
HAL Id: inria-00232587
https://hal.inria.fr/inria-00232587

Submitted on 1 Feb 2008

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

On the relation between Multicomponent Tree
Adjoining Grammars with Tree Tuples (TT-MCTAG)

and Range Concatenation Grammars (RCG)
Laura Kallmeyer, Yannick Parmentier

To cite this version:
Laura Kallmeyer, Yannick Parmentier. On the relation between Multicomponent Tree Adjoining
Grammars with Tree Tuples (TT-MCTAG) and Range Concatenation Grammars (RCG). 2nd Inter-
national Conference on Language and Automata Theory and Applications (LATA 2008), Mar 2008,
Tarragona, Spain. pp.263-274, 2008. <inria-00232587>

https://hal.inria.fr/inria-00232587
https://hal.archives-ouvertes.fr

On the relation between Multicomponent Tree

Adjoining Grammars with Tree Tuples
(TT-MCTAG) and Range Concatenation

Grammars (RCG)

Laura Kallmeyer and Yannick Parmentier

Collaborative Research Center 441, University of Tübingen, Germany,
lk@sfs.uni-tuebingen.de, parmenti@sfs.uni-tuebingen.de

Abstract. This paper investigates the relation between TT-MCTAG, a
formalism used in computational linguistics, and RCG. RCGs are known
to describe exactly the class PTIME; simple RCG even have been shown
to be equivalent to linear context-free rewriting systems, i.e., to be mildly
context-sensitive. TT-MCTAG has been proposed to model free word
order languages. In general, it is NP-complete. In this paper, we will
put an additional limitation on the derivations licensed in TT-MCTAG.
We show that TT-MCTAG with this additional limitation can be trans-
formed into equivalent simple RCGs. This result is interesting for the-
oretical reasons (since it shows that TT-MCTAG in this limited form
is mildly context-sensitive) and, furthermore, even for practical reasons:
We use the proposed transformation from TT-MCTAG to RCG in an
actual parser that we have implemented.

1 Introduction

1.1 Tree Adjoining Grammars (TAG)

Tree Adjoining Grammar (TAG, Joshi and Schabes (1997)) is a tree-rewriting
formalism. A TAG consists of a finite set of trees (elementary trees). The nodes
of these trees are labelled with nonterminals and terminals (terminals only la-
bel leaf nodes). Starting from the elementary trees, larger trees are derived by
substitution (replacing a leaf with a new tree) and adjunction (replacing an in-
ternal node with a new tree). In case of an adjunction, the tree being adjoined
has exactly one leaf that is marked as the foot node (marked with an asterisk).
Such a tree is called an auxiliary tree. When adjoining it to a node n, in the
resulting tree, the subtree with root n from the old tree is attached to the foot
node of the auxiliary tree. Non-auxiliary elementary trees are called initial trees.
A derivation starts with an initial tree. In a final derived tree, all leaves must
have terminal labels. For a sample derivation see Fig. 1.

Definition 1 (Tree Adjoining Grammar)
A Tree Adjoining Grammar (TAG) is a tuple G = 〈I, A, N, T 〉 with

2

NP

John

S

NP VP

V

laughs

VP

ADV VP∗

always

derived S
tree: NP VP

John ADV VP

always V

laughs

derivation tree:
laugh

1 2

john always

Fig. 1. TAG derivation for John always laughs

– N and T being disjoint finite sets, the nonterminals and terminals
– I being a finite set of initial trees with nonterminals N and terminals T , and
– A being a finite set of auxiliary trees with nonterminals N and terminals T .

The internal nodes in I ∪ A can be marked as OA (obligatory adjunction)
and NA (null adjunction, i.e., no adjunction allowed).

Definition 2 (TAG derivation and tree language) Let G = 〈I, A, N, T 〉 be
a TAG. Let γ and γ′ be finite trees.

– γ ⇒ γ′ in G iff there is a node position p and a tree γ′

0 that is either
elementary or derived from some elementary tree such that γ′ = γ[p, γ′

0].
1

∗
⇒ is the reflexive transitive closure of ⇒.

– The tree language of G is LT (G) := {γ |α
∗
⇒ γ for some α ∈ I, all leaves in

γ have terminal labels and there are no remaining OA nodes in γ}.
The string language L(G) contains all yields of trees from the tree language.

