Variational Tetrahedral Meshing

Abstract : In this paper, a novel Delaunay-based variational approach to isotropic tetrahedral meshing is presented. To achieve both robustness and efficiency, we minimize a simple mesh-dependent energy through global updates of both vertex positions \italic{and} connectivity. As this energy is known to be the ${\cal L}^1$ distance between an isotropic quadratic function and its linear interpolation on the mesh, our minimization procedure generates well-shaped tetrahedra. Mesh design is controlled through a gradation smoothness parameter and selection of the desired number of vertices. We provide the foundations of our approach by explaining both the underlying variational principle and its geometric interpretation. We demonstrate the quality of the resulting meshes through a series of examples.
Type de document :
Article dans une revue
ACM Transactions on Graphics, Association for Computing Machinery, 2005, 〈10.1145/1186822.1073238〉
Liste complète des métadonnées

Littérature citée [27 références]  Voir  Masquer  Télécharger
Contributeur : Mariette Yvinec <>
Soumis le : mercredi 30 janvier 2008 - 16:19:29
Dernière modification le : samedi 27 janvier 2018 - 01:30:40
Document(s) archivé(s) le : vendredi 30 avril 2010 - 20:00:16


Fichiers produits par l'(les) auteur(s)




Pierre Alliez, David Cohen-Steiner, Mariette Yvinec, Mathieu Desbrun. Variational Tetrahedral Meshing. ACM Transactions on Graphics, Association for Computing Machinery, 2005, 〈10.1145/1186822.1073238〉. 〈inria-00226418〉



Consultations de la notice


Téléchargements de fichiers