A Mean Field Theory of Nonlinear Filtering

Pierre Del Moral 1, 2 Frédéric Patras 3 Sylvain Rubenthaler 3
2 ALEA - Advanced Learning Evolutionary Algorithms
Inria Bordeaux - Sud-Ouest, UB - Université de Bordeaux, CNRS - Centre National de la Recherche Scientifique : UMR5251
Abstract : We present a mean field particle theory for the numerical approximation of Feynman-Kac path integrals in the context of nonlinear filtering. We show that the conditional distribution of the signal paths given a series of noisy and partial observation data is approximated by the occupation measure of a genealogical tree model associated with mean field interacting particle model. The complete historical model converges to the McKean distribution of the paths of a nonlinear Markov chain dictated by the mean field interpretation model. We review the stability properties and the asymptotic analysis of these interacting processes, including fluctuation theorems and large deviation principles. We also present an original Laurent type and algebraic tree-based integral representations of particle block distributions. These sharp and non asymptotic propagations of chaos properties seem to be the first result of this type for mean field and interacting particle systems.
Type de document :
[Research Report] RR-6437, INRIA. 2008

Contributeur : Pierre Del Moral <>
Soumis le : mardi 5 février 2008 - 11:32:09
Dernière modification le : samedi 17 septembre 2016 - 01:35:27
Document(s) archivé(s) le : vendredi 25 novembre 2016 - 20:38:40


Fichiers produits par l'(les) auteur(s)


  • HAL Id : inria-00238398, version 3



Pierre Del Moral, Frédéric Patras, Sylvain Rubenthaler. A Mean Field Theory of Nonlinear Filtering. [Research Report] RR-6437, INRIA. 2008. <inria-00238398v3>



Consultations de
la notice


Téléchargements du document