TAG derivations are represented by derivation trees (unordered trees) that
record the history of how the elementary trees are put together. A derived tree is
the result of carrying out the substitutions and adjunctions, i.e., the derivation
tree describes uniquely the derived tree. Each edge in a derivation tree stands
for an adjunction or a substitution. The edges are labelled with Gorn addresses.2

E.g., the derivation tree in Fig. 1 indicates that the elementary tree for John
is substituted for the node at address 1 and always is adjoined at node address
2 (the fact that the former is an adjunction, the latter a substitution can be
inferred from the fact that the node at address 1 is a leaf that is no foot node
while the node at address 2 is an internal node).

Definition 3 (TAG derivation tree) Let G = 〈I, A, N, T 〉 be a TAG. Let γ
be a tree derived as follows in G:

γ = γ0[p1, γ1] . . . [pk, γk] where γ0 is an instance of an elementary tree and the
substitutions/adjunctions of the γ1, . . . , γk are all the substitutions/adjunctions
to γ0 that are performed to derive γ.

1 For trees γ, γ1, . . . , γn and pairwise different node positions p1, . . . , pn in γ,
γ[p1, γ1] . . . [pn, γn] denotes the result of subsequently substituting/adjoining the
γ1, . . . , γn to the nodes in γ with addresses p1, . . . , pn respectively.

2 The root address is ǫ, and the jth child of a node with address p has address pj.

3

Then the corresponding derivation tree has a root labelled with γ0 that has k
daugthers. The edges from γ0 to these daughters are labelled with p1, . . . , pk, and
the daughters are the derivation trees for the derivations of γ1, . . . , γk.

1.2 Range Concatenation Grammars (RCG)

This section defines RCGs (Boullier 1999, 2000).3

Definition 4 (Range Concatenation Grammar) A Range Concatenation
Grammar is a tuple G = 〈N, T, V, S, P 〉 such that

– N is a finite sets of predicates, each with a fixed arity;
– T and V are disjoint alphabets of terminals and of variables;
– S ∈ N is the start predicate, a predicate of arity 1;
– P is a finite set of clauses A0(x01, . . . , x0a0

) → ǫ, or A0(x01, . . . , x0a0
) →

A1(x11, . . . , x1a1
) . . . An(xn1, . . . , xnan

) with n ≥ 1 and Ai ∈ N, xij ∈ (T ∪
V)∗ and ai being the arity of Ai.

An RCG with maximal predicate arity n is called an RCG of arity n.
When applying a clause with respect to a string w = t1 . . . tn, the argu-

ments of the predicates in the clause are instantiated with substrings of w, more
precisely with the corresponding ranges. A range 〈i, j〉 with 0 ≤ i < j ≤ n
corresponds to the substring between positions i and j, i.e., to the substring
ti+1 . . . tj . If i = j, then 〈i, j〉 corresponds to the empty string ǫ. If i > j, then
〈i, j〉 is undefined.

Definition 5 For a given clause, an instantiation with respect to a string w =
t1 . . . tn consists of a function f : {t′ | t′ is an occurrence of some t ∈ T in the
clause} ∪ V → {〈i, j〉 | i ≤ j, i, j ∈ IN} such that

a) for all occurrences t′ of a t ∈ T in the clause: f(t′) := 〈i, i + 1〉 for some
i, 0 ≤ i < n such that ti = t,

b) for all v ∈ V : f(v) = 〈j, k〉 for some 0 ≤ j ≤ k ≤ n, and
c) if consecutive variables and occurrences of terminals in an argument in the

clause are mapped to 〈i1, j1〉, . . . , 〈ik, jk〉 for some k, then jm = im+1 for
1 ≤ m < k. By definition, we then state that f maps the whole argument to
〈i1, jk〉.

The derivation relation is defined as follows:

Definition 6 (RCG derivation and string language)

– For a predicate A of arity k, a clause A(. . .) → . . ., and ranges 〈i1, j1〉, . . . , 〈ik, jk〉
with respect to a given w: if there is a instantiation of this clause with left-
hand-side A(〈i1, j1〉, . . . , 〈ik, jk〉), then in one derivation step (. . . ⇒ . . .)
A(〈i1, j1〉, . . . , 〈ii, jk〉) can be replaced with the right-hand side of this instan-

tiation.
∗
⇒ is the reflexive transitive closure of ⇒.

3 Since throughout the paper, we use only posisitive RCGs, whenever we say “RCG”,
we actually mean “positive RCG”.

4

– The language of an RCG G is
L(G) = {w |S(〈0, |w|〉)

∗
⇒ ǫ with respect to w}.

For illustration, consider the RCG G = 〈{S, A, B}, {a, b}, {X, Y, Z}, S, P 〉
with P = {S(X Y Z) → A(X, Z)B(Y), A(a X, a Y) → A(X, Y), B(b X) → B(X),
A(ǫ, ǫ) → ǫ, B(ǫ) → ǫ}.

