (o’ == ¢ * fr'- Gl s[0’]) }¢=null; ¢’ : void{G}

Our goal (15.40), now follows from (15.42) and (15.43).
Case 16, (Red Assert):

(h,ts]ois (sinassert(H);c’)) — (h,ts]|ois(sinc’))

In this case, we can further instantiate ¢ and st” as follows:

(16.1) c = assert(H);c
(16.2) st'=(h,ts|ois (sinc’))

The last rules in (12)’s derivation are (Seq) preceded by (Assert). From the rule

premises, we get:

(16.3) T[o];r;F FF/
(16.4) T,I;r;F' FH

RT n° 6430

96 Haack & Hurlin

(16.5) I,I';r={F'}c' : void{G}
From (11) and (16.3) we obtain:
(16.6) T[o|F & Z%Z;s =F': v.

We apply (Thread) to (16.6) and (16.5). We obtain (Z - 0is (Sinc’) : ¢). We then
apply (Cons Pool) and (State) to obtain st’ : o. (|

V Data Race Freedom, Null Error Freeness, Partial Correctness

After all this hard work, we can now easily prove several corollaries of the preservation
theorem. Let main be a distinguished object id. We define the initial state:

init(c) £ ({main — (Thread,0)}, mainis (@ in c))
Lemma 93 If (ct,c) : o, then init(c) : <.

Proof. Suppose (ct,c) : ©. By definition, this means ct : ¢ and main : Thread; main -
{true}c:void{true}. Let h = {main — (Thread,0)}. Let #Z = (h,0,1). Let & be
some predicate environment such that . (&) = & (which exists by Theorem 8). Then
(main : Thread F &;%;0 |= true: v'). Now it is easy to check that the premises of
(Thread) are satisfied (pick 0 =T’ = 0). It follows that (% + mainis (0 inc) : ¢). Thus,
init(c) : ¢, by (State). O

A pair (hc,hc’) of head commands is called a data race iff hc = (fin 0.f =v) and
either h¢' = (fin’ 0.f =V') or h¢ = (¢=0.f) for some o, f,v,V', ¢, fin, fin".

Proof of Theorem 1 (Verified Programs are Data Race Free). If (ct,c) : ¢ and
init(c) —& (h,ts| oy is (S; in heyscp) | 02 is (S2 in hep;ca)), then (hey,hcy) is not a
data race.

Proof. Let(ct,c):o,st=(h,ts|0;is(s;inhc;;c;)|0z2is (S inhcy;cy)), andinit(c) —%
st. By init(C) : o (Lemma 93) and preservation (Theorem 5), we know that st : . Sup-
pose, towards a contradiction, that (hcy,hc;) is a data race. An inspection of the last
rules of (St : ¢)’s derivation reveals that there must then be resources #Z, %' and a
heap cell 0.f such that Z F 0y is (5; inhcy;¢y) 10, Z' F 0y is (S2 inhey; o) 1 o, BHZA,
Rioc(0,f) =1 and |, (0, f) > 0. But then Zioc (0, f) + %/, (0, f) > 1, in contradic-

“loc loc

tion to Z#Z%Z'. O

A head command hc is called a null error iff hc = (¢=null.f) orhc = (finnull.f =v)
or hc = (¢=null.m<7>(V)) for some ¢, fin, f,v,m, 77, V.

Proof of Theorem 2 (Verified Programs are Null Error Free). If (ct,c) : ¢ and
init(c) —% (h,ts|ois (sin hc;c)), then hc is not a null error.

Proof. Let (ct,c): o, st = (h,ts| 0is (Sin hc;c)), and init(c) —¢ st. By init(c) : ¢
(Lemma 93) and preservation (Theorem 5), we know that st : o. Suppose, towards a
contradiction, that hc is a null error. Then hc = (¢=null.f) or hc = (finnull.f=v) or
hc = (¢=null.m<> (V).

Suppose first that hc = (=null.f). An inspection of the last rules of (st: ¢)’s
derivation reveals that there must thenbe I', &, Z, s, T, U such that either I' - &;%Z;s =

INRIA

Separation Logic Contracts for a Java-like Language with Fork/Join 97

PointsTo(null[f],mu) orl F &;%;s =Pure(null.f). But neither of these state-
ments hold, by definition of .

Suppose now that hc = (fin null.f=v) An inspection of the last rules of (st: ¢)’s
derivation reveals that there must then be ', &, %, s, T such that ' - &;,%;s |=
PointsTo(null[f],1,T). But this is false, by definition of |=.