L(G) = {anbkan | k, n ∈ IN}. Take w = aabaa. The derivation starts with
S(〈0, 5〉). First we apply the following clause instantiation:

S(X Y Z) → A(X , Z) B(Y)

〈0, 2〉 〈2, 3〉 〈3, 5〉 〈0, 2〉 〈3, 5〉 〈2, 3〉
aa b aa aa aa b

With this instantiation, S(〈0, 5〉) ⇒ A(〈0, 2〉, 〈3, 5〉)B(〈2, 3〉). Then
B(b X) → B(X)

〈2, 3〉 〈3, 3〉 〈3, 3〉
b ǫ ǫ

and B(ǫ) → ǫ

lead to A(〈0, 2〉, 〈3, 5〉)B(〈2, 3〉) ⇒ A(〈0, 2〉, 〈3, 5〉)B(〈3, 3〉) ⇒ A(〈0, 2〉, 〈3, 5〉).
A(a X a Y) → A(X , Y)

〈0, 1〉 〈1, 2〉 〈3, 4〉 〈4, 5〉 〈1, 2〉 〈4, 5〉
a a a a a a

leads to A(〈0, 2〉, 〈3, 5〉) ⇒ A(〈1, 2〉, 〈4, 5〉). Then
A(a X a Y) → A(X , Y)

〈1, 2〉 〈2, 2〉 〈4, 5〉 〈5, 5〉 〈2, 2〉 〈5, 5〉
a ǫ a ǫ ǫ ǫ

and A(ǫ, ǫ) → ǫ

lead to A(〈1, 2〉, 〈4, 5〉) ⇒ A(〈2, 2〉, 〈5, 5〉) ⇒ ǫ
An RCG is called non-combinatorial if each of the arguments in the right-

hand sides of the productions are single variables. It is called linear if no variable
appears more than once in the left-hand sides of the productions and no variable
appears more than once in the right-hand side of the productions. It is called
non-erasing if for each production, each variable occurring in the left-hand side
occurs also in the right-hand side and vice versa. An RCG is called simple if it
is non-combinatorial, linear and non-erasing. Simple RCGs and linear context-
free rewriting systems (LCFRS, Weir 1988) are equivalent (see Boullier 1998b).
Consequently, simple RCG’s are mildly context-sensitive (Joshi 1987).

1.3 From TAG to RCG

Now let us sketch the general idea of the transformation from TAG to RCG (see
Boullier 1998a): The RCG contains predicates 〈α〉(X) and 〈β〉(L, R) for initial
and auxiliary trees respectively. X covers the yield of α and all trees added to
α, while L and R cover those parts of the yield of β (including all trees added
to β) that are to the left and the right of the foot node of β. The clauses in the
RCG reduce the argument(s) of these predicates by identifying those parts that

5

come from the elementary tree α/β itself and those parts that come from one of
the elementary trees added by substitution or adjunction. A sample TAG with
an equivalent RCG is shown in Fig. 2.

TAG:

α1 SNA

a S F

ǫ

α2

F

d

α3

F

e

β S

b S∗

NA c

Equivalent RCG:
S(X) → 〈α1〉(X) | 〈α2〉(X) | 〈α3〉(X) (every word in the language is the yield of an α ∈ I)

〈α1〉(aF) → 〈α2〉(F) | 〈α3〉(F) (the yield of α1 can consist of the terminal a

followed by the yield of the tree that substitutes into the F node)

〈α1〉(aB1B2F) → 〈β〉(B1, B2)〈α2〉(F) | 〈β〉(B1, B2)〈α3〉(F) (or β adjoins to S in α;

then the yield of α1 is a followed by the part of the yield of β left of the foot node followed by the

part of the yield of β right of the foot node followed by the yield of the tree that substitutes into F)

〈β〉(B1b, cB2) → 〈β〉(B1, B2) (β can adjoin to its root; then the left part of the yield is

the left part of the adjoined β follwed by b and the right part of the yield is

c followed by the right part of the adjoined β)

〈α2〉(d) → ǫ 〈α3〉(e) → ǫ 〈β〉(b, c) → ǫ (the yields of α2, α3 and β can be

d, e and the pair b (left part) and c (right part) resp.)

Fig. 2. A sample TAG and an equivalent RCG

2 TT-MCTAG

For a range of linguistic phenomena, multicomponent TAG (MCTAG, Weir 1988)
have been proposed as a TAG extension. The motivation it the desire to split
the contribution of a single lexical item (e.g., a verb and its arguments) into
several elementary trees. An MCTAG consists of sets of elementary trees, so-
called multicomponents. If a multicomponent is used in a derivation, all its
members must be used.

Definition 7 (MCTAG) A multicomponent TAG (MCTAG) is a tuple G =
〈I, A, N, T,A〉 where GTAG := 〈I, A, N, T 〉 is a TAG, and A is a partition of
I ∪ A, the set of elementary tree sets.

The particular type of MCTAG we are concerned with is Tree-Tuple MCTAG
with Shared Nodes (TT-MCTAG, Lichte 2007). TT-MCTAG were introduced to
deal with free word order phenomena in languages such as German. An example
is (1) where the argument es of reparieren precedes the argument der Mechaniker
of verspricht and is therefore not adjacent to the predicate it depends on:

(1) ... dass es der Mechaniker zu reparieren verspricht
... that it the mechanic to repair promises
‘... that the mechanic promises to repair it’

6

A TT-MCTAG is slightly different from standard MCTAG since the elemen-
tary tree sets contain two parts: 1. one lexicalized tree γ, marked as the unique
head tree, and 2. a set of auxiliary trees, the argument trees. Such a pair is called
a tree tuple. During derivation, the argument trees must either adjoin directly
to their head tree or they must be linked by a chain of adjunctions at root nodes
to a tree that attaches to the head tree. In other words, in the corresponding
TAG derivation tree, the head tree must dominate the auxiliary trees such that
all positions on the path between them, except the first one, must be ǫ. This
captures the notion of adjunction under node sharing from Kallmeyer (2005).4

Definition 8 (TT-MCTAG) Let G = 〈I, A, N, T,A〉 be an MCTAG. G is a
TT-MCTAG iff

1. every Γ ∈ A has the form {γ, β1, . . . , βn} where γ contains at least one leaf
with a terminal label, the head tree, and β1, . . . , βn are auxiliary trees, the
argument trees. We write such a set as a tuple 〈γ, {β1, . . . , βn}〉.

2. A derivation tree D for some t ∈ L(〈I, A, N, T 〉) is licensed as a TAG deriva-
tion tree in G iff D satisfies the following conditions (MC) (“multicomponent
condition”) and (SN-TTL) (“tree-tuple locality with shared nodes”):

(a) (MC) There are k pairwise disjoint instances Γ1, . . . , Γk of elementary

tree sets from A for some k ≥ 1 such that
⋃k

i=1 Γi is the set of node
labels in D.

(b) (SN-TTL) for all nodes n0, n1, . . . , nm, m > 1, in D with labels from
the same elementary tree tuple such that n0 is labelled by the head tree:
for all 1 ≤ i ≤ m: either 〈n0, ni〉 ∈ PD

5 or there are ni,1, . . . , ni,k

with auxiliary tree labels such that ni = ni,k, 〈n0, ni,1〉 ∈ PD and for
1 ≤ j ≤ k − 1: 〈ni,j , ni,j+1〉 ∈ PD where this edge is labelled with ǫ.

Fig. 3 shows a TT-MCTAG derivation for (1). Here, the NPnom auxiliary
tree adjoins directly to verspricht (its head) while the NPacc tree adjoins to the
root of a tree that adjoins to the root of a tree that adjoins to reparieren.

In the general case, the recognition problem for TT-MCTAG is NP-hard
(Søgaard et al. (2007)). In the following, we define a limitation for TT-MCTAG
based on a suggestion from Søgaard et al. (2007): TT-MCTAG are of rank k
if, at any time during the derivation, at most k argument trees depending on
higher head trees in the derivation tree are still waiting for adjunction.

Definition 9 (k-TT-MCTAG) Let G = 〈I, A, N, T,A〉 be a TT-MCTAG. G
is of rank k (or a k-TT-MCTAG for short) iff for each derivation tree D licenced
in G, the following holds:

4 The intuition is that if a tree γ′ adjoins to some γ, its root in the resulting derived
tree somehow belongs both to γ and γ′, it is shared by them. A further tree β

adjoining to this node can then be considered as adjoining to γ, not only to γ′ as
in standard TAG. Note that we assume that foot nodes do not allow adjunctions,
otherwise node sharing would also apply to them.