Suppose finally that hc = (¢=null.m<7>(V)). An inspection of the last rules of
(st: o)’s derivation reveals that there must thenbe ', &, #, s such that I - &;%;5s |=
null !'=null, which is obviously false. O

Proof of Theorem 3 (Partial Correctness).
If (ct,c) :oandinit(c) —& (h,ts|0is(sinassert(F);c)), then (T &;(h, 2, 2);s|=
Flo]) forsome T, & = . %«(&), 7,2 and 0 € LogVar — SpecVal.

Proof. Let (ct,c): o, st=(h,ts|0is (Sin assert(F);c)), and init(c) —% st. By
init(c) : © (Lemma 93) and preservation (Theorem 5), we know that st : ©. An inspection
of the last rules of (st : ¢)’s derivation reveals that there must then be I', & = F« (&),
%, 0 € LogVar — SpecVal such that (I + &;(h, &2, 2);s = F[a)). O

We could strengthen the partial correctness theorem and universally quantify over & up
front, if our judgment for good states took the predicate environment & as an argument
(“&Fst:o”).

References

[1] M. Abadi, C. Flanagan, S. Freund. Types for safe locking: Static race detection
for Java. TOPLAS, 28(2), 2006.
[2] A.W. Appel, S. Blazy. Separation logic for small-step Cminor. In TPHOL, 2007.
[3] M. Barnett, R. DeLine, M. Fihndrich, K. R. M. Leino, W. Schulte. Verification
of object-oriented programs with invariants. JOT, 3(6), 2004.
[4] J. Berdine, C. Calcagno, P. W. O’Hearn. Smallfoot: Modular automatic assertion
checking with separation logic. In FMCO, 2005.
[5] K. Bierhoff, J. Aldrich. Modular typestate verification of aliased objects. In
OOPSLA, 2007.
[6] R. Bornat, P. O’Hearn, C. Calcagno, M. Parkinson. Permission accounting in
separation logic. In POPL, New York, NY, USA, 2005. ACM Press.
[7] C. Boyapati, R. Lee, M. Rinard. Ownership types for safe programming: Pre-
venting data races and deadlocks. In OOPSLA, 2002.
[8] J. Boyland. Checking interference with fractional permissions. In R. Cousot, ed.,
SAS, vol. 2694 of LNCS. Springer-Verlag, 2003.
[9] J. Boyland, W. Retert. Connecting effects and uniqueness with adoption. In
POPL, 2005.
[10] S.Brookes. A semantics for concurrent separation logic. In Conference on Con-
currency Theory, vol. 3170 of LNCS. Springer-Verlag, 2004.
[11] S. Brookes. Variables as resource for shared-memory programs: Semantics and
soundness. ENTCS, 158, 2006.
[12] L. Burdy, Y. Cheon, D. Cok, M. Ernst, J. R. Kiniry, G. T. Leavens, K. R. M. Leino,
E. Poll. An overview of JML tools and applications. In Workshop on Formal
Methods for Industrial Critical Systems, vol. 80 of ENTCS. Elsevier, 2003.

RT n° 6430

98 Haack & Hurlin

[13] R. DeLine, M. Fiahndrich. Typestates for objects. In ECOOP, 2004.

[14] D. Distefano, P. W. O’Hearn, H. Yang. A local shape analysis based on separation
logic. In TACAS, 2006.

[15] A. Gotsman, J. Berdine, B. Cook, N. Rinetzky, M. Sagiv. Local reasoning for
storable locks and threads. In APLAS, 2007.

[16] A.Igarashi, B. Pierce, P. Wadler. Featherweight Java: a minimal core calculus for
Java and GJ. ACM Transactions on Programming Languages and Systems, 23(3),
2001.

[17] S.Ishtiag, P. O’Hearn. BI as an assertion language for mutable data structures. In
POPL, 2001.

[18] B. Jacobs, J. Smans, F. Piessens, W. Schulte. A statically verifiable programming
model for concurrent object-oriented programs. In ICFEM, 2006.

[19] G. Krishnaswami. Reasoning about iterators with separation logic. In SAVCBS,
2006.

[20] D. Lea. Concurrent Programming in Java: Design Principles and Patterns (Sec-
ond Edition). Addison-Wesley, Boston, MA, USA, 1999.

[21] G. T. Leavens, E. Poll, C. Clifton, Y. Cheon, C. Ruby, D. Cok, J. Kiniry. JML
Reference Manual, 2005. In Progress. Department of Computer Science, lowa
State University. Available from http://www. jmlspecs.org.

[22] K. R. M. Leino. Data groups: Specifying the modification of extended state. In
OOPSLA, 1998.

[23] J. Manson, W. Pugh, S. V. Adve. The Java memory model. In POPL, 2005.

[24] P. O’Hearn. Resources, concurrency and local reasoning. TCS, 375(1-3), 2007.