5 For a tree γ, Pγ is the parent relation on the nodes, i.e., 〈x, y〉 ∈ Pγ iff x is the
mother of y.

7

〈

VP

VP∗ verspricht
,

{

VP

NPnom VP∗

} 〉 〈

NPnom

der Mech.
, {}

〉

〈

VP

zu reparieren
,

{

VP

NPacc VP∗

} 〉 〈

NPacc

es
, {}

〉

derivation tree:
reparieren

ǫ

verspricht
ǫ

NPnom

1 ǫ

Mechaniker NPacc

1

es

Fig. 3. TT-MCTAG derivation of (1)

(TT-k) There are no nodes n, h0, . . . , hk, a0, . . . , ak in D such that the label
of ai is an argument tree of the label of hi and 〈hi, n〉, 〈n, ai〉 ∈ P+

D for 0 ≤ i ≤ k.

3 From k-TT-MCTAG to RCG

We construct equivalent simple RCGs for k-TT-MCTAG in a way similar to the
RCG construction for TAG. There are predicates 〈γ〉 for the elementary trees
(not the tree sets) that characterize the contribution of γ. Recall that each TT-
MCTAG is a TAG, a TT-MCTAG derivation is a derivation in the underlying
TAG. (This is how we defined TT-MCTAG.) Consequently, we can construct
the RCG for the underlying TAG, enrich the predicates in a way that allows to
keep track of the “still to adjoin” argument trees and constrain thereby further
the RCG clauses. In this case, the yield of a predicate corresponding to a tree γ
contains not only γ and its arguments but also arguments of predicates that are
higher in the derivation tree and that are adjoined below γ via node sharing.6

Our construction leads to an RCG of arity 2 with complex predicate names.
In order to keep the number of necessary predicates finite, the limit k is crucial.

A predicate 〈γ〉 must encode the set of argument trees that depend on higher
head trees and that still need to be adjoined. We call this set the list of pending
arguments (LPA). These trees need to either adjoin to the root or be passed to
the LPA of the root-adjoining tree. The LPA is a multiset since we allow for
several occurrences of a single tree.

In order to reduce the number of clauses, we distinguish between tree clauses
(predicates 〈γ...〉) and branching clauses (predicates 〈adj...〉 and 〈sub...〉) follow-
ing Boullier (1999). We therefore have three kinds of predicates:

1. 〈γ, LPA〉 with LPA being the list of pending arguments coming from higher
trees (not arguments of γ). This predicate has arity 2 if γ is an auxiliary
tree, arity 1 otherwise.

6 An alternative possibility would be to consider only γ and its arguments as the yield
of γ. An argument of a higher head adjoining below γ would then interrupt the
contribution of γ. This construction is more complex than the one we choose here.

8

〈γ, LPA〉-clauses distribute the variables for the yields of the trees that sub-
stitute or adjoin into γ among corresponding adj and sub predicates. Further-
more, they pass the LPA to the root-position adj predicate and distribute
the arguments of γ among the LPAs of all adj predicates.

2. 〈adj, γ, dot, LPA〉 as intermediate predicates (of arity 2). Here, LPA contains
a) the list of higher args if dot = ǫ, and b) arguments of γ. We assume as a
condition that it contains only trees that can be adjoined to dot in γ.
〈adj, γ, dot, LPA〉-clauses adjoin a γ′ to the dot in γ. If γ′ ∈ LPA, then the
new predicate receives LPA\{γ′}. Othwerwise, γ′ must be a head and LPA
is passed unchanged.

3. 〈sub, γ, dot〉 as intermediate predicates (arity 1).
〈sub, γ, dot〉-clauses aubstitute a γ′ into dot in γ.

More precisely, the construction goes as follows:
We define the decoration string σγ of an elementary tree γ as in Boullier

(1999): each internal node has two variables L and R and each substitution
node has one variable X (L and R represent right and left parts of the yield
of the adjoined tree and X represents the yield of a substituted tree). In a
top-down-left-to-right traversal the left variables are collected during the top-
down traversal, the terminals and variables of substitution nodes are collected
while visiting the leaves and the right variables are collected during bottom-up
traversal. Furthermore, while visiting a foot node, a separating “,” is inserted.
The string obtained in this way is the decoration string.

1. We add a start predicate S and clauses S(X) → 〈α, ∅〉(X) for all initial trees
α.

2. Let γ be a tree, σ its decoration string. Let Lp, Rp be the left and right
symbols in σ for the node at position p if this is no substitution node. Let
Xp be the symbol for the node at position p if this is a substitution node.
We assume that p1, . . . , pk are the possible adjunction sites, pk+1, . . . , pl the
substitution sites in γ. Then the RCG contains all clauses
〈γ, LPA〉(σ) → 〈adj, γ, p1, LPAp1

〉(Lp1
, Rp1

) . . . 〈adj, γ, pk, LPApk
〉(Lpk

, Rpk
)

〈sub, γ, pk+1〉(Xpk+1
) . . . 〈sub, γ, pl〉(Xpl

)
such that

– If LPA 6= ∅, then ǫ ∈ {p1, . . . , pk} and LPA ⊆ LPAǫ, and

–
⋃k

i=0 LPApi
= LPA ∪ Γ (γ) where Γ (γ) is the set of arguments of γ or

(if γ is an argument itself), the empty set.

3. For all predicates 〈adj, γ, dot, LPA〉 the RCG contains all clauses
〈adj, γ, dot, LPA〉(L, R) → 〈γ′, LPA′〉(L, R) such that γ′ can be adjoined at
position dot in γ and

– either γ′ ∈ LPA and LPA′ = LPA \ {γ′},
– or γ′ /∈ LPA, γ′ is a head (i.e., a head tree), and LPA′ = LPA.

4. For all predicates 〈adj, γ, dot, ∅〉 where dot in γ is no OA-node, the RCG
contains a clause
〈adj, γ, dot, ∅〉(ǫ, ǫ) → ǫ.

9

〈

αv VPOA

v0

, {}

〉 〈

αn1
NP1NA

n1

, {}

〉 〈

αn2
NP2NA

n2

, {}

〉

〈

βv1
VPOA

v1 VP∗

NA

,

{

βn1
VP

NP1 VP∗

NA

}〉 〈

βv2
VPOA

v2 VP∗

NA

,

{

βn2
VP

NP2 VP∗

NA

}〉

Fig. 4. TT-MCTAG

5. For all predicates 〈sub, γ, dot〉 and all γ′ that can be substituted into position
dot in γ the RCG contains a clause
〈sub, γ, dot〉(X) → 〈γ′, ∅〉(X).

As an example consider the TT-MCTAG from Fig. 4. For this TT-MCTAG
we obtain (amongst others) the following RCG clauses:

– 〈αv, ∅〉(L v0 R) → 〈adj, αv, ǫ, ∅〉(L, R)
(only one adjunction at the root, address ǫ)

– 〈adj, αv, ǫ, ∅〉(L, R) → 〈βv1
, ∅〉(L, R) | 〈βv2

, ∅〉(L, R)
(βv1

or βv2
might be adjoined at ǫ in αv, LPA (here empty) is passed)

– 〈βv1
, ∅〉(L v1, R) → 〈adj, βv1

, ǫ, {βn1
}〉(L, R)

(in βv1
, there is only one adjuntion site, address ǫ; the argument is passed

to the new LPA)
– 〈adj, βv1

, ǫ, {βn1
}〉(L, R) →

〈βn1
, ∅〉(L, R) | 〈βv1

, {βn1
}〉(L, R) | 〈βv2

, {βn1
}〉(L, R)

(either βn1
is adjoined and removed from the LPA or another tree (βv1

or
βv2

) is adjoined; in this case, the LPA remains)
– 〈βv1

, {βn1
}〉(L v1, R) → 〈adj, βv1

, ǫ, {βn1
, βn1

}〉(L, R)
(again, only one adjunction in βv1

; the argument βn1
is added to the LPA)

– 〈βn1
, ∅〉(L N, R) → 〈adj, βn1

, ǫ, ∅〉(L, R) 〈sub, βn1
, 1, 〉(N)

(adjunction to root and substitution to 1 in βn1
)

– 〈adj, βn1
, ǫ, ∅〉(ǫ, ǫ) → ǫ

(adjunction at root of βn1
not obligatory as long as LPA is empty)

– 〈sub, βn1
, 1, 〉(N) → 〈αn1

, ∅〉(N)
(substitution of αn1

at address 1)
– 〈αn1

, ∅〉(n1) → ǫ
(no adjunctions or substitutions at αn1

)
. . .

Take the input word n1n2n1v2v1v1v0. The RCG derivation goes as follows:
S(n1 n2 n1 v2 v1 v1 v0) ⇒ 〈αv, ∅〉(n1 n2 n1 v2 v1 v1 v0)

⇒ 〈adj, αv, ǫ, ∅〉(n1 n2 n1 v2 v1 v1, ǫ) (adjunction at ǫ, v0 is scanned)

⇒ 〈βv1
, ∅〉(n1 n2 n1 v2 v1 v1, ǫ) (βv1

is adjoined)

⇒ 〈adj, βv1
, 0, {βn1

}〉(n1 n2 n1 v2 v1, ǫ) (adj. at ǫ, v1 scanned,

βn1
put into LPA)