[25] P. W. O’Hearn, D. J. Pym. The logic of bunched implications. Bulletin of Sym-
bolic Logic, 5(2), 1999.

[26] M. Parkinson. Local reasoning for Java. Technical Report UCAM-CL-TR-654,
University of Cambridge, 2005.

[27] M. Parkinson, G. Bierman. Separation logic and abstraction. In POPL, 2005.

[28] M. Pavlova, G. Barthe, L. Burdy, M. Huisman, J.-L. Lanet. Enforcing high-level
security properties for applets. In CARDIS 2004, 2004.

[29] J. C. Reynolds. Separation logic: A logic for shared mutable data structures. In
Logic in Computer Science, Copenhagen, Denmark, 2002. IEEE Press.

[30] J. C. Reynolds. Towards a grainless semantics for shared variable concurrency.
In K. Lodaya, M. Mahajan, eds., FSTTCS, vol. 3328 of LNCS. Springer-Verlag,
2004.

[31] P. Wadler. A taste of linear logic. In Mathematical Foundations of Computer
Science, 1993.

[32] H. Yang. An example of local reasoning in BI pointer logic: the Schorr-Waite
graph marking algorithm. In SPACE, 2001.

INRIA

http://www.jmlspecs.org

/<

Centre de recherche INRIA Sophia Antipolis — Méditerranée
2004, route des Lucioles - BP 93 - 06902 Sophia Antipolis Cedex (France)

Centre de recherche INRIA Bordeaux — Sud Ouest : Domaine Universitaire - 351, cours de la Libération - 33405 Talence Cedex
Centre de recherche INRIA Grenoble — Rhone-Alpes : 655, avenue de I’Europe - 38334 Montbonnot Saint-Ismier
Centre de recherche INRIA Lille — Nord Europe : Parc Scientifique de la Haute Borne - 40, avenue Halley - 59650 Villeneuve d’Ascq
Centre de recherche INRIA Nancy — Grand Est : LORIA, Technopdle de Nancy-Brabois - Campus scientifique
615, rue du Jardin Botanique - BP 101 - 54602 Villers-les-Nancy Cedex
Centre de recherche INRIA Paris — Rocquencourt : Domaine de Voluceau - Rocquencourt - BP 105 - 78153 Le Chesnay Cedex
Centre de recherche INRIA Rennes — Bretagne Atlantique : IRISA, Campus universitaire de Beaulieu - 35042 Rennes Cedex
Centre de recherche INRIA Saclay — fle-de-France : Parc Orsay Université - ZAC des Vignes : 4, rue Jacques Monod - 91893 Orsay Cedex

Editeur
INRIA - Domaine de Voluceau - Rocquencourt, BP 105 - 78153 Le Chesnay Cedex (France)
http:/ /www.inria.fr

ISSN 0249-0803

	Introduction
	Separation Logic Contracts for Java-like Programs
	Separation Logic --- Formulas as Access Tickets
	Separation Logic and Modifies Clauses
	Separation Logic and Abstraction
	Splitting and Merging Datagroups
	Object Usage Protocols

	The Model Language
	Specification Formulas and Their Semantics
	Resources
	Predicate Environments
	Kripke Resource Semantics
	Predicate Definitions

	Proof Theory
	The Verification System
	Method Types and Predicate Types
	Hoare Triples
	Supported Formulas, Datagroup Formulas, Join Postconditions

	Preservation
	Comparison to Related Work and Conclusion
	Examples
	A Simple Fork/Join Example
	An Example with Recursive and Overlapping Datagroups
	A Usage Protocol for Iterators
	The Collection Interface
	The Iterator Interface
	The Node Class
	The List Class
	The List Iterator Class

	Notational Conventions and Derived Forms
	Auxiliary Functions
	Typing Rules
	Operator Types and Semantics
	Type Environments and Types
	Values, Expressions, Formulas
	Runtime Structures

	Operational Semantics
	Natural Deduction Rules
	Supported Formulas
	Datagroup Formulas
	Method and Predicate Subtyping
	Class Axioms
	Good Interfaces and Class Declarations
	Semantics of Expressions and Formulas
	Semantics of Values
	Semantics of Expressions
	Semantic Validity of Boolean Expressions
	Heap Joining
	Resource Joining
	Predicate Environments
	Semantics of Formulas
	Semantic Entailment
	Interlude: A Relaxed Fixed Point Theorem
	Predicate Definitions

	Basic Properties of Typing Judgments
	Basic Properties of Logical Consequence
	Basic Properties of Method Subtyping
	Basic Properties of Hoare Triples
	Basic Properties of Semantics
	Soundness of Logical Consequence
	The Formula Support
	Linear Combinations
	Preservation
	Data Race Freedom, Null Error Freeness, Partial Correctness