⇒ 〈βv1
, {βn1

}〉(n1 n2 n1 v2 v1, ǫ) (βv1
is adjoined)

10

⇒ 〈adj, βv1
, 0, {βn1

, βn1
}〉(n1 n2 n1 v2, ǫ) (adj. at ǫ, v1 scanned,

βn1
put into LPA)

⇒ 〈βv2
, {βn1

, βn1
}〉(n1 n2 n1 v2, ǫ) (βv2

is adjoined)

⇒ 〈adj, βv2
, ǫ, {βn2

, βn1
, βn1

}〉(n1 n2 n1, ǫ) (adj. at ǫ, v2 scanned,

βn2
put into LPA)

⇒ 〈βn1
, {βn2

, βn1
}〉(n1 n2 n1, ǫ) (βn1

from LPA adjoined)

⇒ 〈adj, βn1
, 0, {βn2

, βn1
}〉(n1 n2, ǫ) 〈sub, βn1

, 1, 〉(n1) (adj. at ǫ,)

(subst. at 1)

⇒ 〈adj, βn1
, 0, {βn2

, βn1
}〉(n1 n2, ǫ) 〈αn1

, ∅〉(n1) (subst. of αn1
)

⇒ 〈adj, βn1
, 0, {βn2

, βn1
}〉(n1 n2, ǫ) ǫ (n1 scanned)

⇒ 〈βn2
, {βn1

}〉(n1 n2, ǫ) (βn2
from LPA adjoined)

⇒ 〈adj, βn2
, 0, {βn1

}〉(n1, ǫ) 〈sub, βn2
, 1, 〉(n2) (adj. at ǫ, subst. at 1)

⇒ 〈adj, βn2
, 0, {βn1

}〉(n1, ǫ) 〈αn2
, ∅〉(n2) (subst. of αn2

)

⇒ 〈adj, βn2
, 0, {βn1

}〉(n1, ǫ) ǫ (n2 scanned)

⇒ 〈βn1
, ∅〉(n1, ǫ) (βn1

from LPA adjoined)
∗
⇒ 〈adj, βn1

, 0, ∅〉(ǫ, ǫ) 〈αn1
, ∅〉(n1) (subst. of αn1

)
∗
⇒ ǫ (scanning of n1)

This example requires LPAs of maximal cardinality 3, i.e., a 3-TT-MCTAG.
Note that with this construction, the grouping into tree sets gets lost. E.g.,

in our example, we do not know which of the n1 came with which of the v1.
However, in our parser we construct the RCG only for the TT-MCTAG of a
given input sentence and if the same terminal occurs more than once in the
input sentence, we use different occurences of the correponding tree tuples.7

This way, we avoid using the same elementary tree twice and the grouping can
be inferred from the tuple identifiers encoded in the names of the trees.

With the above construction the following can be shown:

Theorem 1. For each k-TT-MCTAG G there is a simple RCG G′ with L(G) =
L(G′).

As a corollary, we obtain that the string languages of k-TT-MCTAG are
mildly context-sensitive.

To prove the theorem, we introduce TT-RCG derivation trees:

Definition 10 (TT-RCG derivation tree) Let G′ be an RCG constructed
from a k-TT-MCTAG as above. A tree DG′ with node and edge labels is a TT-
RCG derivation tree for G′ iff

– each node in DG′ is labeled with a predicate name 〈γ, LPA〉 and with a
sequence of one or (if γ is an auxiliary tree) two w ∈ T ∗.

– if the root predicate is 〈γ, LPA〉, then there is a clause S → 〈γ, LPA〉;
– if there is a node with predicate 〈γ, LPA〉 and with l daughters with predicates

〈γi, LPA′

i〉 and edge labels doti (1 ≤ i ≤ l), then there is a 〈γ, LPA〉-clause
with 〈adj...〉 and 〈sub...〉 predicates on the righthand side as described in the
construction such that

7 We distinguish them via the position of the terminal in the input.

11

• for all adjunction sites p in γ, p /∈ {doti | 1 ≤ i ≤ l}: LPAp = ∅,
Lp, Rp = ǫ and there is a clause 〈adj, γ, p, ∅〉(ǫ, ǫ) → ǫ

• for all adjunction sites p = doti in γ (for some i, 1 ≤ i ≤ l): there is a
clause 〈adj, γ, doti, LPAp〉(L, R) → 〈γi, LPA′

i〉(L, R)
• for all substitution sites p = doti in γ (for some i, 1 ≤ i ≤ l): LPA′

i = ∅
and there is a clause 〈sub, γ, doti〉(X) → 〈γi, ∅〉(X)

– if a node with label 〈γ, LPA〉 and 〈w〉 or 〈w1, w2〉 (if γ auxiliary) does not
have a daughter, there is a clause 〈γ, LPA〉(w) → ǫ or 〈γ, LPA〉(w1, w2) → ǫ
respectively.

– the sequences of strings for a mother node are computed from the daughters
such that for at least one word w, the clauses leading from the mother to the
daughters can be instantiated successfully.

Furthermore, we call a TAG derivation tree whose nodes are equipped with
the yields of the derivation trees they root (one component for initial trees, two
components for auxilary trees) and the set of arguments they dominate that
actually depend on higher head trees a decorated TAG derivation tree.

Once these structures are defined, we can prove the correspondence between
the decorated TAG derivation trees licensed in the k-TT-MCTAG G and the
TT-RCG derivation trees of the RCG G′. More precisely, we show that for each
decorated TAG derivation tree in G, there is an isomorphic TT-RCG derivation
tree in G′ and vice versa. We can show this by an induction on the height of the
subtree rooted by a node. (Due to space limitations, we omit the proof here.)

Conclusion

This paper has investigated the relation between two grammar formalisms, TT-
MCTAG and RCG. TT-MCTAG is a tree rewriting formalism that allows to
adequately model the free word order in certain languages, e.g., German. RCG,
on the other hand, is known to have nice formal properties: RCGs in general are
polynomially parsable, simple RCGs are even mildly context-sensitive. Further-
more, parsing algorithms for simple RCGs are already available.

In this paper, we have shown how to construct for a given TT-MCTAG with
a certain limitation (a so-called k-TT-MCTAG) an equivalent simple RCG. As
a formal result, we obtain that the class of string languages generated by k-TT-
MCTAG is contained in the class of languages generated by simple RCGs. In
particular, k-TT-MCTAG are mildly context-sensitive.

As a practical result, we can use this transformation from k-TT-MCTAG to
simple RCG for a 2-step k-TT-MCTAG parser that, in a first step, does the
transformation and, in a second step, parses with the RCG obtained from the
first step. As we have seen from the correspondence between the two derivation
structures, the derivation tree of the k-TT-MCTAG can be retrieved from the
RCG parse tree in a straightforward way. We have implemented this within a
project that develops a TAG-based grammar for German along with a parser for
this grammar.8

8 See http://www.sfb441.uni-tuebingen.de/emmy/tulipa.

Bibliography

Boullier, P.: 1998a, ‘A Generalization of Mildly Context-Sensitive Formalisms’.
In: Proceedings of the Fourth International Workshop on Tree Adjoining
Grammars and Related Formalisms (TAG+4). University of Pennsylvania,
Philadelphia, pp. 17–20.

Boullier, P.: 1998b, ‘A Proposal for a Natural Language Processing Syntactic
Backbone’. Technical Report 3342, INRIA.

Boullier, P.: 1999, ‘On TAG Parsing’. In: TALN 99, 6e conférence annuelle sur
le Traitement Automatique des Langues Naturelles. Cargèse, Corse, pp. 75–84.

Boullier, P.: 2000, ‘Range Concatenation Grammars’. In: Proceedings of the Sixth
International Workshop on Parsing Technologies (IWPT2000). Trento, Italy,
pp. 53–64.

Joshi, A. K.: 1987, ‘An introduction to Tree Adjoining Grammars’. In: A.
Manaster-Ramer (ed.): Mathematics of Language. Amsterdam: John Ben-
jamins, pp. 87–114.

Joshi, A. K. and Y. Schabes: 1997, ‘Tree-Adjoning Grammars’. In: G. Rozenberg
and A. Salomaa (eds.): Handbook of Formal Languages. Berlin: Springer, pp.
69–123.

Kallmeyer, L.: 2005, ‘Tree-local Multicomponent Tree Adjoining Grammars with
Shared Nodes’. Computational Linguistics 31(2), 187–225.

Lichte, T.: 2007, ‘An MCTAG with Tuples for Coherent Constructions in Ger-
man’. In: Proceedings of the 12th Conference on Formal Grammar 2007.
Dublin, Ireland.

Søgaard, A., T. Lichte, and W. Maier: 2007, ‘The complexity of linguistically mo-
tivated extensions of tree-adjoining grammar’. In: Recent Advances in Natural
Language Processing 2007. Borovets, Bulgaria.

Weir, D. J.: 1988, ‘Characterizing mildly context-sensitive grammar formalisms’.
Ph.D. thesis, University of Pennsylvania.

